Long-range Correlations in Massive Jets

Karoly Urmossy

IHEP Beijing China
karoly.uermoessy@cern.ch

DIS2019, 10 April, Torino Italy
Motivation

- People are looking for collectivity in pp and ee as a possible sign of QGP

- long range ΔY correlations are the signal of collectivity

- Is the near-side ridge in high-multiplicity pp events due to QGP or massive jets?
Motivation

Long-range ΔY correlations may emerge due to highly virtual partons (massive jets) in the hard process.
To get long range ΔY correlations, we need massive jets

phasespace of hadrons in a jet initiated by a leading parton of momentum $P_\mu = (E_{jet}, \vec{P}_{jet})$ is an ellipsoid of width M_{jet} and length E_{jet}
Motivation

To get long range ΔY correlations, we need massive jets.

We can have hadrons with large ΔY if p_1 and p_2 are small enough.
Motivation

To get long range ΔY correlations, we need massive jets

But, the jet cone might exclude hadrons with large ΔY
Motivation

To get long range ΔY correlations, we need massive jets.

(a) $pp \sqrt{s} = 7$ TeV, $N_{\text{thr}}^{\text{offline}} \geq 110$
How large M_{jet} do we need?

Let's say, we calculate $v_2(p_T)$ from hadron pairs with $\Delta Y = 3$.

![Diagram showing M vs p_T with different curves for $P = 50, 100, 200, 500$ GeV/c and labeling ΔY, p_T, and the edge of phasespace.](image)
Outline

- Off-shell fragmentation and scale evolution

- Long-range correlations of hadrons stemming from highly-virtual leading partons

- v_2 in fix multiplicity jets
Outline

- **Off-shell fragmentation and scale evolution**

- Long-range correlations of hadrons stemming from highly-virtual leading partons

- v_2 in fix multiplicity jets
Off-shell fragmentation function

- Initial function at starting scale Q_0

- Scale evolution
Model for a jet at Q_0

- **Statistical model** for the initial FF at starting scale:

 The haron distribution in a jet of n hadron with total momentum P

 \[p_0 \frac{d\sigma}{d^3p} \propto (1 - x_1)^{n-3} \]

 \[p_1 p_2 \frac{d\sigma}{d^3p_1 d^3p_2} \propto (1 - x_1 - x_2 + x_{12})^{n-4} \]

 \[x_1 = 2 P_{\mu} p_1^\mu / M^2, \quad x_{12} = 2 p_{1\mu} p_2^\mu / M^2 \]

 \[P(n) = \binom{n+r-1}{r-1} \tilde{p}^n (1 - \tilde{p})^r \]

- Averaging over multiplicity fluctuations of the form of

 results in an initial FF of the form of

 \[p_0 \frac{d\sigma}{d^3p} = A \left[1 + \frac{q-1}{\tau} x \right]^{-1/(q-1)} \]

Off-shell Scale-evolution (in the φ^3 theory)

Difference from the standard way: the leading parton is off-shell
Thus, the **fragmentation scale** is the jet mass

Hadron spectrum: leading parton (of momentum P) emits on-shell daughter partons (of momentum k) that fragment to hadrons at low virtuality m_0

$$D(x, P^2) = \int \frac{dz}{z} \left[\delta(1-z) + g^2 A(z, P^2) \right] D_0 \left(\frac{x}{z}, m_0^2 \right)$$

Which can be inverted (up to $O(g^2)$)

$$D_0(x, m_0^2) = \int \frac{dz}{z} \left[\delta(1-z) - g^2 A(z, P^2) \right] D \left(\frac{x}{z}, P^2 \right)$$

Differentiate wrt $\ln(P^2)$ \(\rightarrow \) **DGLAP equation**

$$\frac{\partial}{\partial \ln P^2} D(x, P^2) = \int \frac{dz}{z} D \left(\frac{x}{z}, P^2 \right) g^2 \frac{\partial}{\partial \ln P^2} A(z, P^2)$$

$$\frac{\partial}{\partial \ln P^2} \tilde{D}(\omega, P^2) = \tilde{D}(\omega, P^2) g^2 \tilde{P}(\omega)$$

$$\tilde{D}(\omega, P^2) = \tilde{D}_0(\omega, m_0^2) \exp \left[\tilde{P}(\omega) b(P^2) \right]$$

\(\tilde{f}(\omega) = \int_0^1 dx x^{\omega-1} f(x) \)
Model for a jet

- **Scale evolution of the parameters of the model:**

 - **approximation:**

 \[
 D(x, t) = \int_x^1 \frac{dz}{z} f(z, t) \left(1 + \frac{q_0 - 1}{\tau_0} \frac{x}{z}\right)^{1/(q_0 - 1)} \neq \left(1 + \frac{q(t) - 1}{\tau(t)} \frac{x}{z}\right)^{1/(q(t) - 1)}
 \]

- **Prescription for a few moments of D:**

 \[
 \int D_{apx}(x, t) = \int D(x, t)
 \]

 \[
 \int x D_{apx}(x, t) = \int x D(x, t) = 1 \quad \text{(by definition)}
 \]

 \[
 \int x^2 D_{apx}(x, t) = \int x^2 D(x, t)
 \]

 \[
 t = \ln \left(\frac{M_{jet}^2}{\Lambda^2} \right)
 \]

 \[
 q(t) = \frac{\alpha_1 (t/t_0)^{a_1} - \alpha_2 (t/t_0)^{-a_2}}{\alpha_3 (t/t_0)^{a_1} - \alpha_4 (t/t_0)^{-a_2}}
 \]

 \[
 \tau(t) = \frac{\tau_0}{\alpha_4 (t/t_0)^{-a_2} - \alpha_3 (t/t_0)^{a_1}}
 \]

 \[
 a_1 = \frac{\tilde{P}(1)}{\beta_0}, \quad a_2 = \frac{\tilde{P}(3)}{\beta_0}
 \]

Scale = jet mass!!!

Inside light jets

\[M_1 \]

\[D(x) \approx \exp\left\{-\frac{x}{\tau}\right\} \]

\[P(n) \approx \frac{(1/\tau)^n}{n!} e^{-1/\tau} \]

The fragmentation function:

Inside heavy jets

\[M_2 \]

\[D(x) \approx \left(1 + \frac{q-1}{\tau} x\right)^{-1/(q-1)} \]

\[P(n) \approx \binom{n+r-1}{r-1} \tilde{p}^n (1-\tilde{p})^r \]

\[\tilde{p} = \frac{(q-1)}{\tau + q-1} \]

\[r = 1/(q-1) - 3 \]
Evolution of the mean \textit{multiplicity} and its \textit{dispersion}:

\[\langle n \rangle = \frac{4 - 3q_0}{\tau_0} (t/t_0)^{-a^2} \sim \ln^a(M_{\text{jet}}) \]

\[\langle n^2 \rangle - \langle n \rangle^2 = \langle n \rangle \left[\frac{3 - 2q_0}{\tau_0} (t/t_0)^{a^1} + 1 - \langle n \rangle \right] \]
The model works for longitudinal and transverse momentum distributions in jets.

\(e^+P \rightarrow 2 \text{jets} \)

Scale evolution of the fit parameters

\[q(t) = \frac{\alpha_1 (t/t_0)^{a_1} - \alpha_2 (t/t_0)^{-a_2}}{\alpha_3 (t/t_0)^{a_1} - \alpha_4 (t/t_0)^{-a_2}} \]

\[\tau(t) = \frac{\tau_0}{\alpha_4 (t/t_0)^{-a_2} - \alpha_3 (t/t_0)^{a_1}} \]

\[t = \ln \left(\frac{M_{jet}^2}{\Lambda^2} \right) \]
Outline

- Off-shell fragmentation and scale evolution

- **Long-range correlations** of hadrons stemming from **highly-virtual leading partons**

- v_2 in fix multiplicity jets
Long-range correlations in fat jets

1-particle distribution

$E = 110 \text{ GeV}$
$P = 85 \text{ GeV/c}$
$M = 70 \text{ GeV/c}^2$
Long-range correlations in fat jets

away and near-side ridge-like structure
Long-range correlations in fat jets

Away and near-side ridge-like structure
v^2 from large $2 < |\Delta \eta| < 4$ correlations
\[v_2 = \frac{\int_{-q_0}^{q_0} d\varphi f(\varphi) \cos(n\varphi)}{\int_{-q_0}^{q_0} d\varphi f(\varphi)} \rightarrow 1 \]

\text{edge of phasespace}

\[v_2 \text{ increases} \]
$p^* = \frac{E_{JET} - P_{JET}}{2}$

edge of phasespace

position of this minimum

$E_p = 150 \quad E_m = 60 \quad E_3 = 10.5 \quad P_3 = 43 \quad M_3 = 94.868$
v_2 in 1 jet

Graphs showing v_2 as a function of p_T for different P_{JET} and M_{JET}. The graphs are for $P_{\text{JET}} = 50, 150, 250, 450$ GeV/c and M_{JET} values from 20 to 200 GeV/c².
v_2 in 1 jet scaled by $p^* = \frac{E_{JET} - P_{JET}}{2}$
Averaging over jet mass fluctuations

\[\rho(M_{\text{jet}}) \sim \ln^{b}(M_{\text{jet}}/M_0)/M_{\text{jet}}^c \]

Averaging reduces fluctuations in \(v_2 \)
Outline

- Off-shell fragmentation and scale evolution

- Long-range correlations of hadrons stemming from highly-virtual leading partons

- v_2 in fix multiplicity jets
Fix Multiplicity
Events
Jet Mass dependence
Multiplicity dependence

![Graph showing multiplicity dependence with varying jet multiplicities and p_T values.](image-url)
Fix multiplicity v2

„peripheral” pp
10 < N < 20

„central” pp
105 < N < 150

$P_{\text{jet}}^{1,2} = 40 \text{ GeV/c}$, $M_{\text{jet}}^{1,2} = 20, 25, 30 \text{ GeV/c}^2$

$N_{\text{jet}}^{1,2} = [5, 15]$; $N_{\text{jet}}^1 + N_{\text{jet}}^2 = [10, 20]$
Conclusions

We have a fragmentation function for highly virtual partons. The frag.scale is the jet mass

We have a FF for jets of fix multiplicity

v2 of large ΔY hadrons seems to be discribable by fragmentation of off-shell leading partons
Back-up Slides
\[v^2 \text{ from large } \Delta \eta \text{ correlations at } \phi = 0 \]
v^2 decreases near $\phi = 0$.

Correlations flatten near $\phi = 0$.

v^2 decreases.
v_2 increases at $\phi = 0$
correlations decrease with increasing p_T and flatten at $\phi = 0$. v_2 decreases as well.
At $\phi = 0$, v_2 increases and correlations steepen.
Particle Multiplicity fluctuates according to the **Negative-binomial distribution**

\[e^+e^- \rightarrow h^\pm \]

pp → jets @ 7 TeV

pp → h^± @ LHC

AuAu → h^± @RHIC

Power-law **hadron spectra**

\[e^-e^+ \rightarrow h^\pm \]

\[pp \rightarrow \text{jets} @ 7 \text{ TeV} \]

\[pp \rightarrow h^\pm @ \text{LHC} \]

\[AuAu \rightarrow h^\pm @ \text{RHIC} \]

Urmossy et al., *PLB*, **701**: 111-116 (2011)

Spectrum and v2

PbPb

PP

v_2 in pp and $PbPb$