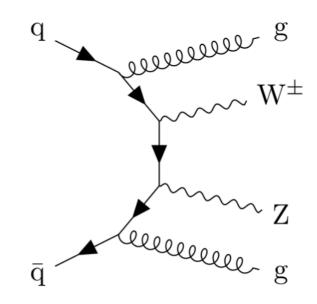
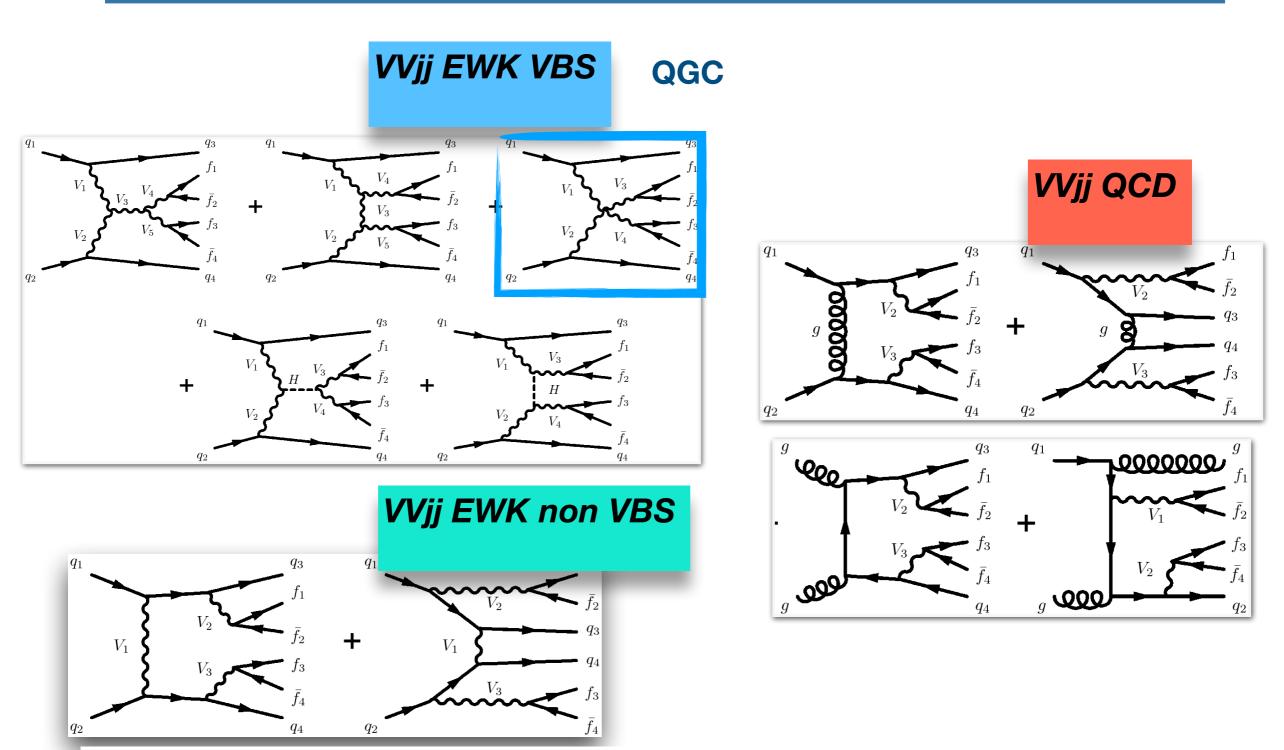


Observation and measurements of vector-boson scattering with ATLAS

F. Conventi for the ATLAS Collaboration
DIS 2019

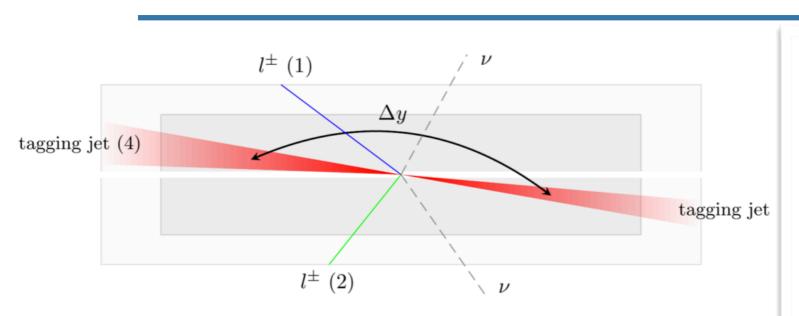

Vector Boson Scattering: Motivation

- Vector Boson Scattering is important for understanding EWK symmetry breaking
- Without the SM Higgs, longitudinal VV scattering cross section ($\sigma_{VV->VV}$) increases as center-of-mass energy and violates unitarity at high energy
- Can be solved by adding contributions from Higgs
- VBS allows indirect search of New Physics by studying anomalous quartic gauge couplings (aQGC)

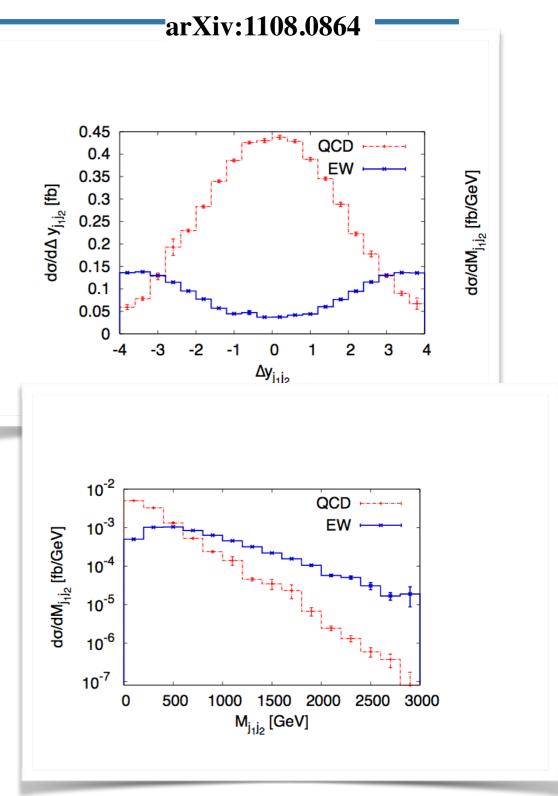

EW production $\mathcal{O}(\alpha^4)$

q''' q''' W^{\pm} q''' q''' q''' q''' q''' q''' q'''

QCD-induced production $\mathcal{O}(\alpha^2\alpha_S^2)$


Vector Boson Scattering: Motivation

All EW-induced processes (only EW interaction vertices) treated as signal

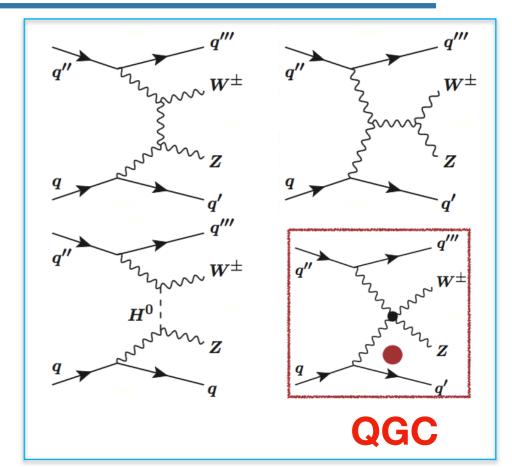

An interference occurs between electroweak and QCD production

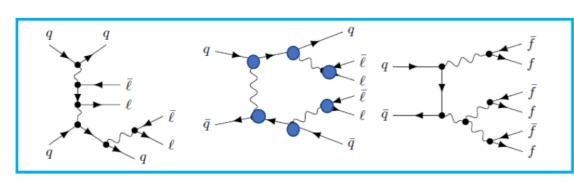
Vector Boson Scattering: Phenomenology

VBS has distinctive final states topology

- Two hadronic jets in forward and backward regions with very high energy (tagging jets)
- Hadronic activity suppressed between the two jets (rapidity gap) due to absence of color flow between interacting partons.
- Boson pair more central than in non-EWK processes

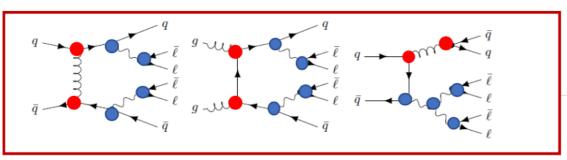
Vector Boson Scattering: WZjj @ 13 TeV


Study the electroweak WZjj production cross section measurement with 2015+2016 data @ ATLAS, 36.1 fb-1


Access to vector boson scattering and QGC

but also many other electroweak diagrams

Leptonic decay: clear signature


Main irreducible background: QCD-induced WZjj

a_{EW} order: 6

as order: 0

a_{EW} order: 4

as order: 2

arXiv:1812.09740 [hep-ex]: in pub Phys.Lett.B

WZjj @ 13 TeV :Background and signal models

Signal W±Zjj EWK:

Sherpa 2.2.2 0,1j@ NLO, 2,3 j @ LO, order 6 at aEW, order 0 at as

13% purity in SR

W±Zjj QCD:

Normalized in CR

Largest background contribution

Sherpa 2.2.2 0,1j@ NLO, 2,3 j @ LO, order up to 4 at aEW

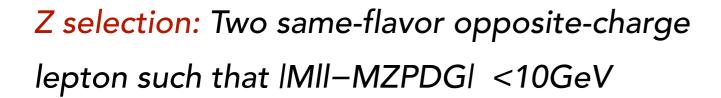
ZZjj QCD, ZZjjEW:

Sherpa 2.2.2 and VVV: Sherpa 2.1

Normalized in CR

tt+V and tZ:

MadGraph5+aMC@NLO+Pythia8


Normalized in CR

Interference: MadGraph5 aMC@NLO2.2

WZjj @ 13 TeV: Event Selection

Trigger: single lepton trigger

Lepton selection and ZZ veto: number of leptons == 3 with pT > 15 GeV and $|\eta|$ < 2.5 (leading lepton with pT > 25 GeV (27 for 2016 data)

W selection: 3rd lepton with pT>20 GeV and MT(W) > 30 GeV

tagging jet (4) $l^{\pm} \ (1) \qquad \qquad \nu$ tagging jet $l^{\pm} \ (2) \qquad \qquad \nu$

WZjj Event selection		
Jet multiplicity	≥ 2	
$p_{\rm T}$ of two tagging jets	> 40 GeV	
$ \eta $ of two tagging jets	< 4.5	
η of two tagging jets	opposite sign	
m_{jj}	> 150 GeV	
m_{jj}	> 150 Ge V	

	#leptons	#bjets	mjj (GeV)
ZZ CR	4	0	>500
QCD CR	3	0	<500
b CR	3	1	>500
WZjj SR	3	0	>500

WZjj @ 13 TeV: Background Summary

Irreducible background: All candidates are prompt leptons or produced in the decay of tau (Main sources of backgrounds)

♦ W±Zjj QCD, ZZ, tt + V, tZj, VVV

Reducible background: At least one of the candidate leptons is not a prompt lepton

- ◆Z+j, Zγ, tt, Wt and WW
- ◆Data driven matrix method

	SR	$WZjj{ m -QCD}$ CR	$b ext{-}\mathrm{CR}$	ZZ-CR
Data	161	213	141	52
Total predicted	200 ± 41	290 ± 61	160 ± 14	$45.2~\pm~7.5$
WZjj-EW (signal)	24.9 ± 1.4	8.45 ± 0.37	1.36 ± 0.10	$0.21 \pm \ 0.12$
$WZjj{ m -QCD}$	144 ± 41	231 ± 60	24.4 ± 1.7	1.43 ± 0.22
Misid. leptons	9.8 ± 3.9	17.7 ± 7.1	30 ± 12	0.47 ± 0.21
$ZZjj{ m -QCD}$	8.1 ± 2.2	15.0 ± 3.9	1.96 ± 0.49	35 ± 11
tZj	6.5 ± 1.2	6.6 ± 1.1	36.2 ± 5.7	0.18 ± 0.04
$tar{t}+V$	4.21 ± 0.76	9.11 ± 1.40	65.4 ± 10.3	$2.8~\pm~0.61$
$ZZjj{ m -EW}$	1.80 ± 0.45	0.53 ± 0.14	0.12 ± 0.09	$4.1\ \pm\ 1.4$
VVV	0.59 ± 0.15	0.93 ± 0.23	0.13 ± 0.03	1.05 ± 0.30

Number of observed and expected events in SR and CRs before any normalisation or fit

WZjj @ 13 TeV: Multivariate analysis

A BDT is trained in signal region to separate WZjj-EW signal from WZjj-QCD and other

backgrounds

BDT build from 15 discriminative variables

Variables related to the kinematics of tagging jets

$$m_{jj}$$
, N_{jets} , $p_T^{j}1$, $p_T^{j}2$, η_{j1} , $\Delta \eta_{j1,j2}$, $\Delta \phi_{j1,j2}$

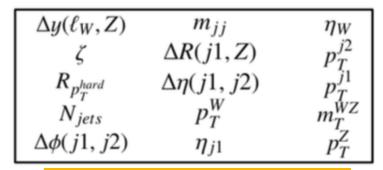
Variables related to the kinematics of vector bosons:

$$|y_Z - y_{l,W}| m_T^{WZ}, p_T^W, p_T^Z, \eta_W$$

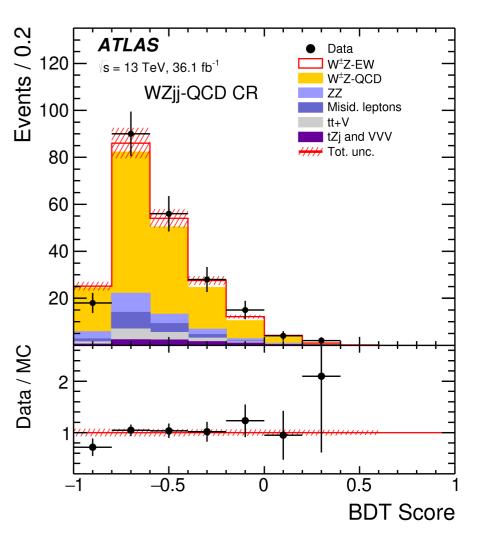
Variables related to both leptons and jets kinematics:

$$\Delta R(j1,Z)$$

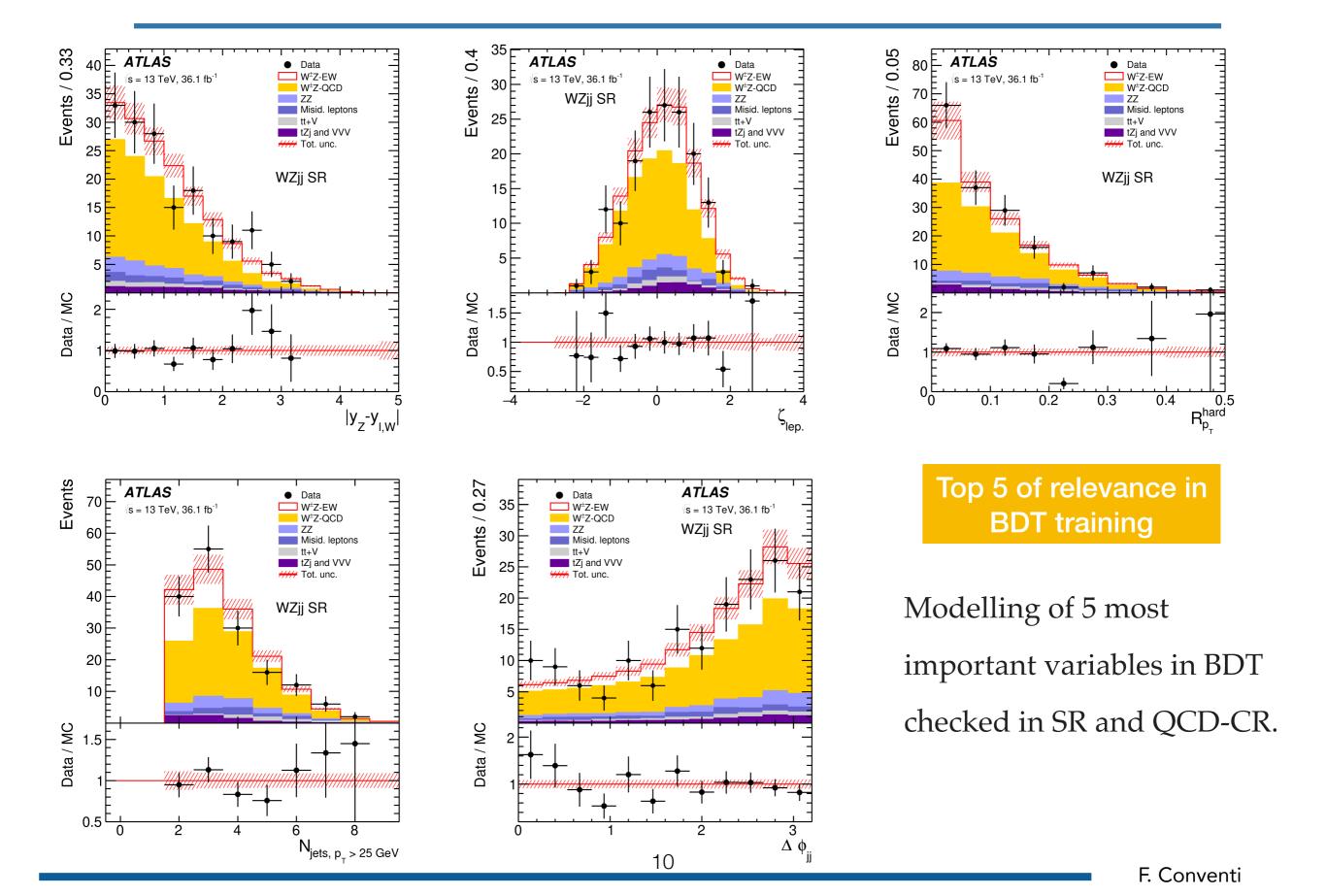
$$R_{pT}^{hard} = (\sum_{i,j} p)_T / \sum_{i,j} p_T$$


$$min(\Delta\eta_-,\Delta\eta_+)$$

$$\zeta = min(\Delta \eta_{-}, \Delta \eta_{+})$$


$$\Delta \eta_{-} = min(\eta_{l}^{W}, \eta_{l1}^{Z}, \eta_{l2}^{Z}) - min(\eta_{j1}, \eta_{j2})$$

$$\Delta \eta_{+} = max(\eta_{j1}, \eta_{j2}) - max(\eta_{l}^{W}, \eta_{l1}^{Z}, \eta_{l2}^{Z})$$


Description of BDT score distribution for background and of all BDT input variables controlled in QCD-CR:good agreement observed with data.

Top 5 of relevance in BDT training

WZjj @ 13 TeV: Multivariate analysis

WZjj @ 13 TeV: Systematic uncertainties

Object-related systematics mostly coming from jet reconstruction and calibration.

Conservative normalisation uncertainties applied on non-dominant background:

• 40% for reducible (misid. Leptons) \ background, 20% for VVV, 15% for tZj

Theory-related	sources co	ome from:
----------------	------------	-----------

QCD scale and PDF uncertainties for both WZjj-EW and WZjj-QCD

Signal modeling: MadGraph VS Sherpa2.2.2

WZjj QCD modeling: Powheg+Pythia VS Powheg+Herwig.

Interference is included as a shape uncertainty on signal.

Source	Uncertainty [%]
WZjj-EW theory modelling	5.0
WZjj-QCD theory modelling	2.3
WZjj-EW and WZjj-QCD interference	1.9
Jets	6.7
Pileup	2.2
Electrons	1.6
Muons	0.7
b-tagging	0.3
MC statistics	2.1
Misid. lepton background	1.0
Other backgrounds	0.1
Luminosity	2.1

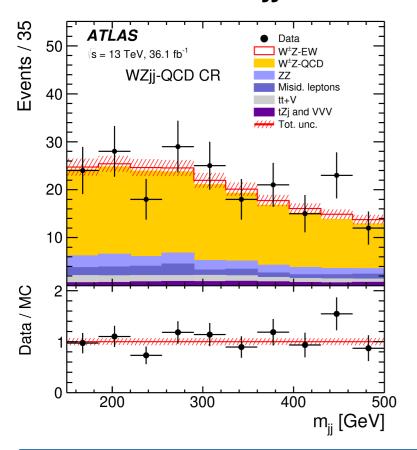
QCD/EW interference is part of the measured signal

Interference impact included as shape uncertainty on signal Estimated at LO using MadGraph5_aMC@NLO 2.2

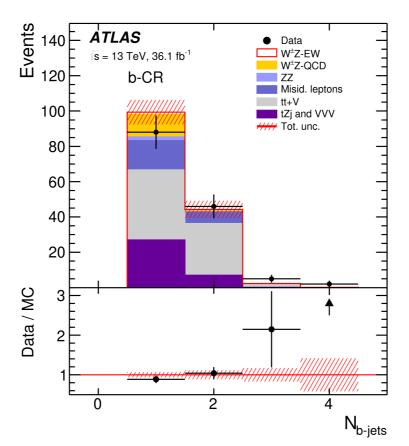
Size of interference: +10% of EW WZjj

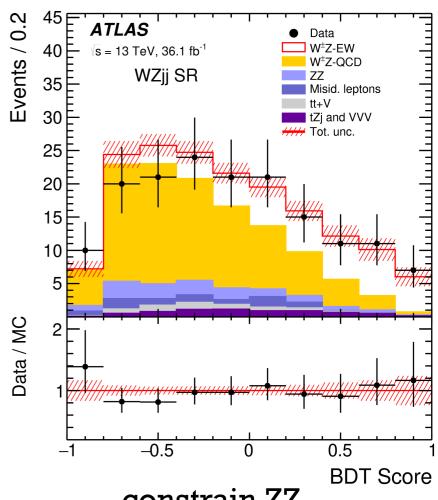
10-5% uncertainty (low-high BDT values)

WZjj @ 13 TeV: Signal extraction

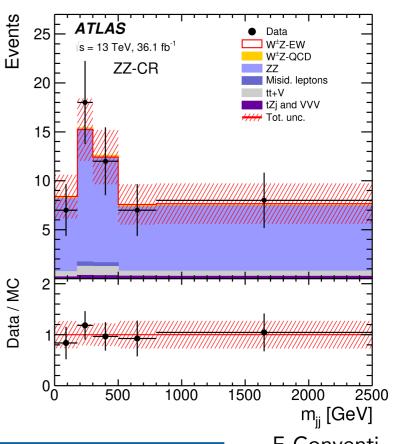

Signal is extracted in a maximum-likelihood fit of BDT score distribution in SR

- M_{ii} distribution in WZjj QCD-CR
- b-jets multiplicity in b-CR:
- M_{ii} distribution in ZZ-CR:
- BDT score distribution in SR


signal strength parameter


 $\mu_{WZjj-EW}$

constrain WZjj-QCD



constrain tt +V

constrain ZZ

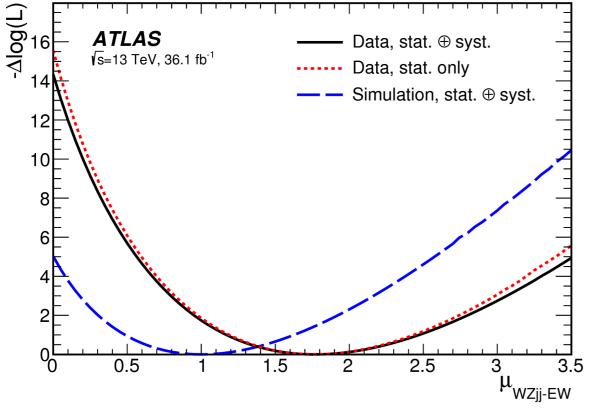
F. Conventi

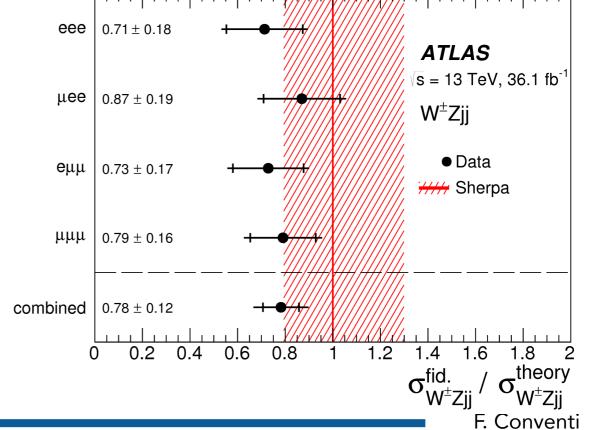
WZjj @ 13 TeV: Signal extraction

All uncertainty sources implemented as nuisance parameters, affecting shape and/or normalisation

Parameter of Interest is the WZjj-EW signal normalisation:

Observed results


- Observed significance: 5.6σ (3.3 σ expected)
- Signal strength (Sherpa) $\mu_{WZjj} = 1.77 \pm 0.41(stat) \pm 0.17(syst)$
- Observed WZjj-EW production cross section(including interference): $\sigma_{meas}^{fid.} = 0.57^{+0.14}_{-0.13}(stat.)^{+0.05}_{-0.04}(syst)^{+0.04}_{-0.03}(th.)fb$


Background normalisation

Process	Fitted normalisation
\overline{WZjj} -QCD	0.56 ± 0.16
$tar{t}+V$	1.07 ± 0.23
ZZ-QCD	1.34 ± 0.24

13

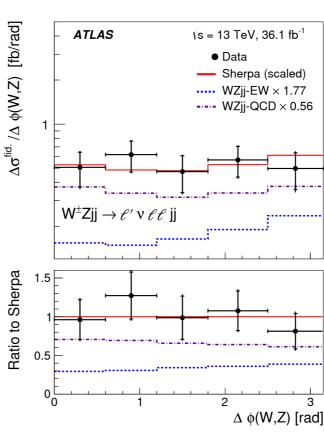
WZjj @ 13 TeV: Differential cross section

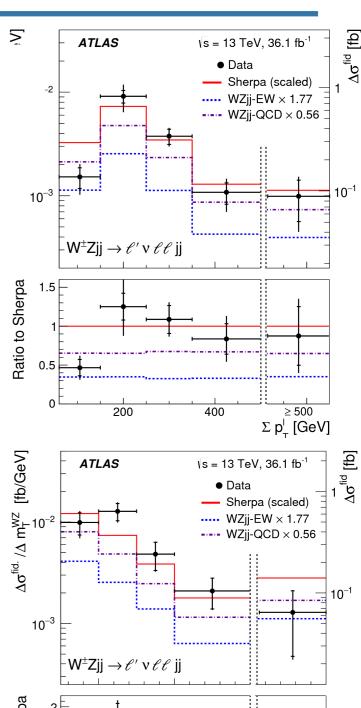
The measured WZjj cross-section in the fiducial phase space is

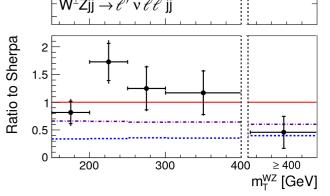
$$\sigma^{\text{fid.}}_{W^{\pm}Zjj} = 1.68 \pm 0.16 \,(\text{stat.}) \pm 0.12 \,(\text{exp. syst.}) \pm 0.13 \,(\text{mod. syst.}) \pm 0.044 \,(\text{lumi.}) \,\text{fb},$$

= 1.68 ± 0.25 fb,

Interesting distributions are unfolded from WZjj-EW SR to VBS fiducial phase space using iterative Bayesian unfolding method:

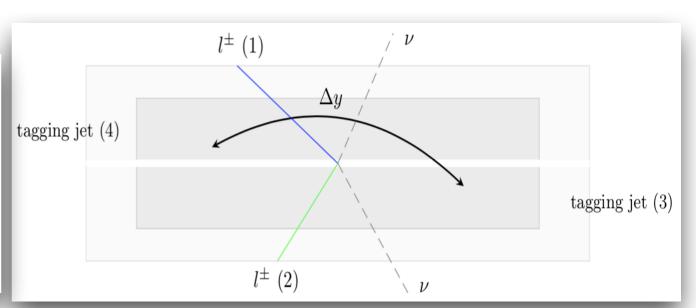

Two types of variables:


- Variables sensitive to aQGCs: $m_T^{WZ}, \sum p_T^l, \Delta\phi(W,Z)$
- Variables for model constrains:


$$N_{jets}(p_T > 40 GeV), m_{jj}, \Delta \phi(j_1, j_2), \Delta y(j_1, j_2)$$

The Sherpa QCD and EW prediction are normalised by their corresponding normalisation factor

A good description of the measured cross sections within uncertainties by Sherpa is observed after the rescaling



W+W+jj @ 13 TeV: Major backgrounds and experimental selection

ATLAS publication with Run-2 data (2015+2016, √s = 13 TeV, 36.1 fb⁻¹): ATLAS-CONF-2018-030

Fiducial selection:

Cut	2 leptons	jet ₁	jet ₂	νν-system
$W^{\pm}W^{\pm}jj$ final state	same-charge (e or μ)	anti- k_T (R = 0.4)		
$p_{\mathrm{T}} >$	27 GeV	65 GeV	35 GeV	30 GeV
$ \eta <$	2.5	4.5	4.5	
	$m_{ll}>20GeV$			
VBS selection	$m_{jj} > 500 GeV$, $\Delta y_{jj} > 2.0$			

Main background contributions:

- Processes with two real prompt same-charge leptons ==> Mainly W[±]Z+jets
- 2. Experimental backgrounds:
 - Processes with non-prompt ("fake") leptons from mis-identified jets, or leptons from hadron decays
 - Processes with electron charge mis-identification

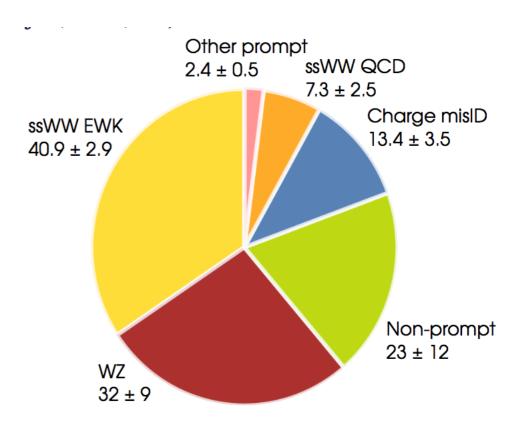
Suppression via additional experimental cuts:

- •Third lepton veto (pl3 > 6 GeV)
- •Tight reconstruction and isolation requirements on lepton candidates
- B-jet veto
- •Z veto in ee channel (|mee mZ | > 15 GeV)

15

W+W+jj @ 13 TeV: Background

Background estimate methods and event yields in signal region


W±Z +jets: Shape MC modelled and normalised from data in tri-lepton control region ⇒ Reduction of uncertainties (dominantly theoretical pQCD scale uncertainties) to 8%

Non-prompt leptons estimate:

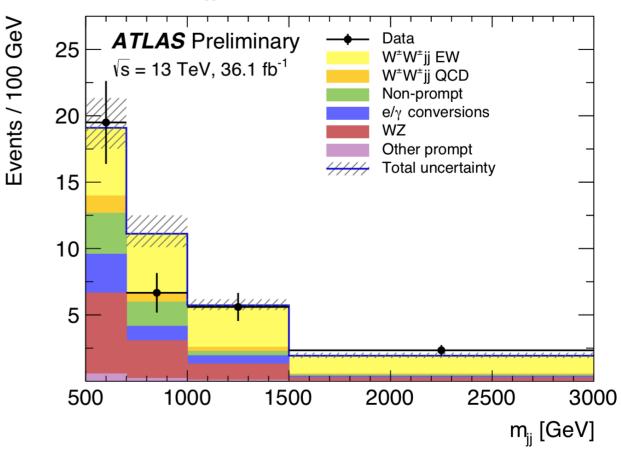
Scale factor from di-jet control region ⇒ Dominant experimental uncertainty (40-90%). low Mjj region helps to constrain this background uncertainty

Electron charge mis-identification and $\gamma \rightarrow e$ conversions probability and background estimate: From Z \rightarrow ee enriched region

Other irreducible backgrounds (W±W±jj QCD, ZZ+jets, VVV, t¯tV) —> **Monte-Carlo modelled**

Event yields in combined channel in signal region before the fit:

Total expected: 118.9 ± 15.3

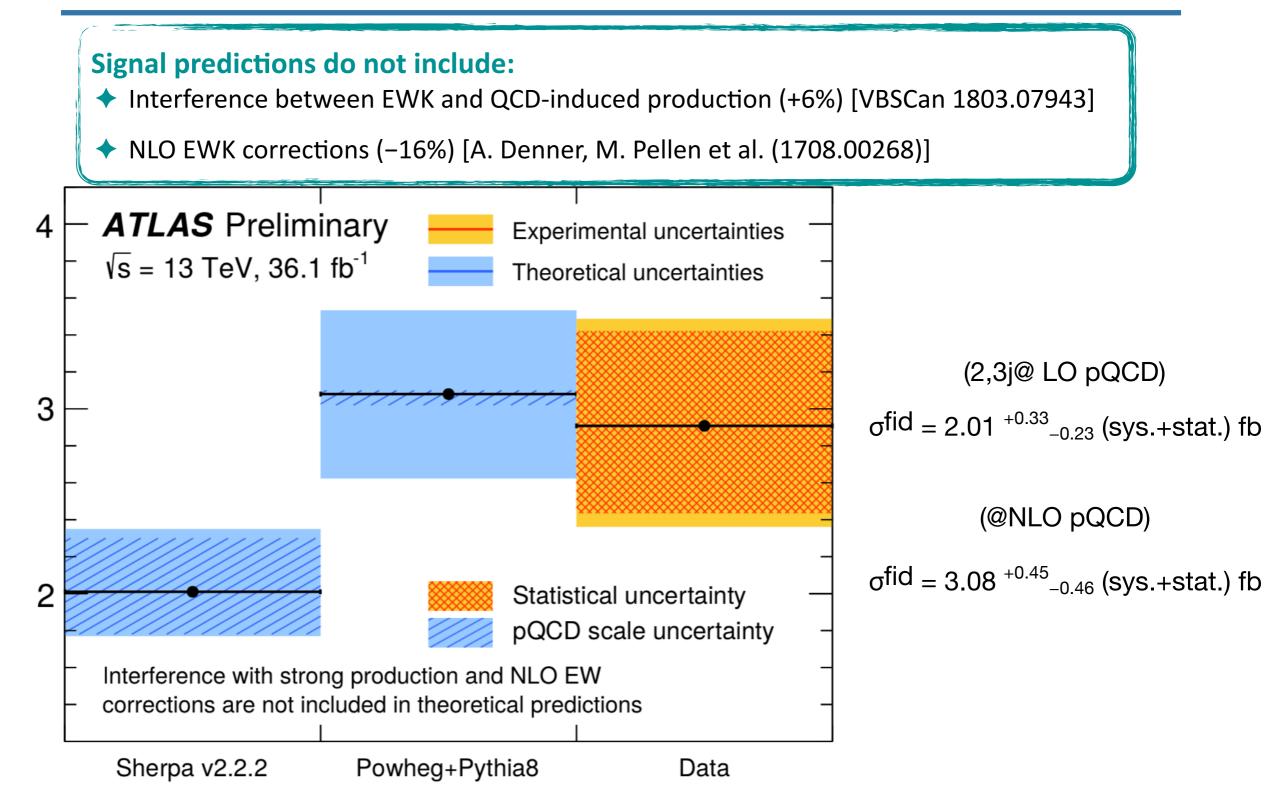

events Data: 122 events

W+W+jj @ 13 TeV: Sensitivity estimate

Multi-bin likelihood fit:

- 4-bin m_{jj} distribution in signal region (m_{ii} > 500 GeV)
- 6 lepton flavour and charge split channels: e[±]e[±], e[±]μ[±] + μ[±]e[±], μ[±]μ[±]
- Background estimates constrained in two control regions:
 - ✓ W[±]Z CR: Require a third lepton with one OS SF pair
 - ✓ Low mjj CR: SR selection, mjj ∈ (200, 500) GeV
- ♦ W[±]Z normalisation reduced by ~ 12%

Di-jet invariant mass distribution in region mjj > 500 GeV after fit



Results:

Observed (expected with Sherpa) significance is 6.9σ (4.9σ)

17

W+W+jj @ 13 TeV: Measurement of fiducial cross section

Measured fiducial cross section:

م_{انا}. [fb]

 σ fid = 2.91^{+0.51}_{-0.47}(stat.) ± 0.27(sys.) fb

Summary and Conclusions

ATLAS has published result on VBS measurements using 36.1 fb⁻¹ of data collected in 2015+2016 at $\sqrt{s} = 13 \text{ TeV}$

- Run 2 of the LHC has revealed access to further exploration of final states in VBS
 - ✓ First observation of electro-weak W±Zjj production
 - ✓ Observation of electro-weak production of W±W±jj final state
 - ✓ Observed Significance:

```
W^{\pm}W^{\pm}jj EWK: 6.9\sigma (4.6\sigma expected) with Sherpa signal W^{\pm}Zjj EWK: 5.6\sigma (3.3\sigma expected)
```

- ♦ Measurement of fiducial cross sections for these final states
- ♦ With more data being collected for the full Run2
 - ✓ Higher order theoretical computations are becoming more important
 - ✓ Improving sensitivity for BSM

VBS final states continue to be a playground for exciting physics to be explored!

Backup

Process	Remarks	sqrt(s)	Lumi	Reference
	this talk	13 Tev	36.1 fb ⁻¹	
	this talk	13 Tev	36.1 fb ⁻¹	
		8 TeV	20.2 fb ⁻¹	JHEP07(2017)107
		8 TeV	20.2 fb ⁻¹	Phys. Rev. D 95 (2017) 032001