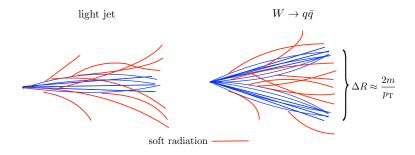


Measurement of jet substructure observables using the ATLAS detector

Amal Vaidya, the ATLAS collaboration

April 10, 2019

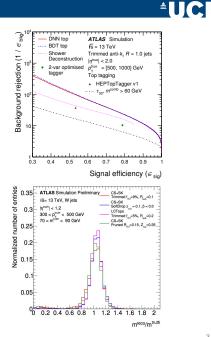

27th Workshop on Deep-Inelastic Scattering and Related Subjects

Jet substructure

Studying the internal structure of jets

- ▶ Uses for separating hadronic decays of light partons from W, top, Z
- Sensitive to pile-up and MPI
- sensitive to non-perturbative QCD

At the LHC electroweak particles can also be studied with JSS New techniques facilitated recent calculation of numerous variables


Recent pedagogical review: S. Marzani et al.; Summary of theory developments A. Larkoski et al.

Jet substructure in ATLAS

Extensive performance work

- Large number of analyses studying W, Z, top jets in final states
- Tagging performance studies, including ML effort [1808.07858]
- Studying combinations of grooming and pile-up mitigation algorithms
- The development of better jet constituent reconstruction techniques

Experimentally challenging regime

UCL

A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

[1711.08341]

- State of the art grooming tools have facilitated theoretical calculations
- First JSS quantity at the LHC to be calculated at NNLL

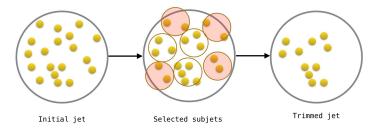
Measurement of jet-substructure observables in top quark, W boson and light jet production in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

[1903.02942]

- Variables used for top, W and Z jet tagging
- Dedicated selections enriched with W, top and light jets

Selecting the significant signal from calorimeter noise

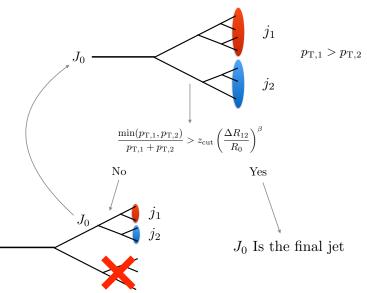
- Want to suppress pile-up and other noise
- Assign a significance based on the expected noise level
- Form 3D clusters corresponding showers
- Additional calibration steps at the cluster level


In these two analyses we consider topocluster based jets

▲ [] (

Jet grooming

Trimming Used in ATLAS based on performance studies (D. Krohn *et al*)


Soft-drop grooming

(A. J. Larkoski et al)

- Cluster together constituents using the C/A algorithm
- undo last clustering step to get resulting subjets j₁ and j₂
- If the subjets pass the soft-drop condition: $\frac{\min(\rho_{T1}, \rho_{T2})}{\rho_{T1} + \rho_{T2}} > z_{cut} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$ then *j* is the final jet
- Otherwise, discard lowest p_T subjet and iterate.

soft-drop grooming

UCL

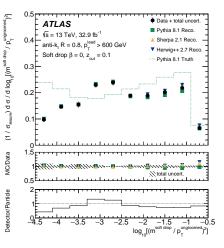
non-global logarithms (NGLs): resummation terms associated with particles that radiate out of and then radiate back into a jet.

- have prevented next-to-leading logarithm accuracy calculations
- soft-drop groomed variables are formally insensitive to NGLs
- soft-drop mass calculations now available at NLO+NLL S. Marzani *et al.* [1, 2] LO+NNLL C. Frye *et al.* [1, 2]

Variable of Interest: $\log_{10}(\rho^2)$ where

$$ho = m^{ ext{soft-drop}} / p_{ ext{T}}^{ ext{ungroomed}}$$

 ρ is dimensionless, only weakly correlated to $p_{\rm T}$ unlike the mass $p_{\rm T}$ is collinear unsafe for $\beta=0$


soft-drop mass

Measure soft-drop parameters $\beta = \{0, 1, 2\}, z_{cut} = 0.1$

Select dijet events

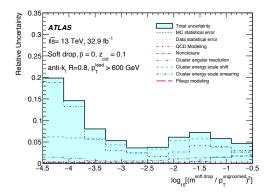
- ► Use single jet trigger to select events with≥ 2 anti-kt R=0.8 jets
- Leading jet in the event
 p_T > 600 GeV based on trigger
- Select leading two central |η| < 1.5 jets</p>
- Require p_{T,j1}/p_{T,j2} < 1.5, removes events with additional jets

Experimental uncertainties

Require novel approach, ATLAS Jet systematics typically "top down"

Systematic variations on clusters

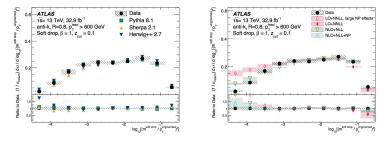
- Account for energy and angular resolution, reconstruction efficiency
- Based on isolated clusters matched to tracks the E/p ratio is used
- Extensive validation to show validity for non-isolated clusters
- Data from test beam studies is also used


Unfolding

- Use iterative bayesian unfolding
- LO Pythia 8 (p_T-ordered) used as nominal MC
- Additional Sherpa 2 (p_T-ordered) and Herwig + + (angular ordered) samples used for comparison

soft-drop mass - unfolding

Modelling uncertainty


- Largest source of uncertainty is QCD fragmentation modelling
- Estimate by unfolding with alternate (Sherpa) MC response matrices

Modelling and cluster energy scale are largest sources of uncertainty NP correction for NLL based on NP effects predicted by MC models

soft-drop mass - results

Different regions of the phase space are sensitive to different effects

- ► NP effects are large for log₁₀(ρ²) < -3.7</p>
- fixed order ME effects expected to be important for $\log_{10}(\rho^2) > -1.7$
- ▶ Resummation region -3.7 < log₁₀(ρ²) < -1.7</p>

- agreement worse for $\log_{10}(\rho^2) < -3.7$
- NNLL is not better than NLL everywhere in resummation region
- In the future improvements from better understanding of NP effects would be beneficial

à 17

What are we measuring?

- ▶ JSS variables are used extensively for top/W/Z and higgs tagging
- No ATLAS unfolded measurement of variables at 13 TeV
- Useful for MC model and tagger development
- A set of softdrop groomed variables can be calculated analytically strong theoretical motivation

*Only for W and top jet selection

(generalised) N-subjetiness

(J. Thaler and K. V. Tilburg)

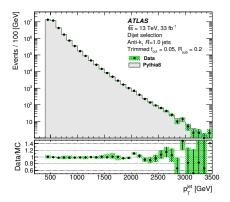
$$\tau_{N}^{(\beta)} = \frac{1}{d_0} \sum_{i} p_{\mathrm{T}i} \min\left\{ (\Delta R_{1,i})^{\beta}, (\Delta R_{2,i})^{\beta} ... (\Delta R_{N,i})^{\beta} \right\}$$

A set of N subjet axis are defined using the exclusive k_t algorithm.

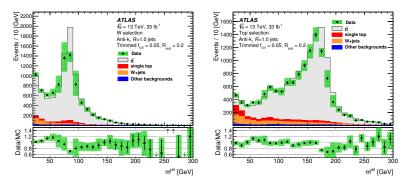
Normalised energy correlation functions (and ratios) (A. J. Larkoski *et al*)

$$e_{2}^{\beta} = \frac{1}{p_{T}^{2}} \sum_{i < j \in J} p_{Ti} p_{Tj} R_{ij}^{\beta} \quad e_{3}^{\beta} = \frac{1}{p_{T}^{3}} \sum_{i < j < k \in J} p_{Ti} p_{Tj} p_{Tk} R_{ij}^{\beta} R_{jk}^{\beta} R_{ik}^{\beta}$$

subjet independent way to discriminate between a "two-pronged" jet and a single prong parton initiated jet.


Ratio of energy correlation functions: $D_2^{\beta} = \frac{e_3^{\beta}}{(e_2^{\beta})^3}$, $C_2^{\beta} = \frac{e_3^{\beta}}{(e_2^{\beta})^2}$

 $\beta = 1$ typically used for tagging

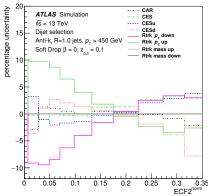

Simple event selection

- Events with 2 large R jets with a *p*_T > 200 GeV
- Leading jet p_T > 450 GeV (trigger plateau)
- veto on leptons
- ► Consider central (|η| < 1.5) leading jet from each event</p>

$t\bar{t}$ selection

Tag leptonic top and consider recoiling fatjet:

- Select events with 1 muon and tag leptonic top
- Separate W jets from top jets
- ▶ Differentiate based on ΔR of closest *b*-tagged small *R* jet
- Additional cuts applied on the jet mass


UCL

Additional background subtraction for $t\bar{t}$

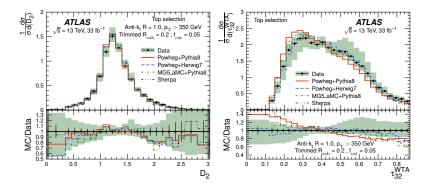
- Data driven W+jets subtraction
- Fake factor, accounting for jets faking muons

Detector systematics

- Also use cluster based systematics
- Additional validation (cluster splitting/merging etc.) done for the extra variables
- Large R jet kinematics and cluster uncertainties are dominating detector systematics

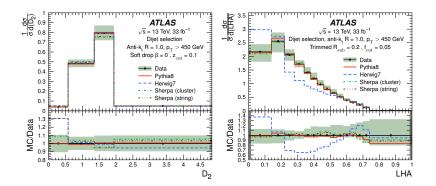
Unfolding

- PowhegPythia8 used as nominal $t\bar{t}$ MC
- Pythia8 as nominal dijet MC
- Modelling uncertainty by unfolding with alternate MC Sherpa2.1 for dijet and Herwig + +
- Typically around 5% for dijet selection and 14% for $t\bar{t}$ selection.


Predictions

- Dijet Additionally compare unfolded distributions with Herwig 7 and Sherpa with two different hadronisation models
 - $t\bar{t}$ Additional comparisons with MadGraph5_aMC@NLO+Pythia8, Powheg + Herwig 7

tt results


- Pythia8 tends to perform the best
- ► Sherpa Has a comparable performance to Pythia8
- Herwig 7 Tends to disagree with the data the most

Jet substructure measurement - results

Dijet results

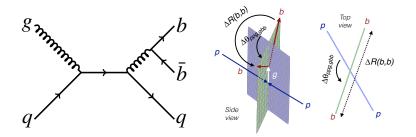
- Pythia8 tends to perform the best
- \blacktriangleright Negligible difference between the two Sherpa hadronisation models
- Herwig 7 Tends to disagree with the data the most Using older 7.0.4 version

≜UC

Studying jet substructure variables allows us to explore a new region of phase space

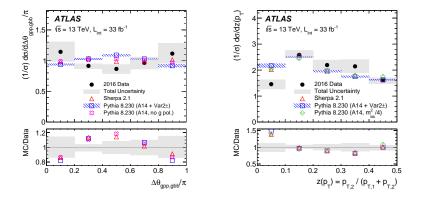
- NP effects can be significant in certain regions of the soft-drop mass phase space
- MC predictions tend to agree with the data
- Considering jet shapes, generators tend to perform consistently for the multiple variables tested (with some exceptions)
- Dijet variables seem to be insensitive to NP effects
- Will be interesting to see performance of newer Herwig 7 version

Further motivates development of constituent based uncertainties


Final word: $g ightarrow b ar{b}$ fragmentation

[•]UCL

Properties of $g \to b \bar{b}$ at small opening angles in pp collisions with the ATLAS detector at $\sqrt{s} =$ 13 TeV


Phys. Rev. D 99 (2019) 052004

- Select events with a gluon , decaying to $b\bar{b}$, recoiling of a jet
- Reconstruct $g \rightarrow b\bar{b}$ within a large *R* jet which contains *b*-jets
- Unfold variables sensitive to b-jet fragmentation

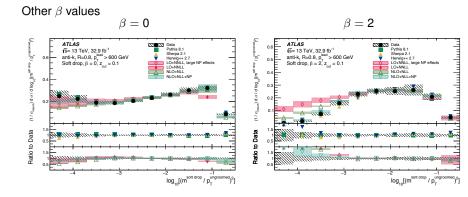
Final word: $g \rightarrow b\bar{b}$ fragmentation

- Compare unfolded results to Sherpa and Pythia with two different QCD renormalisation scales
- Significant disagreement between data and MC seen in some variables

BACKUP

Process	Generator	Version	PDF	Tune	Use
Dijet	Pythia8	8.186	NNPDF23LO	A14	Nominal for unfolding
	Sherpa	2.2.1	CT10	Default	Validation of unfolding (with two different hadronisation models)
	Herwig7	7.0.4	MMHT2014	H7UE	Comparison
tī	Powheg	v2	NNPDF30NLO		Nominal for unfolding
	+ Pythia8	8.186	NNPDF23LO	A14	
	Powheg	v2	CT10		Validation of unfolding
	+Herwig++	2.7	CTEQ6L1	UE-EE-5 tune	
	Powheg	v2	CT10		Comparison
	+Herwig7	7.0.4	MMHT2014	H7UE	
	MG5_aMC@NLO	2.6.0	NNPDF30NLO		Comparison
	+ Pythia8	8.186	NNPDF23LO	A14	
a	Sherpa	2.2.1	CT10	Default	Comparison
Single top	Powheg	v1	CT10	D : 0010	Nominal for unfolding
	+ Pythia6	6.428	CTEQ6L1	Perugia2012	
Z+jets	Sherpa	2.2.1	CT10	Default	Background estimation
W+jets	Sherpa	2.2.1	CT10	Default	Background estimation (nominal)
W+jets	MG5_aMC@NLO	2.2.5	CT10		Background estimation (cross-check)
	+ Pythia8	8.186	NNPDF23LO	A14	
Diboson	Sherpa	2.2.1	CT10	Default	Background estimation

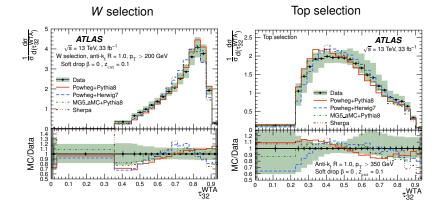
Need to determine a systematic uncertainty on the shape of each variable Rtrk only provides uncertainties on the scale, need something new


Cluster systematics

Apply the following variations to the ungroomed jet topoclusters separately:

- ▶ Cluster efficiency (CE) drop some low p_T (< 10 GeV) clusters
- Cluster energy scale up/down (CESu/CESd) based on 13 TeV E/p
- Cluster energy smearing (CES) Smear energy based on above
- Cluster Angular resolution (CAR) track isolated cluster angular difference

Reapply the jet grooming and re-calculate the observable


Cluster and large R systematics dominate in all topologies

27/23

Jet shapes N-subjettiness

28/23