

ACCESSING DOUBLE PARTON SCATTERINGS WITH ASSOCIATED-QUARKONIUM PRODUCTION

J.P. Lansberg

IPN Orsay – Paris-Sud U. –CNRS/IN2P3 – Université Paris-Saclay DIS 2019, Torino, April 11, 2019

Part I

Introduction

See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

Talks e.g. by H.S. Chung (WG5 yesterday), L.Motyka (WG2 on Tuesday), R. Maciula (WG2 on Tuesday)

No consensus on the mechanism at work in quarkonium production

See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson

See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation

See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:

See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons?

See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons?
 - ② COLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission costs $\alpha_s(m_Q)$ and occurs at short distances; bleaching at the pair-production time

See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - OLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons?
 - ② COLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission costs $\alpha_s(m_Q)$ and occurs at short distances; bleaching at the pair-production time
 - OLOUR OCTET MECHANISM (encapsulated in NRQCD): higher Fock states of the mesons taken into account; QQ can be produced in octet states with different quantum # as the meson; bleaching with semi-soft gluons?

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

• CSM is doing well for the P_T integrated yield

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

• CSM is doing well for the P_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

• Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

• CSM is doing well for the P_T integrated yield

- \bullet Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

• CSM is doing well for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
- Colour-Evaporation Mechanism (CEM) \leftrightarrow quark-hadron duality tends to overshoot the data at large P_T – issue shared by some COM fits

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

• CSM is doing well for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
- Colour-Evaporation Mechanism (CEM) \leftrightarrow quark-hadron duality tends to overshoot the data at large P_T issue shared by some COM fits
- All approaches have troubles with ep, ee or pp polarisation and/or the η_c data

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

• CSM is doing well for the P_T integrated yield

- \bullet Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
- Colour-Evaporation Mechanism (CEM) \leftrightarrow quark-hadron duality tends to overshoot the data at large P_T issue shared by some COM fits
- All approaches have troubles with *ep*, *ee* or *pp* polarisation and/or the η_c data
- This motivates the study of new observables which can be more discriminant for specific effects [e.g. associated production]

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

• CSM is doing well for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
- Colour-Evaporation Mechanism (CEM) \leftrightarrow quark-hadron duality tends to overshoot the data at large P_T issue shared by some COM fits
- All approaches have troubles with *ep*, *ee* or *pp* polarisation and/or the η_c data
- This motivates the study of new observables which can be more discriminant for specific effects [e.g. associated production]
- However, as we will now see, these offer new ways to study DPS

Part II

New observables in quarkonium production

Associated-quarkonium production

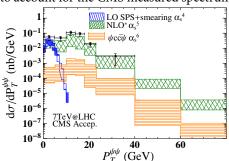
Associated-quarkonium production

See section 3 of JPL, arXiv:1903.09185 [hep-ph]

				,	See section 5 of JrL, atAiv:1905.0	
Observables	Experiments	CSM	CEM	NRQCD	Interest	
J/ψ+J/ψ	LHCb, CMS, ATLAS, D0 (+NA3)	NLO, NNLO*	LO?	LO	Prod. Mechanism (CS dominant) + DPS + gluon TMD	
J/ψ+D	LHCb	LO	LO?	LO	Prod. Mechanism (c to J/psi fragmentation) + DPS	
J/ψ+Y	D0	(N)LO	LO?	LO	Prod. Mechanism (CO dominant) + DPS	
J/ψ+hadron	STAR	LO		LO	B feed-down; Singlet vs Octet radiation	
J/ψ+Z	ATLAS	NLO	NLO	Partial NLO	Prod. Mechanism + DPS	
J/ψ+W	ATLAS	LO	NLO	NLO (?)	Prod. Mechanism (CO dominant) + DPS	
J/ψ vs mult.	ALICE,CMS (+UA1)				Initial vs Final state effects ?	
J/ψ in jet.	LHCb, CMS	LO		LO	Prod. Mechanism (?)	
J/ψ(Y) + jet					Prod. Mechanism (QCD corrections)	
Isolated J/ψ(Y)					Prod. Mechanism (CS dominant ?)	
J/ψ+b				LO	Prod. Mechanism (CO dominant) + DPS	
Y+D	LHCb	LO	LO?	LO	DPS	
Υ+γ		NLO, NNLO*	LO?	LO	Prod. Mechanism (CO LDME mix) + gluon TMD/PDF	
Y vs mult.	CMS					
Y+Z		NLO	LO?	LO	Prod. Mechanism + DPS	
Υ+Υ	CMS	NLO ?	LO?	LO?	Prod. Mechanism (CS dominant ?) + DPS + gluon TMD	

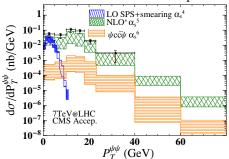
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

• At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies


JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

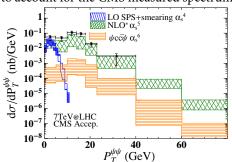
- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T

 $[\leftrightarrow interest \ for \ TMD \ studies]$


JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

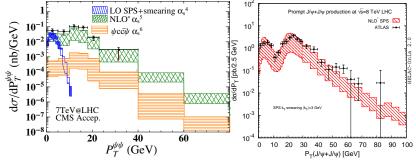
- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T [\leftrightarrow interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

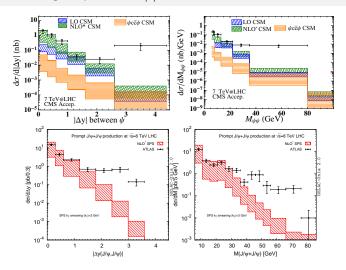

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T [\leftrightarrow interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

• α_s^5 contributions (green) are crucial here and do a good job even at $P_T^{\psi\psi} \simeq 30~{\rm GeV}$

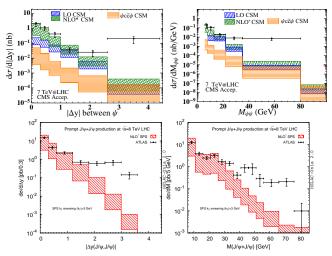
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76


- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T [\leftrightarrow interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

- α_s^5 contributions (green) are crucial here and do a good job even at $P_T^{\psi\psi} \simeq 30$ GeV
- We do not expect NNLO (α_s^6) contributions to matter where one currently has data [the orange histogram shows one class of leading $P_T \alpha_s^6$ contributions]


JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T [\leftrightarrow interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum



- α_s^5 contributions (green) are crucial here and do a good job even at $P_T^{\psi\psi} \simeq 30 \text{ GeV}$
- We do not expect NNLO (α_s^6) contributions to matter where one currently has data [the orange histogram shows one class of leading P_T α_s^6 contributions]

A puzzle at large Δy (or $M_{\psi\psi}$)?

A puzzle at large Δy (or $M_{\psi\psi}$)?

The most natural solution for this excess is the independent production of two J/ψ \rightarrow double parton scattering

• If the DPS are independent, one can write

$$\sigma_{\psi\psi}^{\rm DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\rm eff}}$$

[σ_{ψ} can either be measured or computed]

If the DPS are independent, one can write

$$\sigma_{\psi\psi}^{\rm DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\rm eff}}$$

[σ_{ψ} can either be measured or computed]

• The smaller $\sigma_{\rm eff}$, the larger the DPS yield and the larger the parton correlations in the proton

• If the DPS are independent, one can write

$$\sigma_{\psi\psi}^{\rm DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\rm eff}}$$

 $[\sigma_{\psi} \text{ can either be measured or computed}]$

- The smaller $\sigma_{\rm eff}$, the larger the DPS yield
 - and the larger the parton correlations in the proton

• D0 : $\sigma_{\rm eff} = 4.8 \pm 2.5 \text{ mb}$

D0 Coll. PRD 90 (2014) 111101

• If the DPS are independent, one can write

$$\sigma_{\psi\psi}^{\rm DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\rm eff}}$$

 $[\sigma_{\psi} \text{ can either be measured or computed}]$

• The smaller $\sigma_{\rm eff}$, the larger the DPS yield

and the larger the parton correlations in the proton

• D0 : $\sigma_{\rm eff} = 4.8 \pm 2.5 \, \rm mb$

D0 Coll. PRD 90 (2014) 111101

• CMS: $\sigma_{\rm eff} = 8.2 \pm 2.0 \pm 2.9 \text{ mb}$

JPL, H.-S.Shao PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094

• If the DPS are independent, one can write

$$\sigma_{\psi\psi}^{\rm DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\rm eff}}$$

[σ_{ψ} can either be measured or computed]

• The smaller $\sigma_{\rm eff}$, the larger the DPS yield

and the larger the parton correlations in the proton

• D0 : $\sigma_{\rm eff} = 4.8 \pm 2.5 \text{ mb}$

D0 Coll. PRD 90 (2014) 111101

• CMS: $\sigma_{\rm eff} = 8.2 \pm 2.0 \pm 2.9 \text{ mb}$

JPL, H.-S.Shao PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094

• ATLAS: $\sigma_{\text{eff}} = 6.3 \pm 1.6(stat) \pm 1.0(syst) \pm 0.1(BF) \pm 0.1(lumi)$ mb

ATLAS Eur. Phys. J. C (2017) 77:76

Double parton scatterings in double J/ψ production

• If the DPS are independent, one can write

$$\sigma_{\psi\psi}^{\rm DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\rm eff}}$$

[σ_{ψ} can either be measured or computed]

• The smaller $\sigma_{\rm eff}$, the larger the DPS yield

and the larger the parton correlations in the proton

• D0 : $\sigma_{\rm eff} = 4.8 \pm 2.5 \text{ mb}$

D0 Coll. PRD 90 (2014) 111101

• CMS: $\sigma_{\rm eff} = 8.2 \pm 2.0 \pm 2.9 \text{ mb}$

JPL, H.-S.Shao PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094

• ATLAS: $\sigma_{\text{eff}} = 6.3 \pm 1.6(stat) \pm 1.0(syst) \pm 0.1(BF) \pm 0.1(lumi)$ mb

ATLAS Eur. Phys. J. C (2017) 77:76

NB: Agreement not perfect with the ATLAS data

[See P. Iengo's talk yesterday in WG5]

IPL, H.-S.Shao PLB 751 (2015) 479; IPL 1903.09185

• Even though we find it a natural, accounting for DPS introduces another parameter

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}(F_{\psi\psi}^{\psi'})$ as the fraction of events containing at least one $\chi_c(\psi')$

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ ($F_{\psi\psi}^{\psi'}$) as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (m: symmetry factor)

$$\frac{\boldsymbol{F}_{\psi\psi}^{\chi_c}}{\boldsymbol{F}_{\psi}^{\chi_c}} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), \\ \frac{\boldsymbol{F}_{\psi\psi}^{\psi'}}{\boldsymbol{F}_{\psi\psi}^{\psi'}} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), \\ \frac{\boldsymbol{F}_{\psi\psi}^{\text{direct}}}{\boldsymbol{F}_{\psi\psi}^{\text{direct}}} = \left(F_{\psi}^{\text{direct}}\right)^2 + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}$$

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ ($F_{\psi\psi}^{\psi'}$) as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (m: symmetry factor)

$$F_{\psi\psi}^{\chi_c} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), F_{\psi\psi}^{\psi'} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), F_{\psi\psi}^{\text{direct}} = (F_{\psi}^{\text{direct}})^2$$

- Under SPS CSM dominance,
- $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
- $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small

IPL, H.-S.Shao PLB 751 (2015) 479; IPL 1903.09185

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ ($F_{\psi\psi}^{\psi'}$) as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (m: symmetry factor)

$$\frac{F_{\psi\psi}^{\chi_c}}{F_{\psi\psi}^{\chi_c}} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), F_{\psi\psi}^{\psi'} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), F_{\psi\psi}^{\text{direct}} = (F_{\psi}^{\text{direct}})^2$$

- Under SPS CSM dominance,
- $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
- $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small
- Overall:

	(CSM) SPS	$Low P_T DPS$	High P_T DPS
$F_{\psi\psi}^{\psi'}$	50%	15%	15%
$F_{\psi\psi}^{\chi_c}$	small	25%	50%

• Based on up-to-date feed-down values $(J/\psi \text{ is } 80\% \text{ direct at low } P_T)$

IPL, 1903,09185

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ ($F_{\psi\psi}^{\psi'}$) as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (m: symmetry factor)

$$\frac{\boldsymbol{F}_{\psi\psi}^{\chi_c}}{\boldsymbol{F}_{\psi\psi}^{\chi_c}} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), \quad F_{\psi\psi}^{\psi'} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), \quad F_{\psi\psi}^{\text{direct}} = \left(F_{\psi}^{\text{direct}}\right)^2$$

- Under SPS CSM dominance,
- $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
- $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small
- Overall:

	(CSM) SPS	$Low P_T DPS$	High P_T DPS
$F_{\psi\psi}^{\psi'}$	50%	15%	15%
$F_{\psi\psi}^{\chi_c}$	small	25%	50%

- Based on up-to-date feed-down values (J/ψ is 80% direct at low P_T) JPL, 1903.09185
- Hence the importance of measuring $J/\psi + \psi'$ and $J/\psi + \chi_c$

IPL, H.-S.Shao PLB 751 (2015) 479; IPL 1903.09185

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ ($F_{\psi\psi}^{\psi'}$) as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (m: symmetry factor)

$$\frac{\boldsymbol{F}_{\psi\psi}^{\chi_c}}{\boldsymbol{F}_{\psi\psi}^{\chi_c}} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), \quad \mathbf{F}_{\psi\psi}^{\psi'} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), \quad \mathbf{F}_{\psi\psi}^{\text{direct}} = \left(F_{\psi}^{\text{direct}}\right)^2$$

- Under SPS CSM dominance,
- $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
- $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small
- Overall:

	(CSM) SPS	Low P_T DPS	High P_T DPS
$F^{\psi'}_{\psi\psi}$	50%	15%	15%
$F_{\psi\psi}^{\chi_c}$	small	25%	50%

- Based on up-to-date feed-down values $(J/\psi \text{ is } 80\% \text{ direct at low } P_T)$
- Hence the importance of measuring $J/\psi + \psi'$ and $J/\psi + \chi_c$
- $J/\psi + \eta_c$ can also tell something about DPS and about σ_{eff} • • • •

JPL, 1903.09185

JPL, H.S. Shao, JHEP 1610 (2016) 153

• Significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229
B. Gong et al., JHEP 1303 (2013) 115
L.Gang et al., JHEP 1102 (2011) 071

JPL, H.S. Shao, JHEP 1610 (2016) 153

• Significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229
B. Gong et al., JHEP 1303 (2013) 115
L.Gang et al., JHEP 1102 (2011) 071

• We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter $\mathcal{P}_{\psi}^{\text{prompt}}$ fit to the latest single- J/ψ ATLAS data at 8 TeV.

JPL, H.S. Shao, JHEP 1610 (2016) 153

• Significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229
B. Gong et al., JHEP 1303 (2013) 115
L.Gang et al., JHEP 1102 (2011) 071

- We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter $\mathcal{P}_{\psi}^{\text{prompt}}$ fit to the latest single- J/ψ ATLAS data at 8 TeV.
- Just as the CEM tends to produce too many J/ψ at large P_T , we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.

JPL, H.S. Shao, JHEP 1610 (2016) 153

• Significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229
B. Gong et al., JHEP 1303 (2013) 115
L.Gang et al., JHEP 1102 (2011) 071

- We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter $\mathcal{P}_{\psi}^{\text{prompt}}$ fit to the latest single- J/ψ ATLAS data at 8 TeV.
- Just as the CEM tends to produce too many J/ψ at large P_T , we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.
- we obtain (ATLAS quoted ratio converted to σ)

	exp	LO CEM SPS	NLO CEM SPS	DPS ($\sigma_{\rm eff} \simeq 15 \text{ mb}$)
ATLAS inclusive	1.6 ± 0.4	$0.10^{+0.03}_{-0.03}$	$0.19^{+0.05}_{-0.04}$	0.46

JPL, H.S. Shao, JHEP 1610 (2016) 153

• Significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229 B. Gong et al., JHEP 1303 (2013) 115 L.Gang et al., JHEP 1102 (2011) 071

- We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter $\mathcal{P}_{\psi}^{\text{prompt}}$ fit to the latest single- J/ψ ATLAS data at 8 TeV.
- Just as the CEM tends to produce too many J/ψ at large P_T , we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.
- we obtain (ATLAS quoted ratio converted to σ)

	exp	LO CEM SPS	NLO CEM SPS	DPS ($\sigma_{\rm eff} \simeq 15 \text{ mb}$)
ATLAS inclusive	1.6 ± 0.4	$0.10^{+0.03}_{-0.03}$	$0.19^{+0.05}_{-0.04}$	0.46

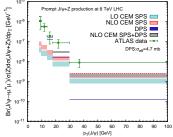
- This gives a 3- σ discrepancy without DPS contribution
- DPS yield evaluated with $\sigma_{\rm eff}$ = 15 mb is too small; Fit: $\sigma_{\rm eff}$ = 4.7^{+2.4}_{-1.5} mb

JPL, H.S. Shao, JHEP 1610 (2016) 153

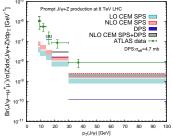
• Significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229 B. Gong et al., JHEP 1303 (2013) 115 L.Gang et al., JHEP 1102 (2011) 071

- We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter $\mathcal{P}_{\psi}^{\text{prompt}}$ fit to the latest single- J/ψ ATLAS data at 8 TeV.
- Just as the CEM tends to produce too many J/ψ at large P_T , we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.
- we obtain (ATLAS quoted ratio converted to σ)

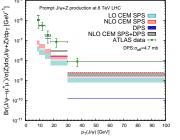

	exp	LO CEM SPS	NLO CEM SPS	DPS ($\sigma_{\rm eff} \simeq 15 \text{ mb}$)
ATLAS inclusive	1.6 ± 0.4	$0.10^{+0.03}_{-0.03}$	$0.19^{+0.05}_{-0.04}$	0.46

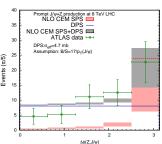
- This gives a 3- σ discrepancy without DPS contribution
- DPS yield evaluated with $\sigma_{\rm eff}$ = 15 mb is too small; Fit: $\sigma_{\rm eff}$ = 4.7^{+2.4}_{-1.5} mb
- However presence of a peak at $\Delta \phi = \pi$ in the azimuthal spectrum



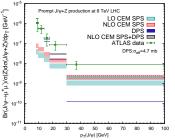
- It is important to note that the ATLAS $\Delta \phi$ spectrum is a raw yield distribution
- Since ATLAS efficiency increases with P_T , large- P_T events more likely to be recorded

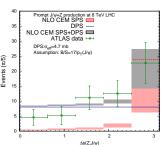
- It is important to note that the ATLAS $\Delta \phi$ spectrum is a raw yield distribution
- Since ATLAS efficiency increases with P_T , large- P_T events more likely to be recorded
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T [Thin blue histogram vs. the light red one]



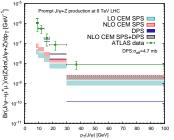

- It is important to note that the ATLAS $\Delta \phi$ spectrum is a raw yield distribution
- Since ATLAS efficiency increases with P_T , large- P_T events more likely to be recorded
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T [Thin blue histogram vs. the light red one]

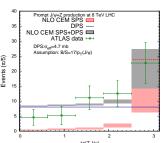
• Can the $\Delta \phi$ peak (with only 1/6 of SPS events overall) be due to that ?


- It is important to note that the ATLAS $\Delta \phi$ spectrum is a raw yield distribution
- Since ATLAS efficiency increases with P_T , large- P_T events more likely to be recorded
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T [Thin blue histogram vs. the light red one]



• Can the $\Delta \phi$ peak (with only 1/6 of SPS events overall) be due to that ? YES!


- It is important to note that the ATLAS $\Delta \phi$ spectrum is a raw yield distribution
- Since ATLAS efficiency increases with P_T , large- P_T events more likely to be recorded
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T [Thin blue histogram vs. the light red one]



- Can the $\Delta \phi$ peak (with only 1/6 of SPS events overall) be due to that ? YES!
- The last plot has been made by folding our DPS and SPS cross sections by an estimation of the ATLAS efficiency, and it works.

- It is important to note that the ATLAS $\Delta \phi$ spectrum is a raw yield distribution
- Since ATLAS efficiency increases with P_T , large- P_T events more likely to be recorded
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T [Thin blue histogram vs. the light red one]

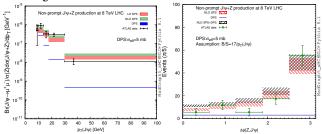
- Can the $\Delta \phi$ peak (with only 1/6 of SPS events overall) be due to that ? YES!
- The last plot has been made by folding our DPS and SPS cross sections by an estimation of the ATLAS efficiency, and it works.
- We are waiting for an ATLAS update to confirm our explanation

JPL, H.S. Shao, Nucl. Phys. B916 (2017) 132

JPL, H.S. Shao, Nucl. Phys. B916 (2017) 132

• In the same analysis, ATLAS reported on Z+non-prompt J/ψ .

JPL, H.S. Shao, Nucl.Phys. B916 (2017) 132


- In the same analysis, ATLAS reported on Z+non-prompt J/ψ .
- This gives an original handle on Z + b at lower P_T than b-jets

JPL, H.S. Shao, Nucl.Phys. B916 (2017) 132

- In the same analysis, ATLAS reported on Z+non-prompt J/ψ .
- This gives an original handle on Z + b at lower P_T than b-jets
- Interesting check that nothing went wrong with the prompt analysis

JPL, H.S. Shao, Nucl. Phys. B916 (2017) 132

- In the same analysis, ATLAS reported on Z+non-prompt J/ψ .
- This gives an original handle on Z + b at lower P_T than b-jets
- Interesting check that nothing went wrong with the prompt analysis
- SPS predictions were absent at the time of the publication. We filled this gap in the litserature using MadGraph5_AMC@NLO and Pythia 8.1.

Differential cross section/distributions for non-prompt $J/\psi + Z$ production: p_T distribution of J/ψ (left) and azimuthal angle distribution (right)

• Good agreement. Owing to the data uncertainties at low P_T , we cannot constrain σ_{eff} more than with a lower limit, 5.0 mb, at 68 % CL.

• Similarly to Z+prompt J/ψ , significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, JHEP 1404 (2014) 172 L. Gang et al., PRD 83 (2011) 014001 J.P. Lansberg, C. Lorce, PLB 726 (2013) 218

• Similarly to Z+prompt J/ψ , significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, JHEP 1404 (2014) 172 L. Gang et al., PRD 83 (2011) 014001 J.P. Lansberg, C. Lorce, PLB 726 (2013) 218

• Just as above, we employ a NLO CEM computation of $J/\psi + Z$ (upper SPS limit)

JPL, H.S. Shao, N. Yamanaka, PLB 781 (2018) 485

• Similarly to Z+prompt J/ψ , significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, JHEP 1404 (2014) 172 L. Gang et al., PRD 83 (2011) 014001 J.P. Lansberg, C. Lorce, PLB 726 (2013) 218

• Just as above, we employ a NLO CEM computation of $J/\psi + Z$ (upper SPS limit)

JPL, H.S. Shao, N. Yamanaka, PLB 781 (2018) 485

• we obtain (for the cross section)

	exp	LO CEM SPS	NLO CEM SPS	DPS ($\sigma_{\rm eff} \simeq 15 \text{ mb}$)
ATLAS inclusive	4.5 ^{+1.9} _{-1.5} pb	0.16 ± 0.05	0.28 ± 0.07	1.7

• Similarly to Z+prompt J/ψ , significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

ATLAS Collaboration, JHEP 1404 (2014) 172 L. Gang et al., PRD 83 (2011) 014001 J.P. Lansberg, C. Lorce, PLB 726 (2013) 218

• Just as above, we employ a NLO CEM computation of $J/\psi + Z$ (upper SPS limit)

JPL, H.S. Shao, N. Yamanaka, PLB 781 (2018) 485

• we obtain (for the cross section)

	exp	LO CEM SPS	NLO CEM SPS	DPS ($\sigma_{\rm eff} \simeq 15 {\rm mb}$)
ATLAS inclusive	4.5 ^{+1.9} _{-1.5} pb	0.16 ± 0.05	0.28 ± 0.07	1.7

- This gives a $2+\sigma$ discrepancy without DPS contribution. The discrepancy rises up to $3+\sigma$ with the differential x-section: evidence for DPS (see next)
- DPS yield evaluated with $\sigma_{\rm eff}$ = 15 mb is also too small

• Similarly to Z+prompt J/ψ , significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions

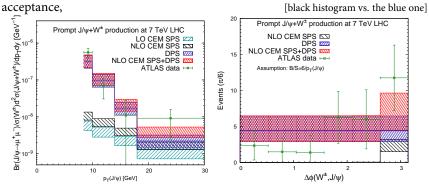
ATLAS Collaboration, JHEP 1404 (2014) 172 L. Gang et al., PRD 83 (2011) 014001 J.P. Lansberg, C. Lorce, PLB 726 (2013) 218

• Just as above, we employ a NLO CEM computation of $J/\psi + Z$ (upper SPS limit)

JPL, H.S. Shao, N. Yamanaka, PLB 781 (2018) 485

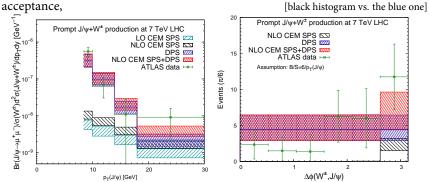
• we obtain (for the cross section)

	exp			DPS ($\sigma_{\rm eff} \simeq 15 {\rm mb}$)
ATLAS inclusive	4.5 ^{+1.9} _{-1.5} pb	0.16 ± 0.05	0.28 ± 0.07	1.7


- This gives a $2+\sigma$ discrepancy without DPS contribution. The discrepancy rises up to $3+\sigma$ with the differential x-section: evidence for DPS (see next)
- DPS yield evaluated with $\sigma_{\rm eff}$ = 15 mb is also too small
- Fitting $\sigma_{\rm eff}$ gives $6.1^{+3.3}_{-1.9}$ mb

Comparisons with the differential distributions

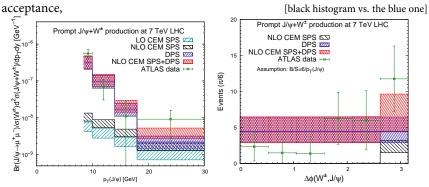
Comparisons with the differential distributions


• Like for $Z + J/\psi$, DPS dominate at low P_T and SPS at large P_T in the ATLAS

• The $\Delta \phi$ plot has been made by folding our DPS and SPS cross sections by an estimation of the ATLAS efficiency

Comparisons with the differential distributions

• Like for $Z + J/\psi$, DPS dominate at low P_T and SPS at large P_T in the ATLAS



- The $\Delta \phi$ plot has been made by folding our DPS and SPS cross sections by an estimation of the ATLAS efficiency
- Agreement but large exp. uncertainties

Comparisons with the differential distributions

• Like for $Z + J/\psi$, DPS dominate at low P_T and SPS at large P_T in the ATLAS

- The $\Delta \phi$ plot has been made by folding our DPS and SPS cross sections by an estimation of the ATLAS efficiency
- Agreement but large exp. uncertainties
- We are waiting for ATLAS data at 13 TeV

• A single analysis by CMS at \sqrt{s} = 8 TeV for $|y_Y|$ < 2.0 using 20.7 fb⁻¹ of data

- A single analysis by CMS at \sqrt{s} = 8 TeV for $|y_Y|$ < 2.0 using 20.7 fb⁻¹ of data
- Only 40 events collected; no kinematical distributions

- A single analysis by CMS at $\sqrt{s} = 8$ TeV for $|y_Y| < 2.0$ using 20.7 fb⁻¹ of data
- Only 40 events collected; no kinematical distributions
- $\sigma_{\Upsilon\Upsilon} = 68.8 \pm 12.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 2.8 \text{(Br) pb}$ [Polarisation uncertainty: 40 %]

- A single analysis by CMS at $\sqrt{s} = 8$ TeV for $|y_Y| < 2.0$ using 20.7 fb⁻¹ of data
- Only 40 events collected; no kinematical distributions
- $\sigma_{\Upsilon\Upsilon} = 68.8 \pm 12.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 2.8 \text{(Br)} \text{ pb}$ [Polarisation uncertainty: 40 %]
- LO CS/NRQCD expectations: 26 ± 13 pb; LO CEM expectations : $\mathcal{O}(0.2)$ pb

 $\Upsilon + \Upsilon$

CMS JHEP05(2017)013

- A single analysis by CMS at \sqrt{s} = 8 TeV for $|y_Y|$ < 2.0 using 20.7 fb⁻¹ of data
- Only 40 events collected; no kinematical distributions
- $\sigma_{\Upsilon\Upsilon} = 68.8 \pm 12.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 2.8 \text{(Br)} \text{ pb}$ [Polarisation uncertainty: 40 %]
- LO CS/NRQCD expectations: 26 ± 13 pb; LO CEM expectations : $\mathcal{O}(0.2)$ pb

R. Li et al. PRD 80 (2009) 014020; P. Ko et al. JHEP 1101 (2011) 070; A.V Berezhnoy et al. PRD 87 (2013) 054023; JPL et al. to appear [Mass uncertainty not accounted for, but likely large; CO below % level]

• Lacking a *control region* where $\sigma^{DPS} \gg \sigma^{SPS}$ or, as a makeshift, some kinematical distributions, impossible to extract σ^{DPS} , and thus σ_{eff} w/o precisely knowing σ_{SPS}

- A single analysis by CMS at \sqrt{s} = 8 TeV for $|y_Y|$ < 2.0 using 20.7 fb⁻¹ of data
- Only 40 events collected; no kinematical distributions
- $\sigma_{\Upsilon\Upsilon} = 68.8 \pm 12.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 2.8 \text{(Br)} \text{ pb}$ [Polarisation uncertainty: 40 %]
- LO CS/NRQCD expectations: 26 ± 13 pb; LO CEM expectations : $\mathcal{O}(0.2)$ pb

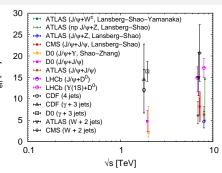
- Lacking a *control region* where $\sigma^{DPS} \gg \sigma^{SPS}$ or, as a makeshift, some kinematical distributions, impossible to extract σ^{DPS} , and thus σ_{eff} w/o precisely knowing σ_{SPS}
- I thus obviously disagree with the statement made about the DPS in the CMS paper

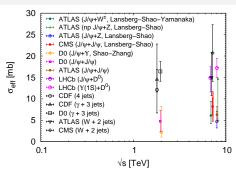
- A single analysis by CMS at $\sqrt{s} = 8$ TeV for $|y_Y| < 2.0$ using 20.7 fb⁻¹ of data
- Only 40 events collected; no kinematical distributions
- $\sigma_{\Upsilon\Upsilon} = 68.8 \pm 12.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 2.8 \text{(Br)} \text{ pb}$ [Polarisation uncertainty: 40 %]
- LO CS/NRQCD expectations: 26 ± 13 pb; LO CEM expectations : $\mathcal{O}(0.2)$ pb

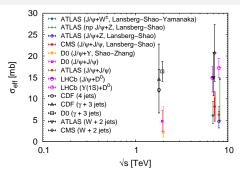
- Lacking a *control region* where $\sigma^{DPS} \gg \sigma^{SPS}$ or, as a makeshift, some kinematical distributions, impossible to extract σ^{DPS} , and thus σ_{eff} w/o precisely knowing σ_{SPS}
- I thus obviously disagree with the statement made about the DPS in the CMS paper
- One can however present some expectations about the DPS yield to assess its impact

 $\Upsilon + \Upsilon$

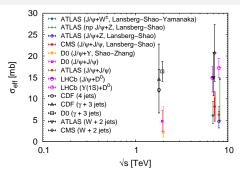
CMS JHEP05(2017)013

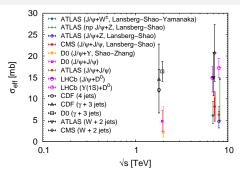

- A single analysis by CMS at $\sqrt{s} = 8$ TeV for $|y_Y| < 2.0$ using 20.7 fb⁻¹ of data
- Only 40 events collected; no kinematical distributions
- $\sigma_{\Upsilon\Upsilon} = 68.8 \pm 12.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 2.8 \text{(Br) pb}$ [Polarisation uncertainty: 40 %]
- LO CS/NRQCD expectations: 26 ± 13 pb; LO CEM expectations : $\mathcal{O}(0.2)$ pb


- Lacking a *control region* where $\sigma^{DPS} \gg \sigma^{SPS}$ or, as a makeshift, some kinematical distributions, impossible to extract σ^{DPS} , and thus σ_{eff} w/o precisely knowing σ_{SPS}
- I thus obviously disagree with the statement made about the DPS in the CMS paper
- One can however present some expectations about the DPS yield to assess its impact
 - In the same acceptance, CMS measured *single* Y and obtained $\sigma_{\rm Y}$ = 7.5 ± 0.6 mb
 - Taking $\sigma_{\rm eff} \simeq 7.5$ mb (approx. onium world average), one gets $\sigma_{\Upsilon\Upsilon}^{\rm theo.DPS} = 4 \pm 2$ pb
 - Therefore DPSs likely have a very small impact

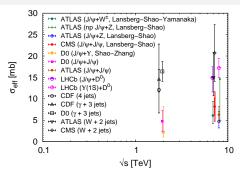

- A single analysis by CMS at \sqrt{s} = 8 TeV for $|y_Y|$ < 2.0 using 20.7 fb⁻¹ of data
- Only 40 events collected; no kinematical distributions
- $\sigma_{\Upsilon\Upsilon} = 68.8 \pm 12.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 2.8 \text{(Br)} \text{ pb}$ [Polarisation uncertainty: 40 %]
- LO CS/NRQCD expectations: 26 ± 13 pb; LO CEM expectations : $\mathcal{O}(0.2)$ pb

- Lacking a *control region* where $\sigma^{DPS} \gg \sigma^{SPS}$ or, as a makeshift, some kinematical distributions, impossible to extract σ^{DPS} , and thus σ_{eff} w/o precisely knowing σ_{SPS}
- I thus obviously disagree with the statement made about the DPS in the CMS paper
- One can however present some expectations about the DPS yield to assess its impact
 - In the same acceptance, CMS measured *single* Y and obtained $\sigma_Y = 7.5 \pm 0.6$ mb
 - Taking $\sigma_{\rm eff} \simeq 7.5$ mb (approx. onium world average), one gets $\sigma_{\Upsilon\Upsilon}^{\rm theo.DPS} = 4 \pm 2$ pb
 - Therefore DPSs likely have a very small impact
- Yet, too early to call for a discrepancy between $\sigma^{\text{exp.CMS}}$ and $\sigma^{\text{theo.DPS}}$ + $\sigma^{\text{theo.SPS}}$ given both uncertainties on $\sigma^{\text{exp.CMS}}$ and $\sigma^{\text{theo.SPS}}$, but let's stay tuned for RUN-2 data!




• J/ψ +charm and Y+charm data point at $\sigma_{\rm eff} \sim 20 \text{ mb}$

- J/ψ +charm and Y+charm data point at $\sigma_{\rm eff} \sim 20 \text{ mb}$
- J/ψ + J/ψ LHCb region: SPS computations with too large uncertainties to conclude



- J/ψ +charm and Y+charm data point at $\sigma_{\rm eff} \sim 20 \text{ mb}$
- $J/\psi + J/\psi$ LHCb region: SPS computations with too large uncertainties to conclude
- Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio

- J/ψ +charm and Y+charm data point at $\sigma_{\rm eff} \sim 20 \text{ mb}$
- J/ψ + J/ψ LHCb region: SPS computations with too large uncertainties to conclude
- Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
- $J/\psi + \Upsilon$ data clearly points at a very large DPS

D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

- J/ψ +charm and Y+charm data point at $\sigma_{\rm eff} \sim 20 \text{ mb}$
- $J/\psi + J/\psi$ LHCb region: SPS computations with too large uncertainties to conclude
- Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
- $J/\psi + \Upsilon$ data clearly points at a very large DPS

D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

• Except for both LHCb extractions, all the quarkonium-based extraction point at very small σ_{eff} values: dependence on the flavour, the rapidity or the scale(s)?

Part III

Conclusion

• The quarkonium-inclusive-production mechanisms

not yet the object of a consensus

- The quarkonium-inclusive-production mechanisms
 not yet the object of a consensus
- QCD corrections via new NLO, and perhaps NNLO topologies,
 matter much for some mechanisms and some observables

- The quarkonium-inclusive-production mechanisms
 not yet the object of a consensus
- QCD corrections via new NLO, and perhaps NNLO topologies,
 matter much for some mechanisms and some observables
- Novel Observables are necessary:

pseudoscalar states and associated production

- The quarkonium-inclusive-production mechanisms
 not yet the object of a consensus
- QCD corrections via new NLO, and perhaps NNLO topologies,
 matter much for some mechanisms and some observables
- Novel Observables are necessary:
 pseudoscalar states and associated production
- Beside the production-mechanism debate, quarkonia already allow us to probe the parton correlation through DPS studies

- The quarkonium-inclusive-production mechanisms not yet the object of a consensus
- QCD corrections via new NLO, and perhaps NNLO topologies,
 matter much for some mechanisms and some observables
- Novel Observables are necessary:
 pseudoscalar states and associated production
- Beside the production-mechanism debate, quarkonia already allow us to probe the parton correlation through DPS studies
- They also start to tell us new information on the gluon Transverse Momentum Distribution distributions

See talks by C. Pisano and F. Scarpa yesterday, F. Murgia and P. Taels on Tuesday and M.A. Ozcelik today

NLOAccess [in2p3.fr/nloaccess]

GENERAL DESCRIPTION

Objectives:

NLOAccess will give access to automated tools generating scientific codes allowing anyone to evaluate observables -such as production rates or kinematical properties - of scatterings involving hadrons. The automation and the versatility of these tools are such that these scatterings need not to be pre-coded. In other terms, it is possible that a random user may request for the first time the generation of a code to compute characteristics of a reaction which nobody thought of before. NLOAccess will allow the user to test the code and then to download to run it on its own computer. It essentially gives access to a dynamical library.

Show more

This project has been included in the STRONG2020 submission for EU funding.

Q. To search type and hit enter

HELAC-Onia Web [in2p3.fr/nloaccess/HO]

HELAC-Onia Web

Request Registration

References

Contact us

inder de

◆ Login

Automated perturbative NLO calculation with HELAC-Onia Web

Welcome to HELAC-Onia Web!

HELAC-Onia ia an automatic matrix element generator for the calculation of the heavy guarkonium helicity amplitudes in the framework of NRQCD factorization.

The program is able to calculate helicity amplitudes of multi P-wave quarkonium states production at hadron colliders and electron-positron colliders by including new P-wave offshell currents. Besides the high efficiencies in computation of multi-leg processes within the Standard Model, HELAC-Orial is also sufficiently numerical stable in dealing with P-wave quarkonia and P-wave color-octet intermediate states.

Already registered to the portal? Please login.

Do you not have an account? Make a registration request.

© Copyright 2018 by Carlo Flore

Part IV

Backup

- Colour Evaporation Model
 - any QQ
 state contributes to a specific quarkonium state
 - colourless pair via a simple 1/9 factor
 - one non-perturbative parameter per meson, supposedly universal

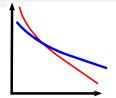
- Colour Evaporation Model
 - any QQ state contributes to a specific quarkonium state
 - colourless pair via a simple 1/9 factor
 - one non-perturbative parameter per meson, supposedly universal
- Colour Singlet Model
 - colourless pair via colour projection; quantum numbers enforced by spin projection
 - one non-perturbative parameter per meson but equal to
 - the Schrödinger wave function at the origin → no free parameter
 - this parameter is fixed by the decay width or potential models and
 - by heavy-quark spin symmetry (HQSS)

- Colour Evaporation Model
 - any QQ state contributes to a specific quarkonium state
 - colourless pair via a simple 1/9 factor
- one non-perturbative parameter per meson, supposedly universal
- Colour Singlet Model
 - colourless pair via colour projection; quantum numbers enforced by spin projection
 - one non-perturbative parameter per meson but equal to

the Schrödinger wave function at the origin → no free parameter

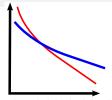
• this parameter is fixed by the decay width or potential models and

by heavy-quark spin symmetry (HQSS)

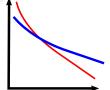

- October Octet Mechanism
- one non-perturbative parameter per Fock State
- expansion in v^2 ; series can be truncated
- the phenomenology partly depends on this
- HQSS relates some non-perturbative parameters to each others and

to a specific quarkonium polarisation

QCD corrections to the COM – NRQCD

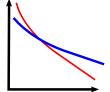

QCD corrections to the COM - NRQCD

• At LO, P_T spectrum driven by the combination of 2 CO components : ${}^3S_1^{[8]}$ vs. ${}^1S_0^{[8]}$ & ${}^3P_J^{[8]}$


 ψ data: a little less hard than the blue curve

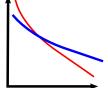
- At LO, P_T spectrum driven by the combination of 2 CO components: ${}^3S_1^{[8]}$ vs. ${}^1S_0^{[8]}$ & ${}^3P_I^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

 ψ data: a little less hard than the blue curve


- At LO, P_T spectrum driven by the combination of 2 CO components: ${}^3S_1^{[8]}$ vs. ${}^1S_0^{[8]}$ & ${}^3P_J^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

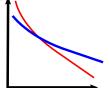
 ψ data: a little less hard than the blue curve

• ${}^{3}P_{J}^{[8]}$ becomes as hard as ${}^{3}S_{1}^{[8]}$ and interferes with it; ${}^{1}S_{0}^{[8]}$ a little softer


- At LO, P_T spectrum driven by the combination of 2 CO components: ${}^3S_1^{[8]}$ vs. ${}^1S_0^{[8]}$ & ${}^3P_J^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

 ψ data: a little less hard than the blue curve

- ${}^{3}P_{J}^{[8]}$ becomes as hard as ${}^{3}S_{1}^{[8]}$ and interferes with it; ${}^{1}S_{0}^{[8]}$ a little softer
- Due to this interference, it is possible to make the softer ${}^1S_0^{[8]}$ dominant yet with nonzero ${}^3P_J^{[8]}$ and ${}^3S_1^{[8]}$ LDMEs


- At LO, P_T spectrum driven by the combination of 2 CO components: ${}^3S_1^{[8]}$ vs. ${}^1S_0^{[8]}$ & ${}^3P_J^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

 ψ data: a little less hard than the blue curve

- ${}^{3}P_{J}^{[8]}$ becomes as hard as ${}^{3}S_{1}^{[8]}$ and interferes with it; ${}^{1}S_{0}^{[8]}$ a little softer
- Due to this interference, it is possible to make the softer ${}^{1}S_{0}^{[8]}$ dominant yet with nonzero ${}^{3}P_{I}^{[8]}$ and ${}^{3}S_{1}^{[8]}$ LDMEs
- Since the 3 associated LDMEs are fit, the combination at NLO still describes the data; hence an apparent stability of NRQCD x-section at NLO
- What significantly changes is the size of the LDMEs

- At LO, P_T spectrum driven by the combination of 2 CO components: ${}^3S_1^{[8]}$ vs. ${}^1S_0^{[8]}$ & ${}^3P_J^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

 ψ data: a little less hard than the blue curve

- ${}^{3}P_{J}^{[8]}$ becomes as hard as ${}^{3}S_{1}^{[8]}$ and interferes with it; ${}^{1}S_{0}^{[8]}$ a little softer
- Due to this interference, it is possible to make the softer ${}^{1}S_{0}^{[8]}$ dominant yet with nonzero ${}^{3}P_{I}^{[8]}$ and ${}^{3}S_{1}^{[8]}$ LDMEs
- Since the 3 associated LDMEs are fit, the combination at NLO still describes the data; hence an apparent stability of NRQCD x-section at NLO
- What significantly changes is the size of the LDMEs
- Polarisation: ${}^1S_0^{[8]}$: unpolarised; ${}^3S_1^{[8]}$ & ${}^3P_J^{[8]}$: transverse

JPL, H.S. Shao JHEP 1610 (2016) 153

JPL, H.S. Shao JHEP 1610 (2016) 153

• All possible spin and colour combinations contribute

JPL, H.S. Shao JHEP 1610 (2016) 153

- All possible spin and colour combinations contribute
- $\bullet\,$ The gluon fragmentation (~ $^3S_1^{[8]})$ dominant at large P_T

JPL, H.S. Shao JHEP 1610 (2016) 153

- All possible spin and colour combinations contribute
- The gluon fragmentation ($\sim {}^3S_1^{[8]}$) dominant at large P_T
- No reason for a change at NLO. The fit can yield another CEM parameter value but this will not modify the P_T spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

JPL, H.S. Shao JHEP 1610 (2016) 153

- All possible spin and colour combinations contribute
- The gluon fragmentation ($\sim {}^3S_1^{[8]}$) dominant at large P_T
- No reason for a change at NLO. The fit can yield another CEM parameter value but this will not modify the P_T spectrum

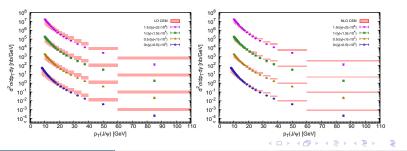
Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

• Tend to overshoot the ψ data at large P_T

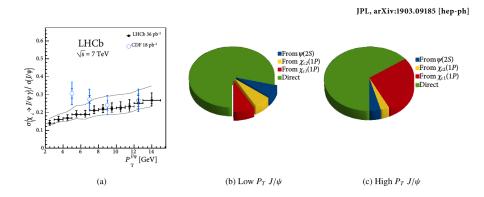
JPL, H.S. Shao JHEP 1610 (2016) 153

- All possible spin and colour combinations contribute
- The gluon fragmentation ($\sim {}^3S_1^{[8]}$) dominant at large P_T
- No reason for a change at NLO. The fit can yield another CEM parameter value but this will not modify the P_T spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

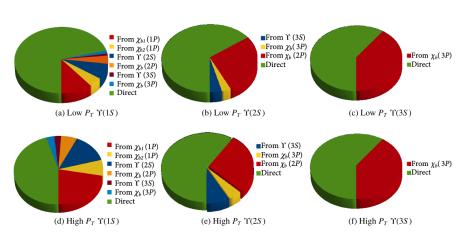

- Tend to overshoot the ψ data at large P_T
- The (LO) ICEM not significantly better at large P_T Y.Q. Ma, R. Vogt PRD 94 (2016) 114029

JPL, H.S. Shao JHEP 1610 (2016) 153

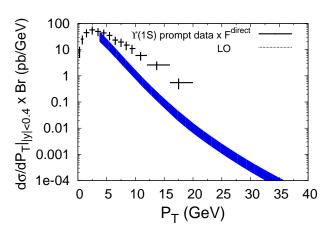

- All possible spin and colour combinations contribute
- The gluon fragmentation ($\sim {}^3S_1^{[8]}$) dominant at large P_T
- No reason for a change at NLO. The fit can yield another CEM parameter value but this will not modify the P_T spectrum

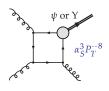
Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

- Tend to overshoot the ψ data at large P_T
- The (LO) ICEM not significantly better at large P_T Y.Q. Ma, R. Vogt PRD 94 (2016) 114029

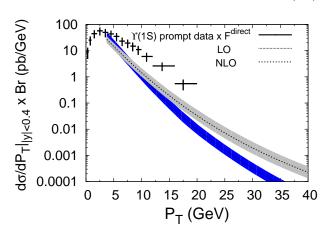


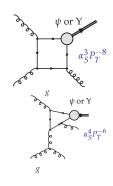
Feed downs from the excited states

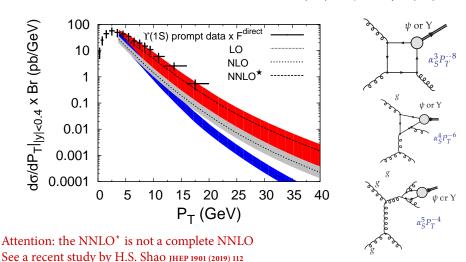



Feed downs from the excited states

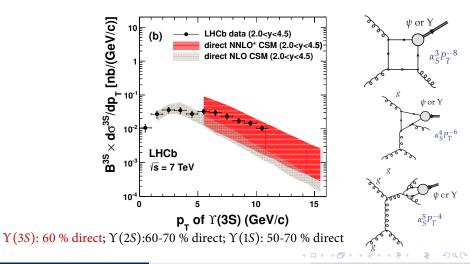
JPL, arXiv:1903.09185 [hep-ph]

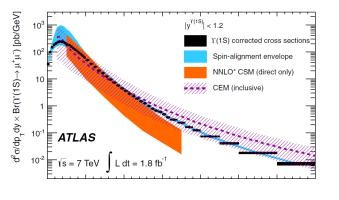


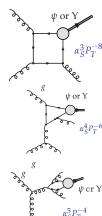

J.Campbell, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) CDF PRI. 88 (2002) 161802; LHCb EPJC 72 (2012) 2025



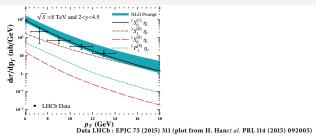
J.Campbell, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) CDF PRL 88 (2002) 161802; LHCb EPIC 72 (2012) 2025

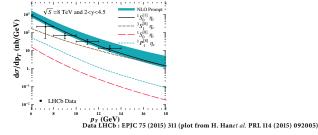


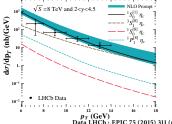

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) CDF PRI. 88 (2002) 161802; LHCb EPIC 72 (2012) 2025



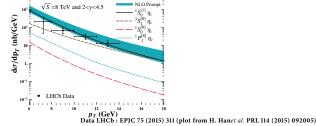
J.Campbell, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) CDF PRL 88 (2002) 161802; LHCb EPIC 72 (2012) 2025



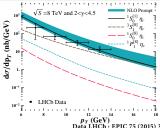

I. Campbell, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) ATLAS PRD 87 052004



CSM theory curve extrapolated to prompt: × 2


• η_c x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)

Data LHCb: EPJC 75 (2015) 311 (plot from H. Hanet al. PRL 114 (2015) 092005)


- η_c x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
- Any CO contribution would create a surplus
- Even neglecting the dominant CS, this induces constraints on CO J/ψ LDMEs via Heavy-Quark Spin Symmetry : $\langle ^{J/\psi}(^1S_0^{[8]})\rangle = \langle ^{\eta_c}(^3S_1^{[8]})\rangle < 1.46 \times 10^{-2} \text{ GeV}^3$

[Additional relations: $\binom{\eta_c(^1S_0^{[8]})}{=} = \binom{J/\psi(^3S_1^{[8]})}{3}$ and $\binom{\eta_c(^1P_1^{[8]})}{=} 3 \times \binom{J/\psi(^3P_0^{[8]})}{=} 0$

- η_c x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
- Any CO contribution would create a surplus
- Even *neglecting* the *dominant* CS, this induces constraints on CO J/ψ LDMEs via Heavy-Quark Spin Symmetry : ${}^{J/\psi}({}^{1}S_{0}^{[8]})\rangle = {}^{\eta_{c}}({}^{3}S_{1}^{[8]})\rangle < 1.46 \times 10^{-2} \text{ GeV}^{3}$
- Rules out the fits yielding the ${}^{1}S_{0}^{[8]}$ dominance to get unpolarised yields
- Even the PKU fit has now troubles to describe CDF polarisation data

[Additional relations: $\langle {}^{\eta_c}({}^1S_0^{[8]}) \rangle = \langle {}^{J/\psi}({}^3S_1^{[8]}) \rangle / 3$ and $\langle {}^{\eta_c}({}^1P_1^{[8]}) \rangle = 3 \times \langle {}^{J/\psi}({}^3P_0^{[8]}) \rangle]$

Data LHCb: EPJC 75 (2015) 311 (plot from H. Hanet al. PRL 114 (2015) 092005)

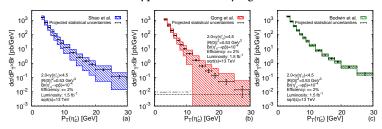
- η_c x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
- Any CO contribution would create a surplus
- Even neglecting the dominant CS, this induces constraints on CO J/ψ LDMEs via Heavy-Quark Spin Symmetry : $\binom{J/\psi}{1}\binom{1}{0}\binom{1}{0} = \binom{\eta_c}{0}\binom{3}{1}\binom{8}{1} < 1.46 \times 10^{-2} \text{ GeV}^3$
- Rules out the fits yielding the ${}^{1}S_{0}^{[8]}$ dominance to get unpolarised yields
- Even the PKU fit has now troubles to describe CDF polarisation data
- Nobody foresaw the impact of measuring η_C yields: 3 PRL published right after the LCHb data
 came Out (Hamburg) M. Butenschoen et al. IPRL 114 (2015) 092004; (PKU) H. Han et al. 114 (2015) 092005; (IHEP) H.F. Zhang et al. 114 (2015) 092006

[Additional relations:
$$\binom{\eta_c(1S_0^{[8]})}{=\binom{J/\psi(3S_1^{[8]})}{3}}$$
 and $\binom{\eta_c(1P_1^{[8]})}{=3} \times \binom{J/\psi(3P_0^{[8]})}{=3}$

JPL, H.S. Shao, H.F. Zhang, PLB 786 (2018) 342

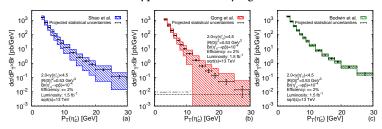
• HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)$

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC


- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$
 - Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$
 - Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production
 - From the expected yields, we evaluated the expected experimental uncertainties


- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$
 - Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production
 - From the expected yields, we evaluated the expected experimental uncertainties
 - A forthcoming (LHCb) measurement would further constrain (or exclude) the existing NLO $\psi(2S)$ LDME fits of Shao *et al.* and Gong *et al.* and confirm/exclude the hypotheses underlying the Bodwin *et al.* fit.

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
- Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$
- Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production
- From the expected yields, we evaluated the expected experimental uncertainties
- A forthcoming (LHCb) measurement would further constrain (or exclude) the existing NLO $\psi(2S)$ LDME fits of Shao *et al.* and Gong *et al.* and confirm/exclude the hypotheses underlying the Bodwin *et al.* fit.

JPL, H.S. Shao, H.F. Zhang, PLB 786 (2018) 342

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
- Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$
- Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production
- From the expected yields, we evaluated the expected experimental uncertainties
- A forthcoming (LHCb) measurement would further constrain (or exclude) the existing NLO $\psi(2S)$ LDME fits of Shao *et al.* and Gong *et al.* and confirm/exclude the hypotheses underlying the Bodwin *et al.* fit.

 \rightarrow Belle-II data on the inclusive $\psi(2S)$ production will also be crucial

On the importance of understanding low- P_T production

On the importance of understanding low- P_T production

• If color is bleaching at short distances (Color Singlet Model), low- P_T quarkonia can be used to extract the distribution of linearly polarised gluon in unpolarised protons, $h_1^{\perp g}(x, k_T, \mu)$ D. Boef, C. Pisano. PRD 86 (2012) 094007

- If color is bleaching at short distances (Color Singlet Model), low- P_T quarkonia can be used to extract the distribution of linearly polarised gluon in unpolarised protons, $h_1^{\perp g}(x, k_T, \mu)$ D. Boer, C. Pisano. PRD 86 (2012) 09400
- Different nuclear suppression depending on how the pair hadronizes

J.W. Qiu, J. P. Vary, X.F. Zhang, PRL 88 (2002) 232301

- If color is bleaching at short distances (Color Singlet Model), low- P_T quarkonia can be used to extract the distribution of linearly polarised gluon in unpolarised protons, $h_1^{\perp g}(x, k_T, \mu)$ D. Boer, C. Pisano. PRD 86 (2012) 09400
- Different nuclear suppression depending on how the pair hadronizes

J.W. Qiu, J. P. Vary, X.F. Zhang, PRL 88 (2002) 232301

• Saturation effects depend on the colour state of the propagating pair

D. Kharzeev, et al. PRL 102 (2009) 152301; F. Dominguez, et al. PLB 710 (2012) 182; Y.Q. Ma, et al. PRD 92 (2015) 071901

- If color is bleaching at short distances (Color Singlet Model), low- P_T quarkonia can be used to extract the distribution of linearly polarised gluon in unpolarised protons, $h_1^{\perp g}(x,k_T,\mu)$
- Different nuclear suppression depending on how the pair hadronizes

J.W. Qiu, J. P. Vary, X.F. Zhang, PRL 88 (2002) 232301

- Saturation effects depend on the colour state of the propagating pair
 - D. Kharzeev, et al. PRL 102 (2009) 152301; F. Dominguez, et al. PLB 710 (2012) 182; Y.Q. Ma, et al. PRD 92 (2015) 071901
- Most of the proton-nucleus and nucleus-nucleus collision data lie at $P_T \lesssim m_Q$

- If color is bleaching at short distances (Color Singlet Model), low- P_T quarkonia can be used to extract the distribution of linearly polarised gluon in unpolarised protons, $h_1^{\perp g}(x,k_T,\mu)$
- Different nuclear suppression depending on how the pair hadronizes

J.W. Qiu, J. P. Vary, X.F. Zhang, PRL 88 (2002) 232301

Saturation effects depend on the colour state of the propagating pair

D. Kharzeev, et al. PRL 102 (2009) 152301; F. Dominguez, et al. PLB 710 (2012) 182; Y.Q. Ma, et al. PRD 92 (2015) 071901

- Most of the proton-nucleus and nucleus-nucleus collision data lie at $P_T \lesssim m_Q$
- In the QGP, do quarkonia behave more like colorful gluons or colorless photons ?

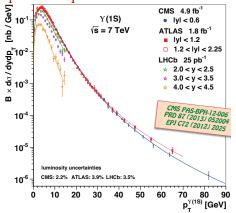
- If color is bleaching at short distances (Color Singlet Model), low- P_T quarkonia can be used to extract the distribution of linearly polarised gluon in unpolarised protons, $h_1^{\perp g}(x,k_T,\mu)$
- Different nuclear suppression depending on how the pair hadronizes

J.W. Qiu, J. P. Vary, X.F. Zhang, PRL 88 (2002) 232301

• Saturation effects depend on the colour state of the propagating pair

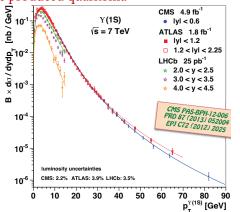
D. Kharzeev, et al. PRL 102 (2009) 152301; F. Dominguez, et al. PLB 710 (2012) 182; Y.Q. Ma, et al. PRD 92 (2015) 071901

- Most of the proton-nucleus and nucleus-nucleus collision data lie at $P_T \lesssim m_Q$
- In the QGP, do quarkonia behave more like colorful gluons or colorless photons ?
- If regeneration is at work, how does it happen? statistically? according to the charm-quark distribution in the charmonium (wave-function)?
- etc ...



Why is it important to know how low- P_T quarkonia are produced

Also because, some very high P_T quarkonia which we study can be as rare as a few millionth of the produced quarkonia


Why is it important to know how low- P_T quarkonia are produced

Also because, some very high P_T quarkonia which we study can be as rare as a few millionth of the produced quarkonia

Why is it important to know how low- P_T quarkonia are produced

Also because, some very high P_T quarkonia which we study can be as rare as a few millionth of the produced quarkonia

Most probably the production of a Y with P_T = 90 GeV, even also 20 GeV, has very few things to do with the bulk of Y

Comparison with the new LHCb data at 13 TeV

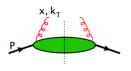
LHCb JHEP06(2017)047

$\sigma(\psi\psi)$ nb	no P_T cut	$P_T > 1 \text{ GeV}$	$P_T > 3 \text{ GeV}$
NLO* CS	$15.4 \pm 2.2^{+51}_{-12}$	$14.8 \pm 1.7^{+53}_{-12}$	$6.8 \pm 0.6^{+22}_{-5}$
NLO CS	$11.9^{+4.6}_{-3.2}$	_	_
DPS [$\sigma_{\rm eff} = 14.5 \pm 1.7^{+1.7}_{-2.3} \; {\rm mb}$]	$8.1 \pm 0.9^{+1.6}_{-1.3}$	$7.5 \pm 0.8^{+1.5}_{-1.2}$	$4.9 \pm 0.5^{+1.0}_{-0.8}$
Data	$15.2 \pm 1.0 \pm 0.9$	$13.5 \pm 0.9 \pm 0.9$	$8.3 \pm 0.6 \pm 0.5$

Comparison with the new LHCb data at 13 TeV

LHCb JHEP06(2017)047

$\sigma(\psi\psi)$ nb	no P_T cut	$P_T > 1 \text{ GeV}$	$P_T > 3 \text{ GeV}$
NLO* CS	$15.4 \pm 2.2^{+51}_{-12}$	$14.8 \pm 1.7^{+53}_{-12}$	$6.8 \pm 0.6^{+22}_{-5}$
NLO CS	$11.9^{+4.6}_{-3.2}$	_	_
DPS [$\sigma_{\text{eff}} = 14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb}$]	$8.1 \pm 0.9^{+1.6}_{-1.3}$	$7.5 \pm 0.8^{+1.5}_{-1.2}$	$4.9 \pm 0.5^{+1.0}_{-0.8}$
Data	$15.2 \pm 1.0 \pm 0.9$	$13.5 \pm 0.9 \pm 0.9$	$8.3 \pm 0.6 \pm 0.5$


- Agreement between CSM NLO and data
- Large scale uncertainty for the NLO*, greatly reduced at NLO
- REMINDER: it is not an option to "switch off"/ignore the NLO CS contribution [parameter free]

Comparison with the new LHCb data at 13 TeV

LHCb JHEP06(2017)047

$\sigma(\psi\psi)$ nb	no P_T cut	$P_T > 1 \text{ GeV}$	$P_T > 3 \text{ GeV}$
NLO* CS	$15.4 \pm 2.2^{+51}_{-12}$	$14.8 \pm 1.7^{+53}_{-12}$	$6.8 \pm 0.6^{+22}_{-5}$
NLO CS	$11.9^{+4.6}_{-3.2}$	_	_
DPS [$\sigma_{\text{eff}} = 14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb}$]	$8.1 \pm 0.9^{+1.6}_{-1.3}$	$7.5 \pm 0.8^{+1.5}_{-1.2}$	$4.9 \pm 0.5^{+1.0}_{-0.8}$
Data	$15.2 \pm 1.0 \pm 0.9$	$13.5 \pm 0.9 \pm 0.9$	$8.3 \pm 0.6 \pm 0.5$

- Agreement between CSM NLO and data
- Large scale uncertainty for the NLO*, greatly reduced at NLO
- REMINDER: it is not an option to "switch off"/ignore the NLO CS contribution [parameter free]
- Yet, room for DPS; however tension if $\sigma_{\text{eff}} \simeq 7 \text{ mb}$
- Tension between LHCb and other di- J/ψ extractions [rapidity effect?]

• Gauge-invariant definition:

$$\Phi_{g}^{\mu\nu}(x, \mathbf{k}_{T}, \zeta, \mu) \equiv \int \frac{\mathrm{d}(\xi \cdot P) \, \mathrm{d}^{2} \, \xi_{T}}{(xP \cdot n)^{2} (2\pi)^{3}} \, e^{i(xP + k_{T}) \cdot \xi} \langle P | F^{n\nu}(0) \mathcal{U}_{[0,\xi]} F^{n\mu}(\xi) \mathcal{U}'_{[\xi,0]} | P \rangle \Big|_{\xi \cdot P' = 0}$$

ullet $\mathcal U$ and $\mathcal U'$ are process dependent gauge links

• Gauge-invariant definition:

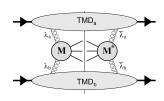
$$\Phi_{g}^{\mu\nu}(x, \mathbf{k}_{T}, \zeta, \mu) \equiv \int \frac{\mathrm{d}(\xi \cdot P) \, \mathrm{d}^{2} \xi_{T}}{(xP \cdot n)^{2} (2\pi)^{3}} \, e^{i(xP + k_{T}) \cdot \xi} \langle P | F^{n\nu}(0) \mathcal{U}_{[0,\xi]} F^{n\mu}(\xi) \mathcal{U}'_{[\xi,0]} | P \rangle \Big|_{\xi \cdot P' = 0}$$

- ullet $\mathcal U$ and $\mathcal U'$ are process dependent gauge links
- Parametrisation: P. J. Mulders, J. Rodrigues, PRD 63 (2001) 094021; D. Boer et al. JHEP 1610 (2016) 013

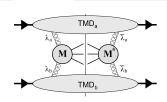
$$\Phi_{g}^{\mu\nu}(x, \mathbf{k}_{T}, \zeta, \mu) = -\frac{1}{2x} \left\{ g_{T}^{\mu\nu} f_{1}^{g}(\mathbf{x}, \mathbf{k}_{T}, \mu) - \left(\frac{k_{T}^{\mu} k_{T}^{\nu}}{M_{p}^{2}} + g_{T}^{\mu\nu} \frac{\mathbf{k}_{T}^{2}}{2M_{p}^{2}} \right) h_{1}^{\perp g}(\mathbf{x}, \mathbf{k}_{T}, \mu) \right\} + \text{suppr.}$$

• Gauge-invariant definition:

uge-invariant definition:

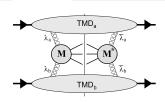

$$\Phi_g^{\mu\nu}(x, \boldsymbol{k}_T, \zeta, \mu) \equiv \int \frac{\mathrm{d}(\xi \cdot P) \, \mathrm{d}^2 \xi_T}{(xP \cdot n)^2 (2\pi)^3} \, e^{i(xP + k_T) \cdot \xi} \langle P|F^{n\nu}(0) \mathcal{U}_{[0,\xi]} F^{n\mu}(\xi) \mathcal{U}'_{[\xi,0]} |P\rangle \Big|_{\xi \cdot P' = 0}$$

- \mathcal{U} and \mathcal{U}' are process dependent gauge links
- Parametrisation: P. J. Mulders, J. Rodrigues, PRD 63 (2001) 094021; D. Boer et al. JHEP 1610 (2016) 013 $\Phi_g^{\mu\nu}(x, \mathbf{k}_T, \zeta, \mu) = -\frac{1}{2\tau} \left\{ g_T^{\mu\nu} f_1^g(x, \mathbf{k}_T, \mu) - \left(\frac{k_T^{\mu} k_T^{\nu}}{M^2} + g_T^{\mu\nu} \frac{k_T^2}{2M^2} \right) h_1^{\perp g}(x, \mathbf{k}_T, \mu) \right\} + \text{suppr.}$
- f_1^g : TMD distribution of unpolarised gluons
- $h_1^{\perp g}$: TMD distribution of linearly polarised gluons


[Helicity-flip distribution]

 $d\sigma^{gg} \propto$

$$\frac{d\sigma^{gg}}{\left(\sum_{\lambda_{a},\lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}^{*}\right) \mathcal{C}[f_{1}^{g}f_{1}^{g}]}{\Rightarrow \text{helicity non-flip, azimuthally independent}}$$



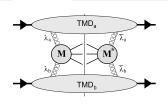
$$\frac{d\sigma^{gg}}{\left(\sum\limits_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}^{*}\right)}\mathcal{C}[f_{1}^{g}f_{1}^{g}]}$$

⇒ helicity non-flip, azimuthally independent

$$+ \overbrace{\left(\sum_{\lambda} \hat{\mathcal{M}}_{\lambda,\lambda} \hat{\mathcal{M}}_{-\lambda,-\lambda}^{*}\right)}^{F_{2}} \mathcal{C}[w_{0} \times h_{1}^{\perp g} h_{1}^{\perp g}]$$

⇒ double helicity flip, azimuthally independent

$$\frac{d\sigma^{gg}}{\left(\sum\limits_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}^{*}\right)}\mathcal{C}[f_{1}^{g}f_{1}^{g}]}$$


⇒ helicity non-flip, azimuthally independent

$$+ \overbrace{\left(\sum_{\lambda} \hat{\mathcal{M}}_{\lambda,\lambda} \hat{\mathcal{M}}^*_{-\lambda,-\lambda}\right)}^{F_2} \mathcal{C}[w_0 \times h_1^{\perp g} h_1^{\perp g}]$$

⇒ double helicity flip, azimuthally independent

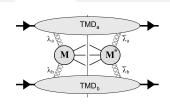
$$+ \widehat{\left(\sum_{\lambda_a,\lambda_b} \hat{\mathcal{M}}_{\lambda_a,\lambda_b} \hat{\mathcal{M}}^*_{-\lambda_a,\lambda_b}\right)} \mathcal{C}\left[w_2 \times f_1^g h_1^{\downarrow g}\right] + \left\{a \leftrightarrow b\right\}$$

 \Rightarrow single helicity flip, $\cos(2\phi)$ -modulation

$$\frac{d\sigma^{gg}}{\left(\sum\limits_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}^{*}_{\lambda_{a},\lambda_{b}}\right)}\mathcal{C}[f_{1}^{g}f_{1}^{g}]}$$

⇒ helicity non-flip, azimuthally independent

$$+\overbrace{\left(\sum_{\lambda}\hat{\mathcal{M}}_{\lambda,\lambda}\hat{\mathcal{M}}^*_{-\lambda,-\lambda}
ight)}^{F_2}\mathcal{C}[w_0 imes h_1^{\perp g}h_1^{\perp g}]$$


⇒ double helicity flip, azimuthally independent

$$+ \overbrace{\left(\sum_{\lambda_{a},\lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}} \hat{\mathcal{M}}^{*}_{-\lambda_{a},\lambda_{b}}\right)} \mathcal{C}\left[w_{2} \times f_{1}^{g} h_{1}^{\perp g}\right] + \left\{a \leftrightarrow b\right\}$$

 \Rightarrow single helicity flip, $\cos(2\phi)$ -modulation

$$+ \overbrace{\left(\sum_{\lambda} \hat{\mathcal{M}}_{\lambda, -\lambda} \hat{\mathcal{M}}^*_{-\lambda, \lambda}\right)}^{\mathfrak{F}} \mathcal{C}\left[w_4 \times h_1^{\perp g} h_1^{\perp g}\right]$$

 \Rightarrow double helicity flip, $\cos(4\phi)$ -modulation

Processes proposed to study the gluon TMD at *hh* colliders

Processes proposed to study the gluon TMD at *hh* colliders

- $'gg' \rightarrow yy$: J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)
- $gg \rightarrow (J/\psi, \Upsilon) + \gamma$: W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- $gg \rightarrow \eta_c + \eta_c$: G.P. Zhang, PRD 90 (2014) 9 094011
- $'gg' \rightarrow H^0 + \text{jet}$: D. Boer, C. Pisano, PRD 91 (2015) 074024
- $gg \rightarrow (I/\psi, \Upsilon) + Z/\gamma^*$: JPL, C. Pisano, M. Schlegel, NPB 920 (2017) 192

Processes proposed to study the gluon TMD at *hh* colliders

- $'gg' \rightarrow \gamma\gamma$: J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)
- $gg \rightarrow (J/\psi, \Upsilon) + \gamma$: W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- $gg \rightarrow \eta_c + \eta_c$: G.P. Zhang, PRD 90 (2014) 9 094011
- $'gg' \rightarrow H^0 + \text{jet}$: D. Boer, C. Pisano, PRD 91 (2015) 074024
- $gg \rightarrow (J/\psi, \Upsilon) + Z/\gamma^*$: JPL, C. Pisano, M. Schlegel, NPB 920 (2017) 192

None are measured so far ...

• *J*/ψ:relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101

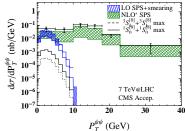
 J/ψ:relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPIC 77 (2017) 76; D0 PRD 90 (2014) 111101

• Negligible $q\bar{q}$ contributions even at AFTER@LHC (\sqrt{s} = 115 GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273

• J/ψ :relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0


LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPIC 77 (2017) 76; D0 PRD 90 (2014) 111101

• Negligible q\(\bar{q}\) contributions even at AFTER@LHC (\sqrt{s} = 115 GeV) energies

I.P.L., H.S. Shao NPB 900 (2015) 273

- Negligible CO contributions, in particular at
 - low $P_T^{\psi\psi}$ [black/dashed curves vs. blue] JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP 01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, IHEP 07. See also N. Yamanaka's tomorrow at 10h10, WG5, (2013) 051
- No final state gluon needed for the Born contribution: pure colourless final state

JPL, H.S. Shao PRL 111, 122001 (2013)

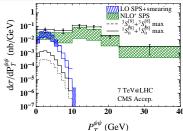
 J/ψ:relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0

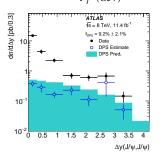
LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPIC 77 (2017) 76; D0 PRD 90 (2014) 111101

• Negligible $q\bar{q}$ contributions even at AFTER@LHC (\sqrt{s} = 115 GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273

DPSs in associated-quarkonium production


- Negligible CO contributions, in particular at low $P_T^{\psi\psi}$ [black/dashed curves vs. blue]


 JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP

 01. (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP

 07. See also N. Yamanaka's tomorrow at 10h10. WG5. (2013) 051
- No final state gluon needed for the Born contribution: pure colourless final state

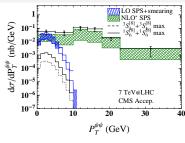
 JPL, H.S. Shao PRL 111, 122001 (2013)
- In the CMS & ATLAS acceptances (P_T cut), small DPS effects, but required by the data at large Δy

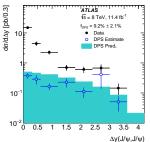
• *J*/*ψ*:relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPIC 77 (2017) 76; D0 PRD 90 (2014) 111101

• Negligible $q\bar{q}$ contributions even at AFTER@LHC (\sqrt{s} = 115 GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273


- Negligible CO contributions, in particular at low $P_T^{\psi\psi}$ [black/dashed curves vs. blue]


 JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP

 01. (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP

 07. See also N. Yamanaka's tomorrow at 10h10. WG5. (2013) 051
- No final state gluon needed for the Born contribution: pure colourless final state

 JPL, H.S. Shao PRL 111, 122001 (2013)
- In the CMS & ATLAS acceptances (P_T cut), small DPS effects, but required by the data at large Δy

DPS in LHCb data [kinematical distributions well controlled: independent scatterings]

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

In general, the hard scattering coefficients are bounded:

$$F_{2,3,4} \le F_1$$

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

In general, the hard scattering coefficients are bounded:

$$F_{2,3,4} \leq F_1$$

 $gg \to Q + Q$ in the limit where $M_{\psi\psi} \gg M_{\psi}$ and $\cos(\theta_{\rm CS}) \to 0$:

$$F_1 \to \frac{256\mathcal{N}}{M_{QQ}^4 M_Q^2} \leftarrow F_4, \quad \frac{F_2}{F_1} \to \frac{81M_Q^4 \cos(\theta_{CS})^2}{2M_{QQ}^4}, \quad \frac{F_3}{F_1} \to \frac{-24M_Q^2 \cos(\theta_{CS})^2}{M_{QQ}^2}$$

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

In general, the hard scattering coefficients are bounded:

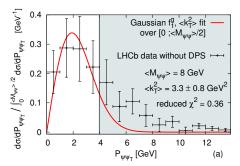
$$F_{2,3,4} \le F_1$$

 $gg \to Q + Q$ in the limit where $M_{\psi\psi} \gg M_{\psi}$ and $\cos(\theta_{\rm CS}) \to 0$:

$$F_1 \to \frac{256 \mathcal{N}}{M_{QQ}^4 M_Q^2} \leftarrow F_4, \quad \frac{F_2}{F_1} \to \frac{81 M_Q^4 \cos(\theta_{\text{CS}})^2}{2 M_{QQ}^4}, \quad \frac{F_3}{F_1} \to \frac{-24 M_Q^2 \cos(\theta_{\text{CS}})^2}{M_{QQ}^2}$$

$$F_4 = F_1$$
 at large M_{QQ}

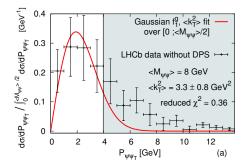
 \Rightarrow di- J/ψ (or di- Υ) maximise the observability of $\cos 4\phi$ modulations in a kinematical region where data are already taken !


TMD modelling : f_1^g and the relevance of the LHCb data

TMD modelling : f_1^g and the relevance of the LHCb data

- f_1^g modelled as a Gaussian in \vec{k}_T : $f_1^g(x, \vec{k}_T^2) = \frac{g(x)}{\pi(k_T^2)} \exp\left(\frac{-\vec{k}_T^2}{\langle k_T^2 \rangle}\right)$
 - where g(x) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of $\langle k_T^2 \rangle$ by fitting $\mathcal{C}[f_1^g f_1^g]$ over the normalised LHCb $d\sigma/dP_{\psi\psi_T}$ spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb

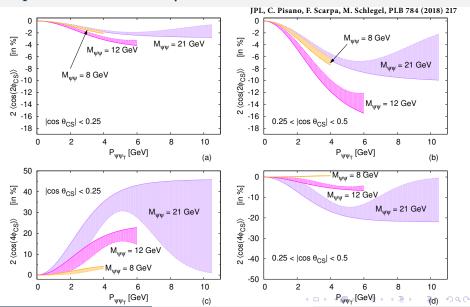
TMD modelling : f_1^g and the relevance of the LHCb data


- f_1^g modelled as a Gaussian in \vec{k}_T : $f_1^g(x, \vec{k}_T^2) = \frac{g(x)}{\pi(k_T^2)} \exp\left(\frac{-\vec{k}_T^2}{(k_T^2)}\right)$
 - where g(x) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of $\langle k_T^2 \rangle$ by fitting $\mathcal{C}[f_1^g f_1^g]$ over the normalised LHCb $d\sigma/dP_{\psi\psi_T}$ spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb

TMD modelling : f_1^g and the relevance of the LHCb data

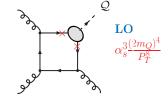
JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

- f_1^g modelled as a Gaussian in \vec{k}_T : $f_1^g(x, \vec{k}_T^2) = \frac{g(x)}{\pi(k_T^2)} \exp\left(\frac{-\vec{k}_T^2}{(k_T^2)}\right)$
 - where g(x) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of $\langle k_T^2 \rangle$ by fitting $\mathcal{C}[f_1^g f_1^g]$ over the normalised LHCb $d\sigma/dP_{\psi\psi_T}$ spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb

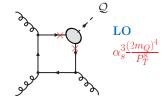


- Integration over $\phi \Rightarrow \cos(n\phi)$ -terms cancel out
- $F_2 \ll F_1 \Rightarrow \text{only } \mathcal{C}[f_1^g f_1^g] \text{ contributes to}$ the cross-section
- No evolution so far: $(k_T^2) \sim 3 \text{ GeV}^2$ accounts both for non-perturbative and perturbative broadenings at a scale close to $M_{\psi\psi} \sim 8 \text{ GeV}$
- Disentangling such (non-)perturbative effects requires data at different scales

Expected azimuthal asymmetries

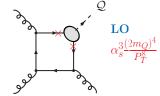

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

Expected azimuthal asymmetries


C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

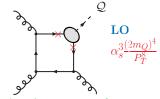
 \Rightarrow Perturbative creation of 2 quarks Q and \bar{Q} BUT

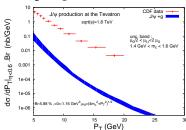
C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);


- \Rightarrow Perturbative creation of 2 quarks Q and \bar{Q} BUT
 - → on-shell (×)
 - → in a colour singlet state
 - **→** with a vanishing relative momentum
 - \implies in a 3S_1 state (for J/ψ , ψ' and Υ)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

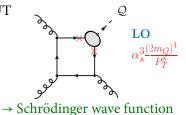
- \Rightarrow Perturbative creation of 2 quarks Q and \bar{Q} BUT
 - → on-shell (×)
 - in a colour singlet state

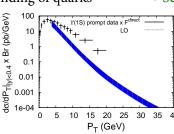

 in a colour singlet state
 - → with a vanishing relative momentum
 - \implies in a 3S_1 state (for J/ψ , ψ' and Y)
- Non-perturbative binding of quarks


→ Schrödinger wave function

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

- \Rightarrow Perturbative creation of 2 quarks Q and \bar{Q} BUT
 - → on-shell (×)
 - → in a colour singlet state
 - → with a vanishing relative momentum
 - \implies in a 3S_1 state (for J/ψ , ψ' and Y)
- Non-perturbative binding of quarks

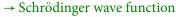

→ Schrödinger wave function

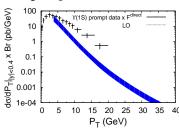


CDF, PRL 79:572 & 578,1997

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

- \Rightarrow Perturbative creation of 2 quarks Q and \bar{Q} BUT
 - → on-shell (×)
 - → in a colour singlet state
 - → with a vanishing relative momentum
 - \implies in a 3S_1 state (for J/ψ , ψ' and Y)
- → Non-perturbative binding of quarks



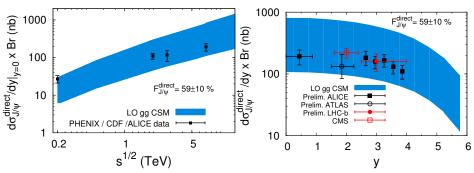

CDF, PRL 88:161802,2002

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

- \Rightarrow Perturbative creation of 2 quarks Q and \bar{Q} BUT
 - → on-shell (×)
 - → in a colour singlet state
 - → with a vanishing relative momentum
 - \implies in a 3S_1 state (for J/ψ , ψ' and Y)
- Non-perturbative binding of quarks

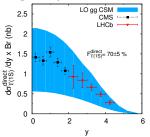
S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

 \rightarrow The yield vs. \sqrt{s} , y



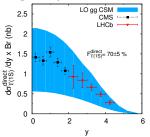
S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

- \rightarrow The yield vs. \sqrt{s} , y
 - Good agreement with RHIC, Tevatron and LHC data [LHC J/ψ points to be updated, sorry] (multiplied by a constant F^{direct} , considered to be constant)


S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

- \rightarrow The yield vs. \sqrt{s} , y
 - Good agreement with RHIC, Tevatron and LHC data [LHC J/ψ points to be updated, sorry] (multiplied by a constant F^{direct} , considered to be constant)

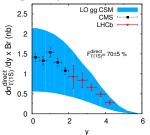
S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470


- \rightarrow The yield vs. \sqrt{s} , y
 - Good agreement with RHIC, Tevatron and LHC data [LHC J/ψ points to be updated, sorry] (multiplied by a constant F^{direct} , considered to be constant)

CMS PRD 83 (2011) 112004; LHCb EPJC 72 (2012) 2025

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

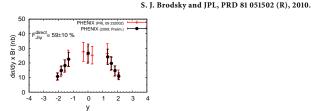
- \rightarrow The yield vs. \sqrt{s} , y
 - Good agreement with RHIC, Tevatron and LHC data [LHC J/ψ points to be updated, sorry] (multiplied by a constant F^{direct} , considered to be constant)

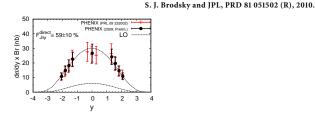


CMS PRD 83 (2011) 112004; LHCb EPJC 72 (2012) 2025

• Unfortunately, very large th. uncertainties: masses, scales (μ_R , μ_F), gluon PDFs at low x and O^2 , ...

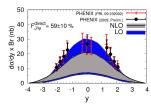
S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470


- \rightarrow The yield vs. \sqrt{s} , y
 - Good agreement with RHIC, Tevatron and LHC data [LHC J/ψ points to be updated, sorry] (multiplied by a constant F^{direct} , considered to be constant)


CMS PRD 83 (2011) 112004; LHCb EPJC 72 (2012) 2025

- Unfortunately, very large th. uncertainties: masses, scales (μ_R , μ_F), gluon PDFs at low x and Q^2 , ...
- Earlier claims that CSM contribution to $d\sigma/dy$ was small were based on the incorrect assumption that χ_c feed-down was dominant

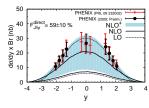
$$\rightarrow J/\psi$$


$$\to J/\psi$$

LO:
$$gg \rightarrow J/\psi g$$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010.

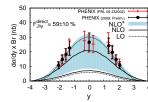
$$\rightarrow J/\psi$$



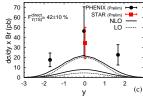
NLO:
$$gg \rightarrow J/\psi gg$$
, $gq \rightarrow J/\psi gq$, ...

using the matrix elements from J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007

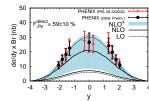
S. J. Brodsky and JPL, PRD 81 051502 (R), 2010.



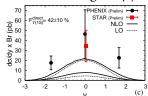
NLO⁺: possible new contribution at LO $cg \rightarrow J/\psi c$


S. J. Brodsky and JPL, PRD 81 051502 (R), 2010.

NLO⁺: possible new contribution at LO $cg \rightarrow J/\psi c$


 $\rightarrow \Upsilon^*$

^{*} Sorry: I should update these plots (updated data and fraction is about 60 %)


 $\rightarrow J/\psi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010.

NLO⁺: possible new contribution at LO $cg \rightarrow J/\psi c$

 $\rightarrow \Upsilon^*$

A priori, good convergence NLO w.r.t. LO

^{*} Sorry: I should update these plots (updated data and fraction is about 60 %)

Available online at www.sciencedirect.com

Physics Letters B 638 (2006) 202-208

PHYSICS LETTERS B

www.elsevier.com/locate/

Analysis of charmonium production at fixed-target experiments in the NRQCD approach

F. Maltoni^{*}, J. Spengler^{*}, M. Bargiotti^{*}, A. Bertin^{*}, M. Bruschi^{*}, S. De Castro^{*}, L. Fabbri^{*}, P. Faccioli^{*}, B. Giacobbe^{*}, F. Grimaldi^{*}, I. Massa^{*}, M. Piccinini^{*}, N. Semprini-Cesari^{*}, R. Spighi^{*}, M. Villa^{*}, A. Vitale^{*}, A. Zoccoli^{**}

Available online at www.sciencedirect.com

SCIENCE DIRECT*

Physica Letters B 638 (2006) 202-208

PHYSICS LETTERS B

EVIER

Analysis of charmonium production at fixed-target experiments in the NRQCD approach

F. Maltoni *, J. Spengler *, M. Bargiotti *, A. Bertin *, M. Bruschi *, S. De Castro *, L. Fabbri *, P. Faccioli *, B. Giacobbe *, F. Grimaldi *, I. Massa *, M. Piccinini *, N. Semprini-Cesari *, R. Spighi *, M. Villa *, A. Vitale *, A. Zoccoli **

Analysis based on the hard partonic cross sections computed at NLO in

A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 638 (2006) 202-201

www.elsevier.com/locate/physle

Analysis of charmonium production at fixed-target experiments in the NRQCD approach

F. Maltoni *, J. Spengler *, M. Bargiotti *, A. Bertin *, M. Bruschi *, S. De Castro *, L. Fabbri *, P. Faccioli *, B. Giacobbe *, F. Grimadhi *, I. Massa *, M. Piccinini *, N. Semprini-Cesari *, R. Spighi *, M. Villa *, A. Vitale *, A. Zoccoli **

Analysis based on the hard partonic cross sections computed at NLO in

A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

• At α_s^2 , one only has CO contributions

$$2 \to 1 \text{ processes } : q + \bar{q} \to Q\bar{Q}\big[{}^3S_1^{[8]}\big] \text{ and } g + g \to Q\bar{Q}\big[{}^1S_0^{[8]}, {}^3P_{J=0,1,2}^{[8]}\big]$$

Available online at www.sciencedirect.com

PHYSICS LETTERS E

Physics Letters B 638 (2006) 202-201

ww.elsevier.com/locate/physi

Analysis of charmonium production at fixed-target experiments in the NRQCD approach

F. Maltoni *, J. Spengler *, M. Bargiotti *, A. Bertin *, M. Bruschi *, S. De Castro *, L. Fabbri *, P. Faccioli *, B. Giacobbe *, F. Grimmaldi *, I. Massa*, M. Piccinini *, N. Semprini-Cesari *, R. Spighi *, M. Villa *, A. Vida *, A. Zoccoli **

Analysis based on the hard partonic cross sections computed at NLO in

A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

- At α_S^2 , one only has CO contributions (\rightarrow virtual correction at α_S^3): $2 \rightarrow 1 \text{ processes } : q + \bar{q} \rightarrow Q\bar{Q}[^3S_1^{[8]}] \text{ and } g + g \rightarrow Q\bar{Q}[^1S_0^{[8]}, ^3P_{J=0,1,2}^{[8]}]$
- At α_S^3 , one has in addition real emissions (including one CS process) $g + g \to Q\bar{Q}[{}^1S_0^{[8]}, {}^3S_1^{[8]}, {}^3P_{J=0,2}^{[8]}] + g$, $g + q(\bar{q}) \to Q\bar{Q}[{}^1S_8^{[0]}, {}^3S_1^{[8]}, {}^3P_{J=0,2}^{[8]}] + q(\bar{q})$ $q + \bar{q} \to Q\bar{Q}[{}^1S_0^{[8]}, {}^3S_1^{[8]}, {}^3P_{J=0,1,2}^{[8]}] + g$ and $g + g \to Q\bar{Q}[{}^3S_1^{[1]}] + g$

PHYSICS LETTERS B

Physics Letters B 638 (2006) 202-201

www.elsevier.com/locate/phy

Analysis of charmonium production at fixed-target experiments in the NRQCD approach

F. Maltoni *, J. Spengler *, M. Bargiotti *, A. Bertin *, M. Bruschi *, S. De Castro *, L. Fabbri *, P. Faccioli *, B. Giacobbe *, F. Grinnaldi *, I. Massi, M. Piccinini *, N. Semprini-Cesari *, R. Spighi *, M. Villa *, A. Vitale *, A. Zoccoli **

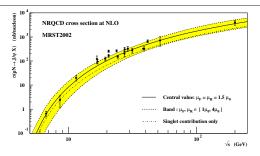
Analysis based on the hard partonic cross sections computed at NLO in

A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

- At α_S^2 , one only has CO contributions (\rightarrow virtual correction at α_S^3): $2 \rightarrow 1 \text{ processes } : q + \bar{q} \rightarrow Q\bar{Q}[^3S_1^{[8]}] \text{ and } g + g \rightarrow Q\bar{Q}[^1S_0^{[8]}, ^3P_{J=0,1,2}^{[8]}]$
- At α_S^3 , one has in addition real emissions (including one CS process) $g + g \to Q\bar{Q}[{}^1S_0^{[8]}, {}^3S_1^{[8]}, {}^3P_{l=0,2}^{[8]}] + g$, $g + q(\bar{q}) \to Q\bar{Q}[{}^1S_8^{[0]}, {}^3S_1^{[8]}, {}^3P_{l=0,2}^{[8]}] + q(\bar{q})$

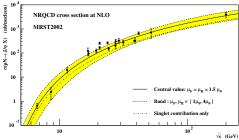
$$q + \overline{q} \to Q\overline{Q}[{}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{I=0,1,2}^{[3]}] + g \text{ and } g + g \to Q\overline{Q}[{}^{3}S_{1}^{[1]}] + g$$

• Done with NRQCD LDMEs fitted at LO on P_T spectra from CDF (\simeq 2 TeV)

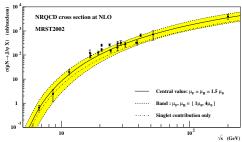

Reference NRQCD matrix elements for charmonium production. The colorsinglet matrix elements are taken from the potential model calculation of [14, 15]. The color-octet matrix elements have been extracted from the CDF data [16] in Ref. [17]

H	$\langle \mathcal{O}_1^H \rangle$	$\langle \mathcal{O}_8^H[^3S_1] \rangle$	$\langle \mathcal{O}_{8}^{H}[^{1}S_{0}^{(8)}]\rangle = \langle \mathcal{O}_{8}[^{3}P_{0}^{(8)}]\rangle/m_{c}^{2}$
J/ψ		$1.19 \times 10^{-2} \text{ GeV}^3$	
$\psi(2S)$	0.76GeV^3	$0.50 \times 10^{-2} \text{ GeV}^3$	$0.42 \times 10^{-2} \text{ GeV}^3$
Xc0	0.11 GeV	$0.31 \times 10^{-2} \text{ GeV}^3$	_

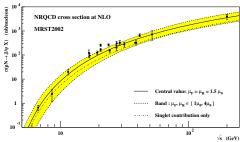
Abstract



Abstract

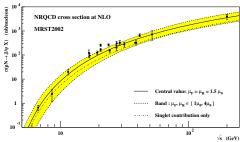

Abstract

We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the next-to-leading order (NLO). All the data on J/ψ and $\psi(2S)$ production in fixed-target experiments and on p p collisions at low energy are included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron. ©2006 Elsevier B.V. All rights reserved.

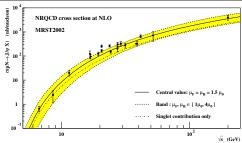

• Good fit but with ten times less CO than expected from Tevatron $d\sigma/dP_T$ data

Abstract

- Good fit but with ten times less CO than expected from Tevatron $d\sigma/dP_T$ data
- CSM could describe the data alone (no uncertainty on CS shown;)


Abstract

- Good fit but with ten times less CO than expected from Tevatron $d\sigma/dP_T$ data
- CSM could describe the data alone (no uncertainty on CS shown;)
- No similar analysis for Υ


Abstract

- Good fit but with ten times less CO than expected from Tevatron $d\sigma/dP_T$ data
- CSM could describe the data alone (no uncertainty on CS shown;)
- No similar analysis for Υ
- Never done for $\sqrt{s} > 200 \text{ GeV}$

Abstract

- Good fit but with ten times less CO than expected from Tevatron $d\sigma/dP_T$ data
- CSM could describe the data alone (no uncertainty on CS shown;)
- No similar analysis for Υ
- Never done for $\sqrt{s} > 200 \text{ GeV}$
- Never updated with LDMEs fitted at NLO

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used

• FDC* after complete cross-check of the Petrelli et al. results

*: FDC J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used

• FDC* after complete cross-check of the Petrelli et al. results

*: FDC J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241

• only direct J/ψ , ψ' and $\Upsilon(1S)$ yields

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used

• FDC* after complete cross-check of the Petrelli et al. results

*: FDC J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241

- only direct J/ψ , ψ' and $\Upsilon(1S)$ yields
- Nota: in principle, we can also predict total-yield polarisation

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used

• FDC* after complete cross-check of the Petrelli *et al.* results

```
*: FDC J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241
```

- only direct J/ψ , ψ' and $\Upsilon(1S)$ yields
- Nota: in principle, we can also predict total-yield polarisation
- an updated data set with:
 - only pp and $p\bar{p}$ data with more than 100 events (no pA data), only for y=0
 - CDF results after a small P_T extrapolation from 1.5 GeV to 0
 - LHC data

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used

• FDC* after complete cross-check of the Petrelli *et al.* results

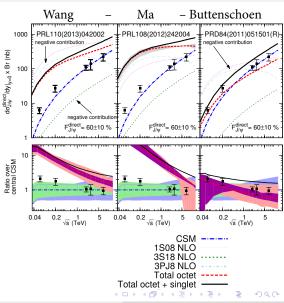
*: FDC J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241

- only direct J/ψ , ψ' and $\Upsilon(1S)$ yields
- Nota: in principle, we can also predict total-yield polarisation
- an updated data set with:
 - only pp and $p\bar{p}$ data with more than 100 events (no pA data), only for y=0
 - CDF results after a small P_T extrapolation from 1.5 GeV to 0
 - LHC data
- constant feed-down (FD) fractions
 - $F_{I/\psi}^{\text{direct}} = 60 \pm 10\%$
 - $F_{\Upsilon(1S)}^{\text{direct}} = 66 \pm 10\%$
 - $F_{\Upsilon(1S+2S+3S)}^{\text{direct}} = 60 \pm 10\%$
 - Uncertainty on F^{direct} combined in quadrature with that of data

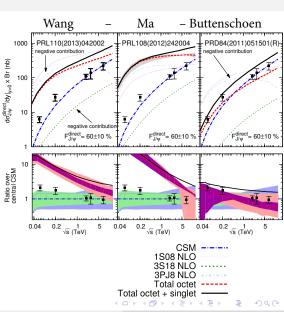
Arguable but accounts for a possible energy dependence of the FD fraction

What we did II

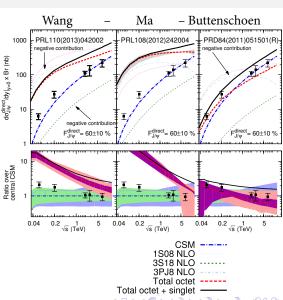
J/ψ

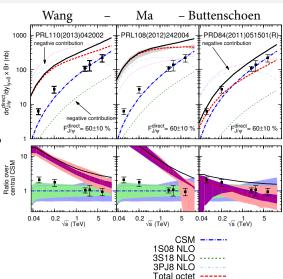

We used LDMEs fitted at NLO/one loop on the P_T spectra

Ref.	$\langle \mathcal{O}_{J/\psi}({}^{3}P_{0}^{[8]})\rangle$	$(\mathcal{O}_{J/\psi}({}^{1}S_{0}^{[8]}))$	$\langle \mathcal{O}_{J/\psi}(^{3}S_{1}^{[8]})\rangle$
	(in GeV ⁵)	(in GeV ³)	(in GeV ³)
	-2.0×10^{-3}	7.8×10^{-2}	0
YQ. Ma,et al. PRL 106 (2011) 042002.	2.1×10^{-2}	3.5×10^{-2}	5.8×10^{-3}
	4.1×10^{-2}	0	1.1×10^{-2}
B. Gong,et al. PRL 110 (2013) 042002	-2.2×10^{-2}	9.7×10^{-2}	-4.6×10^{-3}
M.Butenschoen, B.Kniehl. PRD (2011) 051501	-9.1×10^{-2}	3.0×10^{-2}	1.7×10^{-3}

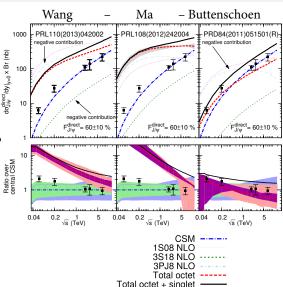

$\langle \mathcal{O}_{\psi(2S)}(^{3}P_{0}^{[8]}) \rangle$	$\langle \mathcal{O}_{\psi(2S)}(^{1}S_{0}^{[8]}) \rangle$	$\langle \mathcal{O}_{\psi(2S)}(^{3}S_{1}^{[8]}) \rangle$
(in GeV ⁵)	(in GeV ³)	(in GeV ³)
9.5 × 10 ⁻³	-1.2×10^{-4}	3.4×10^{-3}
-4.8×10^{-3}	2.9×10^{-2}	0
7.9×10^{-3}	5.6×10^{-3}	3.2×10^{-3}
1.1×10^{-2}	0	3.9×10^{-3}
	$\frac{(\text{in GeV}^5)}{(\text{in GeV}^5)}$ 9.5 × 10 ⁻³ -4.8 × 10 ⁻³ 7.9 × 10 ⁻³	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Υ(18	Ref.	$\langle \mathcal{O}_{\Upsilon(1S)}({}^{3}P_{0}^{[8]}) \rangle$ (in GeV ⁵)	$\langle \mathcal{O}_{\Upsilon(1S)}(^{1}S_{0}^{[8]})\rangle$ (in GeV ³)	$\langle \mathcal{O}_{\Upsilon(1S)}(^{3}S_{1}^{[8]})\rangle$ (in GeV ³)
	B. Gong, et al. PRL 112 (2014) 3, 032001.	-10.36×10^{-2}	11.15×10^{-2}	-4.1×10^{-2}

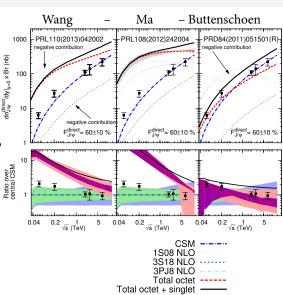

[We have also added the fit of G.T. Bodwin, *et al.*, PRL 113, 022001 (2014) even though it is based on a fragmentation function approach]


 First 2 fits: 10 times above the data around 200 GeV – as Maltoni et al.

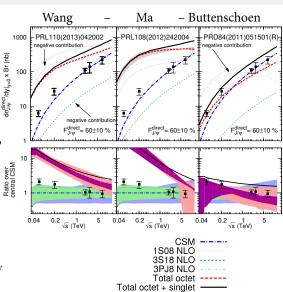
- First 2 fits: 10 times above the data around 200 GeV – as Maltoni et al.
- The third fit –which btw has the lowest P_T^{min} overshoots the least
- The third fit is however the only which does not account for the polarisation data

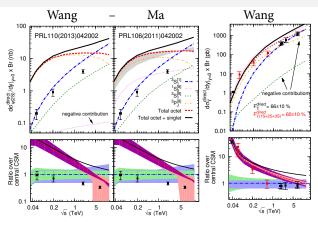


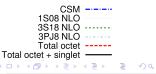
- First 2 fits: 10 times above the data around 200 GeV – as Maltoni et al.
- The third fit –which btw has the lowest P_T^{min} overshoots the least
- The third fit is however the only which does not account for the polarisation data
- Weird energy behaviour of Ma's fit, due to ³P₁^[8] channel – we'll come back to that later



Total octet + singlet

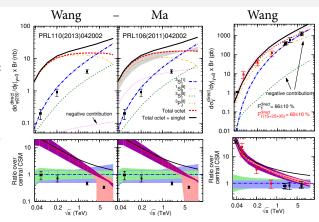

- First 2 fits: 10 times above the data around 200 GeV – as Maltoni et al.
- The third fit –which btw has the lowest P_T^{min} overshoots the least
- The third fit is however the only which does not account for the polarisation data
- Weird energy behaviour of Ma's fit, due to ${}^3P_1^{[8]}$ channel we'll come back to that later
- The CS component alone does a pretty good job, even excellent in the TeV range

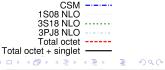

- First 2 fits: 10 times above the data around 200 GeV – as Maltoni et al.
- The third fit –which btw has the lowest P_T^{min} overshoots the least
- The third fit is however the only which does not account for the polarisation data
- Weird energy behaviour of Ma's fit, due to ${}^3P_{J}^{[8]}$ channel we'll come back to that later
- The CS component alone does a pretty good job, even excellent in the TeV range
- Taken at face value, these results show a clear violation of NRQCD universality



- First 2 fits: 10 times above the data around 200 GeV – as Maltoni et al.
- The third fit –which btw has the lowest P_T^{min} overshoots the least
- The third fit is however the only which does not account for the polarisation data
- Weird energy behaviour of Ma's fit, due to ${}^3P_{J}^{[8]}$ channel we'll come back to that later
- The CS component alone does a pretty good job, even excellent in the TeV range
- Taken at face value, these results show a clear violation of NRQCD universality
- Not a surprise since the CSM alone accounts well for the data; adding any contribution creates a "surplus"

Results for the ψ' and Υ

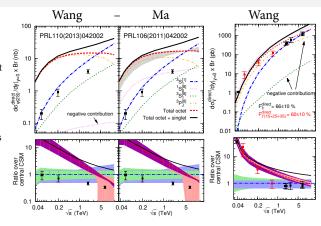


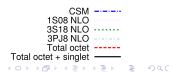


Results for the ψ' and Υ

For $\psi(2S)$

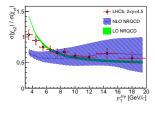
- Worse than for J/ψ
- CSM even tends to overshoot at large √s - yet in agreement within uncertainties (lower panel)
- CO dominated by the ³P_J^[8]
 channel which nearly shows an unphysical behavior

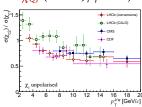

Results for the ψ' and Υ

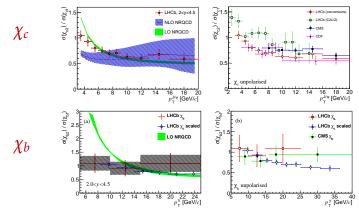

For $\psi(2S)$

- Worse than for J/ψ
- CSM even tends to overshoot at large √s - yet in agreement within uncertainties (lower panel)
- CO dominated by the ³P_J^[8]
 channel which nearly shows an unphysical behavior

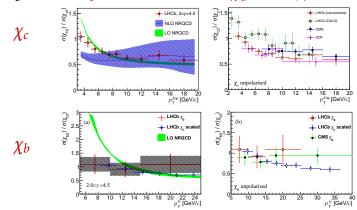
For $\Upsilon(1S)$


- Reasonnable trend for Y
- CSM is doing a perfect job in the TeV range – note that the RHIC points moved down
- On the other hand, CO needed at low √s? High x gluon pdf underestimated?

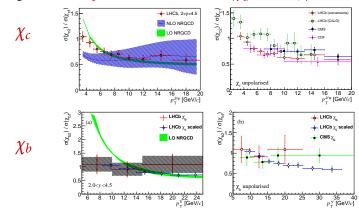



- At low P_T , test of χ_{O1} suppression following the Landau-Yang theorem
- At larger P_T , test of production mechanism of χ_{OI} (not of J/ψ or Υ)

- At low P_T , test of χ_{O1} suppression following the Landau-Yang theorem
- At larger P_T , test of production mechanism of χ_{QJ} (not of J/ψ or Υ)



- At low P_T , test of χ_{O1} suppression following the Landau-Yang theorem
- At larger P_T , test of production mechanism of χ_{QJ} (not of J/ψ or Υ)


HCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154

- At low P_T , test of χ_{O1} suppression following the Landau-Yang theorem
- At larger P_T , test of production mechanism of χ_{OJ} (not of J/ψ or Υ)

• The Landau-Yang suppression shows up for χ_c in the Low P_T/m_Q region

- At low P_T , test of χ_{O1} suppression following the Landau-Yang theorem
- At larger P_T , test of production mechanism of χ_{OJ} (not of J/ψ or Υ)

- The Landau-Yang suppression shows up for χ_c in the Low P_T/m_Q region
 - The nature (quantum #) of the produced final state seems still relevant!

Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

$$\sigma_Q^{\rm (N)LO,\; direct} = F_Q^{\rm direct} \int_{2m_Q}^{2m_H} \frac{d\sigma_{Q\bar{Q}}^{\rm (N)LO}}{dm_{Q\bar{Q}}} dm_{Q\bar{Q}}$$

Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

$$\sigma_{Q}^{(\mathrm{N})\mathrm{LO,\ direct}} = F_{Q}^{\mathrm{direct}} \int_{2m_{Q}}^{2m_{H}} \frac{d\sigma_{Q\hat{Q}}^{(\mathrm{N})\mathrm{LO}}}{dm_{Q\hat{Q}}} dm_{Q\hat{Q}}$$

• Using a simple statistical counting $[\Sigma_i]$ runs over all the charmonium states below the $D\bar{D}$ threshold]

J. F. Amundson, et al. PLB 372 (1996)

$$F_{J/\psi}^{\text{direct}} = \frac{1}{9} \frac{2J_{\psi} + 1}{\sum_{i} (2J_{i} + 1)} = \frac{1}{45},$$

most of the data could accounted for!

Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

$$\sigma_{Q}^{(N)LO, \text{ direct}} = F_{Q}^{\text{direct}} \int_{2m_{Q}}^{2m_{H}} \frac{d\sigma_{Q\bar{Q}}^{(N)LO}}{dm_{Q\bar{Q}}} dm_{Q\bar{Q}}$$

• Using a simple statistical counting $[\Sigma_i]$ runs over all the charmonium states below the $D\bar{D}$ threshold]

J. F. Amundson, et al. PLB 372 (1996)

$$F_{J/\psi}^{\text{direct}} = \frac{1}{9} \frac{2J_{\psi} + 1}{\sum_{i} (2J_{i} + 1)} = \frac{1}{45},$$

most of the data could accounted for!

• Ramona Vogt's fits roughly give the same number for direct J/ψ 's

M. Bedjidian, [..], R. Vogt et al., hep-ph/0311048

Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

$$\sigma_{Q}^{(N)LO, \text{ direct}} = F_{Q}^{\text{direct}} \int_{2m_{Q}}^{2m_{H}} \frac{d\sigma_{Q\bar{Q}}^{(N)LO}}{dm_{Q\bar{Q}}} dm_{Q\bar{Q}}$$

• Using a simple statistical counting $[\Sigma_i \text{ runs over all the charmonium states below the } D\tilde{D} \text{ threshold}]$

J. F. Amundson, et al. PLB 372 (1996)

$$F_{J/\psi}^{\text{direct}} = \frac{1}{9} \frac{2J_{\psi} + 1}{\sum_{i} (2J_{i} + 1)} = \frac{1}{45},$$

most of the data could accounted for!

• Ramona Vogt's fits roughly give the same number for direct J/ψ 's

M. Bedjidian, [..], R. Vogt et al., hep-ph/0311048

• It can easily be check by MCFM at NLO for instance

http://mcfm.fnal.gov/

• In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004

 In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004

• These violate the velocity scaling rules

also violated by the NLO fits btw

 In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004

These violate the velocity scaling rules

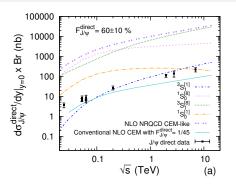
also violated by the NLO fits btw

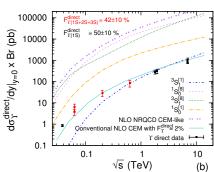
• At LO in ν , one has

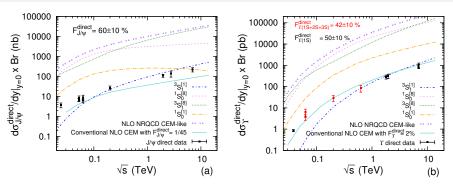
$$\begin{aligned}
\langle \mathcal{O}_{{}^{3}S_{1}}({}^{3}S_{1}^{[1]}) \rangle &= 3 \times \langle \mathcal{O}_{{}^{3}S_{1}}({}^{1}S_{0}^{[1]}) \rangle, \\
\langle \mathcal{O}_{{}^{3}S_{1}}({}^{1}S_{0}^{[8]}) \rangle &= \frac{4}{3} \times \langle \mathcal{O}_{{}^{3}S_{1}}({}^{1}S_{0}^{[1]}) \rangle, \\
\langle \mathcal{O}_{{}^{3}S_{1}}({}^{3}S_{1}^{[8]}) \rangle &= 4 \times \langle \mathcal{O}_{{}^{3}S_{1}}({}^{1}S_{0}^{[1]}) \rangle.
\end{aligned} \tag{1}$$

 In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs provided that the CEM is interpreted as part NRQCD

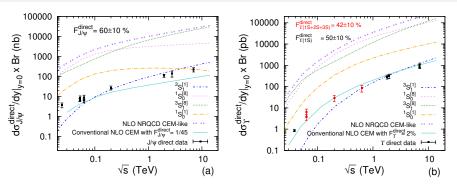
G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004

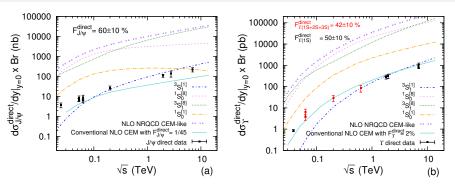

These violate the velocity scaling rules


also violated by the NLO fits btw

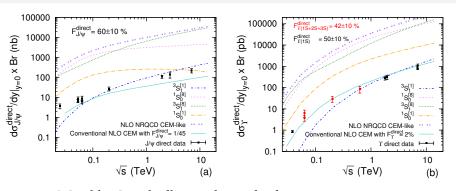

• At LO in ν , one has

$$\begin{aligned}
\langle \mathcal{O}_{{}^{3}S_{1}}({}^{3}S_{1}^{[1]}) \rangle &= 3 \times \langle \mathcal{O}_{{}^{3}S_{1}}({}^{1}S_{0}^{[1]}) \rangle, \\
\langle \mathcal{O}_{{}^{3}S_{1}}({}^{1}S_{0}^{[8]}) \rangle &= \frac{4}{3} \times \langle \mathcal{O}_{{}^{3}S_{1}}({}^{1}S_{0}^{[1]}) \rangle, \\
\langle \mathcal{O}_{{}^{3}S_{1}}({}^{3}S_{1}^{[8]}) \rangle &= 4 \times \langle \mathcal{O}_{{}^{3}S_{1}}({}^{1}S_{0}^{[1]}) \rangle.
\end{aligned} \tag{1}$$


• If, as it should be in NRQCD, $\langle \mathcal{O}_{{}^3S_1}({}^3S_1^{[1]}) \rangle$ is the usual CS LDME, i.e. $\frac{2N_C}{4\pi}(2J+1)|R(0)|^2$, everything is fixed



• NRQCD-like CEM badly overshoots the data



- NRQCD-like CEM badly overshoots the data
 - Expected since CO LDMEs are as large as the CS, whereas the hard parts tend to be larger.

52 / 21

- NRQCD-like CEM badly overshoots the data
 - Expected since CO LDMEs are as large as the CS, whereas the hard parts tend to be larger.
 - Weird energy behaviour

- NRQCD-like CEM badly overshoots the data
 - Expected since CO LDMEs are as large as the CS, whereas the hard parts tend to be larger.
 - Weird energy behaviour
- Conventional CEM does a pretty good job
 - No th. uncertainty shown
 - "Natural" value of $F_{I/\psi}^{\text{direct}}$ is ok

52 / 21