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pp pPb PbPb

Motivation

- People are looking for collectivity in pp and ee
  as a possible sign of QGP

- long range ΔY correlations are the signal of collectivity

- Is the near-side ridge in high-multiplicity pp events
  due to QGP or massive jets?



pp pPb PbPb

Motivation

Long-range ΔY correlations may emerge
due to highly virtual partons (massive jets)
in the hard process
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To get long range ΔY correlations, we need massive jets
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How large M
jet

 do we need?
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- Long-range correlations of hadrons stemming from
  highly-virtual leading partons

- v2 in fix multiplicity jets
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Off-shell fragmentation function

            - Initial function at starting scale Q
0

            - Scale evolution



● Statistical model for the initial FF at starting scale:
       
        The haron distribution in a jet of n hadron with total momentum P

p0 d σ
d3 p

n=fix

∝ (1−x1 ) n−3

p
T

p
Z

P⃗ /2
M

E
● Averaging over multiplicity fluctuations of the form of P (n)=(n+r−1

r−1 ) p̃n(1− p̃)r

Urmossy et.al,  Eur. Phys. J. A (2017) 53: 36 ;  PLB, 701: 111-116  (2011) ;   PLB, 718, 125-129, (2012)

p0 dσ
d3 p

= A [1+ q−1
τ x ]

−1/(q−1)

Model for a jet at Q
0

results in an initial FF of the form of

p1
0 p2

0 dσ
d3 p1 d

3 p2

n=fix

∝ (1−x1−x2+x12 ) n−4

x1=2 Pμ p1
μ/M 2 , x12=2 p1μ p2

μ / M 2



Off-shell Scale-evolution (in the φ3 theory)

Difference from the standard way: the leading parton is off-shell



Thus, the fragmentation scale is the jet mass

D ( x ,P2 ) = ∫ dz
z

{δ(1−z)+g2 A (z , P2)}D0( xz ,m0
2)

Hadron spectrum: leading parton (of momentum P) emits
                                on-shell daughter partons (of momentum k) that
                                fragment to hadrons at low virtuality m

0
  

Which can be inverted (up to O(g2))

D0 ( x ,m0
2 ) = ∫ dz

z
{δ(1−z)−g2 A (z , P2)}D ( xz ,P2)

Differentiate wrt ln(P2)

∂
∂ ln P2 D (x , P2 ) = ∫ dz

z
D ( xz , P2) g2 ∂

∂ ln P2 A (z , P2)

→ DGLAP equation

∂
∂ ln P2

~D (ω , P2 ) = ~D (ω , P2 ) g2~P (ω)
P(z)

splitting
function

~D (ω , P2) = ~D0 (ω ,m0
2 ) exp [~P (ω)b(P2) ]

← ~
f (ω)=∫

0

1

dx xω−1 f (x)



D(x , t) = ∫
x

1
dz
z

f (z , t)(1+
q0−1

τ0

x
z )

1/(q0−1)

≠ (1+
q(t )−1

τ (t )
x)

1/ (q (t )−1)

Urmossy, Eur. Phys. J. A (2017) 53: 36

- Prescription for a few moments of D:

∫Dapx(x , t) = ∫D(x , t)

∫ x Dapx (x , t) = ∫ x D(x , t ) = 1

∫ x2 Dapx (x ,t ) = ∫ x2 D (x , t)

(by definition) τ(t )=
τ0

α4(t /t 0)
−a2−α3(t / t0)

a1

q(t )=
α1(t / t 0)

a1−α2(t / t 0)
−a2

α3(t / t0)
a1−α4(t / t0)

−a2

a1=P̃(1)/β0 , a2= P̃(3)/β0

t=ln ( M jet
2 / Λ2 )

● Scale evolution of the parameters of the model:
       
       - approximation:

Model for a jet



  Scale = jet mass!!!  

Inside light jets

D (x ) ≈ exp {−x / τ}

Inside heavy jets

M 1 M 2

The fragmentation
function:

The multiplicity
distribution:

D(x ) ≈ (1+ q−1
τ x)−1/(q−1)

P (n) ≈
(1 / τ)n

n!
e−1/ τ P (n) ≈ (n+r−1

r−1 ) p̃n(1− p̃)r

p̃ = (q−1)/( τ+q−1)
r = 1/(q−1)−3

Eur. Phys. J. A (2017) 53: 36



   Evolution of multiplicity

Evolution of the mean multiplicity and its dispersion:

〈n 〉 =
4−3q0

τ0
(t / t0)

−a2 ∼ lna(M jet)

〈n2〉−〈n 〉2 = 〈n 〉[ 3−2q0
τ0

(t /t 0)
a1 + 1 − 〈n 〉]

Eur. Phys. J. A (2017) 53: 36



e+P → 2 jets 

P⃗ jet

ph
T

P⃗ jet

ph
∥

ϑc

Urmossy, Eur. Phys. J. A (2017) 53: 36
    proc. of conf.: DIS2016, arXiv:1605.06876

PP

The model works for longitudinal and transverse
momentum distributions in jets



Scale evolution of the fit parameters

t=ln ( M jet
2 / Λ2 )

τ(t )=
τ0

α4(t /t 0)
−a2−α3(t / t0)

a1q(t )=
α1(t / t 0)

a1−α2(t / t 0)
−a2

α3(t / t0)
a1−α4(t / t0)

−a2

Eur. Phys. J. A (2017) 53: 36

K. Urmossy        –       Off-shell fragmentation
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Long-range correlations in fat jets

E = 110 GeV

P = 85 GeV/c

M = 70 GeV/c2
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Long-range correlations in fat jets

pp pPb PbPb



v2 from large 2<|Δη|<4 correlations
v 2 v 2 v 2 v 2



v
2
 increases

edge of 
phasespace

v2 =
∫
−φ 0

φ 0

d φ f (φ )cos(nφ )

∫
−φ 0

φ 0

d φ f (φ )
→ 1

φ 0



position of 
this minimum

edge of 
phasespace

p∗ =
EJET−PJET

2

p*
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2
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v
2
 in 1 jet  scaled by p∗ =

EJET−PJET

2



  

Averaging over jet mass fluctuations

ρ(M jet) ∼ lnb ( M jet /M 0 )/M jet
c

Averaging reduces
fluctuations in v

2
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Fix Multiplicity
Events



Jet Mass dependence



Multiplicity dependence



Fix multiplicity v2

„central” pp
105 < N < 150 

„peripheral” pp
10 < N < 20



Conclusions

We have a fragmentation function for
highly virtual partons. The frag.scale 

is the jet mass

We have a FF for jets of fix multiplicity

v2 of large ΔY hadrons seems to be discribable 
by fragmentation of off-shell leading partons 



Back-up Slides



v2 from large Δη correlationsat φ =
 0



v2 from large Δη correlations

v
2
 decreases

correlations 
flatten

at φ =
 0



v2 from large Δη correlations

v
2
 increases

correlations 
steepen

at φ =
 0



v2 from large Δη correlations

v
2
 decreases

correlations 
flatten

at φ =
 0



v2 from large Δη correlations

v
2
 increases

correlations 
steepen

at φ =
 0



Particle Multiplicity fluctuates according to the Negative-binomial distribution

Urmossy et. al., PLB,
718, 125-129, (2012)

Urmossy et.al.,PLB,
701: 111-116  (2011)

Urmossy,
arXiv:1212.0260

J. Phys. G: Nucl. Part.
Phys. 37 085104 (2010),

e-e+ → h± pp → jets @ 7 TeV pp → h± @ LHC AuAu → h± @RHIC

Barnaföldi etal, J. Phys.: Conf. 
Ser., 270, 012008 (2011 )

Power-law hadron spectra



  

Spectrum and v2

(Hot Quarks 2014) J. Phys. Conf. Ser. 612 (2015) 1, 012048; (WPCF 2014) arXiv:1501.05959, Conference: C14-08-25.8;  (High-
pT 2014), arXiv:1501.02352, arXiv:1405.3963

HardSoft

PbPb

Hard

PP Hard



v2 in pp and PbPb

Peripheral pp

central pp

Peripheral PbPb

mid-central PbPb

central PbPb
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