





#### XXVII International Workshop on Deep Inelastic Scattering and Related Subjects Torino – April 8-12 2019

# The LHCSpin project



<sup>1</sup> University of Ferrara and INFN, <sup>2</sup> INFN - <u>Laboratori Nazionali di Frascati</u>, <sup>3</sup> University of Erlangen

#### In collaboration with:

R.Engels (fz-juelich), J.Depner (Erlangen), K.Grigoryev (fz-juelich), E.Maurice (CNRS/IN2P3, Orsay), A.Nass (fz-juelich), F.Rathmann (fz-juelich), D.Reggiani (PSI-Zurich), A.Vasilyev (Gatchina),





The LHCSpin project aims at bringing spin physics at the LHC through the implementation of a **polarized fixed target** in the LHCb spectrometer.



# Fixed target kinematics at LHC

$$E_p = 7 \text{ TeV} \implies \gamma = \frac{\sqrt{s}}{2m_p} \approx 60$$

CM strongly boosted in the lab system!







• Bkw CM region is at reach of a forward spectrometer with reaction products at measurable forward angles



- Bkw CM region is at reach of a forward spectrometer with reaction products at measurable forward angles
- LHCb ideal detector to host a fixed target at the LHC!







Sensitive to large x-Bjorken ( $x_2 \rightarrow 1$ )

→ Access to target-fragmentation region  $(x_F \rightarrow -1)$ 



Sensitive to large x-Bjorken ( $x_2 \rightarrow 1$ )

Access to target-fragmentation region  $(x_F \rightarrow -1)$ 

### The LHCb fixed-target system

#### SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel ( $\sim 10^{-7}$ mbar)
- Gas pressure 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude





### The LHCb fixed-target system

#### SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel ( $\sim 10^{-7} \mathrm{mbar}$ )
- Gas pressure 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude
- Conceived for precise luminosity determination (beam-gas imaging)







Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle. Beam 1 - Beam 2, Beam 1 - Gas, Beam 2 - Gas.

### The LHCb fixed-target system

#### SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel ( $\sim 10^{-7} \mathrm{mbar}$ )
- Gas pressure 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude
- Conceived for precise luminosity determination (beam-gas imaging)

...but SMOG gives also the unique opportunity to operate an **LHC experiment in a fixed target mode** and to study pA and AA collisions on various targets!







- ✓ First measurements of charm production in fixed-target configuration at the LHC, Phys. Rev. Lett. 122, 132002 (2019)
- ✓ Measurement of antiproton production in pHe collisions at  $\sqrt{s_{NN}} = 110$  GeV, Phys. Rev. Lett. 121, 222001 (2018)

#### ✓ Unique kinematic conditions

- $E_p = 7 \text{ TeV} \implies \sqrt{s} \approx 115 \text{ GeV}$  (fills the gap between between SPS & RHIC)
- backward CM rapidity region ( $x_F \rightarrow -1$ )
- sensitive to poorly explored high *x*-Bjorken region

#### ✓ Unique kinematic conditions

- $E_p = 7 \text{ TeV} \implies \sqrt{s} \approx 115 \text{ GeV}$  (fills the gap between between SPS & RHIC)
- backward CM rapidity region ( $x_F \rightarrow -1$ )
- sensitive to poorly explored high x-Bjorken region

#### ✓ Broad variety of possible reactions:

- polarized:  $pp^{\uparrow}$ ,  $pd^{\uparrow}$
- unpolarized: pA , PbA (A=H, D, He, O, Ne, Ar, Kr, Xe)

#### ✓ Unique kinematic conditions

- $E_p = 7 \text{ TeV} \implies \sqrt{s} \approx 115 \text{ GeV}$  (fills the gap between between SPS & RHIC)
- backward CM rapidity region ( $x_F \rightarrow -1$ )
- sensitive to poorly explored high x-Bjorken region

#### ✓ Broad variety of possible reactions:

- polarized:  $pp^{\uparrow}$ ,  $pd^{\uparrow}$
- unpolarized: pA , PbA (A=H, D, He, O, Ne, Ar, Kr, Xe)

#### $\checkmark\,$ Marginal impact on LHC beam and mainstream physics at current experiments

- ✓ Polarized gas target technology well established (10 years @ HERMES)
- ✓ Very high performances (*P*~80 %)

#### ✓ Unique kinematic conditions

- $E_p = 7 \text{ TeV} \implies \sqrt{s} \approx 115 \text{ GeV}$  (fills the gap between between SPS & RHIC)
- backward CM rapidity region ( $x_F \rightarrow -1$ )
- sensitive to poorly explored high x-Bjorken region

#### ✓ Broad variety of possible reactions:

- polarized:  $pp^{\uparrow}$ ,  $pd^{\uparrow}$
- unpolarized: pA , PbA (A=H, D, He, O, Ne, Ar, Kr, Xe)
- $\checkmark\,$  Marginal impact on LHC beam and mainstream physics at current experiments
- ✓ Polarized gas target technology well established (10 years @ HERMES)
- ✓ Very high performances (P~80 %)

#### ✓ Broad and ambitious physics program

- 3D mapping of the nucleon structure (quark and gluon PDFs)
- fundamental tests of QCD (universality, factorization, etc)
- study of cold nuclear matter effects
- search for intrinsic heavy quarks
- study of QGP formation
- ... and much more!

# Selected physics opportunities

## Accessing the quark TMDs



- 8 independent TMDs at twist-2
- Significant experimental progress in the last 15 years!
- First extractions from global analyses

- So far, main results obtained in SIDIS measurements (HERMES, COMPASS, JLAB)
- **Drell-Yan** in hadron-hadron collisions represents a complementary approach
- Unique kinematic region with fixed-target collisions at LHC
- Comparison of results from SIDIS and DY will allow to set stringent tests on QCD: factorization, evolution, universality

### Accessing the quark TMDs





#### Sensitive to quark TMDs up to high $x_2^{\uparrow}$ through TSSAs



( $\phi$ : azimuthal orientation of lepton pair in dilepton CM )

### Accessing the quark TMDs



**Polarized Drell-Yan** 



#### arXiv:1807.00603 and J.P.Lansberg, PBC CERN 2018



L.L. Pappalardo - XXVII International Workshop on Deep Inelastic Scattering - Torino - April 8-12 2019

|        | 3          |                    |                    |  |                    |
|--------|------------|--------------------|--------------------|--|--------------------|
| CE S   |            | Unpol              | arly pol.          |  |                    |
| n      | U          | $f_1^g$            |                    |  | $h_1^{\perp g}$    |
| C      | L          |                    | $g_1^g$            |  | $h_{1L}^{\perp g}$ |
| e<br>O | . <b>T</b> | $f_{1T}^{\perp g}$ | $g_{1T}^{\perp g}$ |  | $h_{1T}^g$         |
| n      |            |                    |                    |  | $n_{1T}$           |

Theory framework consolidated

...but experimental access still extremely limited!

| 6      | <b>S</b> | Unpol              | Linearly pol.        |                    |
|--------|----------|--------------------|----------------------|--------------------|
| n      | U        | $f_1^{g}$          |                      | $h_1^{\perp g}$    |
| c      | L        |                    | $g_1^g$              | $h_{1L}^{\perp g}$ |
| e<br>O | т        | $f_{1x}^{\perp g}$ | $a_{1\pi}^{\perp g}$ | $h_{1T}^g$         |
| n      |          |                    | 311                  | $h_{1T}^{\perp g}$ |

Theory framework consolidated

...but experimental access still extremely limited!

#### **Gluon Sivers function:**

- first hints by RHIC and COMPASS, but still basically unknown!
- shed light on spin-orbit correlations of gluons inside the proton
- sensitive to gluon orbital angular momentum!

|        | S        |                    |                    |                    |
|--------|----------|--------------------|--------------------|--------------------|
| 6      | <b>S</b> | Unpol              | Linearly pol.      |                    |
| n      | U        | $f_1^{g}$          |                    | $h_1^{\perp g}$    |
| c      | L        |                    | $g_1^g$            | $h_{1L}^{\perp g}$ |
| e<br>O | T        | $f_{1T}^{\perp g}$ | $q_{1T}^{\perp g}$ | $h_{1T}^g$         |
| n      |          |                    | 311                | $h_{1T}^{\perp g}$ |

Theory framework consolidated

...but experimental access still extremely limited!

#### **Gluon Sivers function:**

- first hints by RHIC and COMPASS, but still basically unknown!
- shed light on spin-orbit correlations of gluons inside the proton
- sensitive to gluon orbital angular momentum!
- In high-energy hadron collisions Heavy quarks dominantly produced through gg interactions:



The most efficient way to access the gluon dynamics inside the proton at LHC is to measure heavy-flavour observables

Inclusive quarkonia production in pp interaction turns out to be an ideal gluon-sensitive observable!



Inclusive quarkonia production in pp interaction turns out to be an ideal gluon-sensitive observable!



### More physics reach with an unpolarized fixed target

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
  - 5-quark Fock state of the proton may contribute at high x!
  - charm PDFs at large x could be larger than obtained from conventional fits



### More physics reach with an unpolarized fixed target

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
  - 5-quark Fock state of the proton may contribute at high x!
  - charm PDFs at large x could be larger than obtained from conventional fits
- **pA collisions** (using unpolarized gas: He, O, Ne, Ar, Kr, Xe)
  - constraints on nPDFs (e.g. on poorly understood gluon antishadowing at high x!)
  - studies of parton energy-loss and cold nuclear matter effects



## More physics reach with an unpolarized fixed target

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
  - 5-quark Fock state of the proton may contribute at high x!
  - charm PDFs at large x could be larger than obtained from conventional fits
- **pA collisions** (using unpolarized gas: He, O, Ne, Ar, Kr, Xe)
  - constraints on nPDFs (e.g. on poorly understood gluon antishadowing at high x!)
  - studies of parton energy-loss and cold nuclear matter effects
- **PbA collisions at**  $\sqrt{s_{NN}} \approx 72$  GeV (using unpolarized gas: He, O, Ne, Ar, Kr, Xe) - Study of QGP formation





# The LHCSpin project

### The LHCSpin project

The project consists of two phases:

#### Phase I

Upgrade the present LHCb unpol. fixed-target system (**SMOG**) with the installation of a storage cell in the LHC beam pipe upstream of the VELO tracker ( $\rightarrow$  **SMOG2**)







### The LHCSpin project

The project consists of two phases:

#### Phase I

Upgrade the present LHCb unpol. fixed-target system (**SMOG**) with the installation of a storage cell in the LHC beam pipe upstream of the VELO tracker ( $\rightarrow$  **SMOG2**)

#### **Phase II**

Installation of a HERMES-like Polarized Gas Target system (PGT) in front of LHCb





# Phase I: the SMOG2 setup

#### The SMOG2 setup





#### The SMOG2 setup











### SMOG2 vs. SMOG



- ✓ Increase of target density (luminosity) by up to 2 orders of magnitude using the same gas load of SMOG ( $\sim 10^{-7}$  mbar)
- ✓ Possibility to inject more gas species: H, D, He, O, Ne, Ar, Kr, Xe (SMOG: He, Ne, Ar)
- More sophisticated Gas Feed System: will allow to measure the target density with much higher precision
- ✓ Well **defined interaction region** upstream of the IP@13 TeV (limited to cell length: 20 cm)
- ✓ SMOG2 can (in principle) **run in parallel with collider mode** (well displaced IP)

### Phase II: the polarized target setup

# A new design for a compact polarized gas target



#### Same principle of Hermes



# A new design for a compact polarized gas target





Same principle of Hermes

Some numbers:

- $I_0 = 6.5 \cdot 10^{16} s^{-1}$
- $C_{tot} = 13.90 \text{ l/s}$
- $\theta$ = 7.02 ·10<sup>13</sup>/cm<sup>2</sup>

- QMA

- $I_{beam} = 3.8 \cdot 10^{18} p/s$  (very conservative!)
- $L_{pH}(T_{cell} = 300 \text{ K}) = 2.7 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- $L_{pH}(T_{cell} = 100 \text{ K}) = 4.6 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

system

### A new design for a compact polarized gas target







L.L. Pappalardo - XXVII International Workshop on Deep Inelastic Scattering - Torino - April 8-12 2019

#### Time schedule of the project





#### Time schedule of the project





# Conclusions

- A fixed-target experiment at the LHC will provide unique kinematic conditions for a broad and ambitious physics program!
- > A fixed-target physics program is already ongoing at LHCb with SMOG
- The proposed upgrade of SMOG (SMOG2) is now approved and in production phase. Installation during LS2.
- The polarized target option is the natural evolution of SMOG2. It is taken into serious consideration by the LHCb Collaboration and LHC machine experts! A review process has been initiated and R&D is ongoing. Expected installation during LHC LS3 (2024-2026).

# Conclusions

- A fixed-target experiment at the LHC will provide unique kinematic conditions for a broad and ambitious physics program!
- > A fixed-target physics program is already ongoing at LHCb with SMOG
- The proposed upgrade of SMOG (SMOG2) is now approved and in production phase. Installation during LS2.
- The polarized target option is the natural evolution of SMOG2. It is taken into serious consideration by the LHCb Collaboration and LHC machine experts! A review process has been initiated and R&D is ongoing. Expected installation during LHC LS3 (2024-2026).

We are working to bring spin physics at the most powerful particle accelerator!

Anyone interested to contribute to this fascinating challenge is welcome to join us!!



Backup

## The LHCb detector

- A single-arm spectrometer designed for the study of particles containing c or b quarks
- Forward acceptance:  $2 < \eta < 5$



#### **VELO (Vertex Locator)**

- Vertex reconstruction
- IP resolution of 20  $\mu m$
- 21 stations of Si strip det.
- 2048 strips per sensor.



#### The SMOG2 setup





L.L. Pappalardo - XXVII International Workshop on Deep Inelastic Scattering - Torino - April 8-12 2019

Neon bottle

## There is sufficient room beyond the VELO...





L.L. Pappalardo - XXVII International Workshop on Deep Inelastic Scattering - Torino - April 8-12 2019

### Process dependence

As for quark TMDs, also the gluon TMD phenomenology is enriched by the **process dependence** originating from ISI/FSI and encoded in the **gauge links**.

The gluon correlator depends on two path-dependent gauge links [D. Boer: arXiv:1611.06089]

$$\Gamma^{\mu\nu\left[\mathcal{U},\mathcal{U}'\right]}(x,\boldsymbol{k}_{T}) \equiv \int \frac{d(\xi\cdot P)\,d^{2}\xi_{T}}{(P\cdot n)^{2}(2\pi)^{3}}e^{i(xP+k_{T})\cdot\xi}\langle P|\mathrm{Tr}_{c}\left[F^{n\nu}(0)\mathcal{U}_{[0,\xi]}F^{n\mu}(\xi)\mathcal{U}_{[\xi,0]}'\right]|P\rangle$$



Both  $f_1^g$  and  $h_1^{\perp g}$  are process dependent! Each of them can be of two types: [++] = [--] Weizsacker-Williams (WW) [+-] = [-+] DiPole (DP)

- can differ in magnitude and width (!)
- can be probed by different processes

## Process dependence

Can be measured at the EIC

Can be measured at the LHC with FT

#### [D. Boer: <u>arXiv:1611.06089</u>]

|                     | DIS          | DY           | SIDIS        | $pA \to \gamma \operatorname{jet} X$ | $e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$ | $pp \to \eta_{c,b} X$ $pp \to H X$ | $\begin{array}{c} pp \rightarrow J/\psi  \gamma  X \\ pp \rightarrow \Upsilon  \gamma  X \end{array}$ |
|---------------------|--------------|--------------|--------------|--------------------------------------|------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------|
| $f_1^{g[+,+]}$ (WW) | ×            | ×            | ×            | ×                                    | $\checkmark$                                         | $\checkmark$                       | $\checkmark$                                                                                          |
| $f_1^{g[+,-]}$ (DP) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$                         | ×                                                    | ×                                  | ×                                                                                                     |

|                              | $pp \to \gamma \gamma X$ | $pA \to \gamma^* \text{ jet } X$ | $e \ p \to e' \ Q \ \overline{Q} \ X$ $e \ p \to e' \ j_1 \ j_2 \ X$ | $pp \to \eta_{c,b} X$ $pp \to H X$ | $\begin{array}{c} pp \to J/\psi \gamma X \\ pp \to \Upsilon \gamma X \end{array}$ |
|------------------------------|--------------------------|----------------------------------|----------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------|
| $h_1^{\perp g  [+,+]}  (WW)$ | $\checkmark$             | ×                                | $\checkmark$                                                         | $\checkmark$                       | $\checkmark$                                                                      |
| $h_1^{\perp g [+,-]}$ (DP)   | ×                        | $\checkmark$                     | ×                                                                    | ×                                  | ×                                                                                 |

|                                                                          | DY                                                                                                                                                                                                                     | SIDIS        | $p^{\uparrow}A \to hX$ | $p^{\uparrow}A \to \gamma^{(*)} \operatorname{jet} X$ | $p^{\uparrow}p \rightarrow \gamma \gamma X$                                                | $e  p^{\uparrow} \rightarrow e'  Q  \overline{Q}  X$ |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|--|
|                                                                          |                                                                                                                                                                                                                        |              |                        |                                                       | $p^{\uparrow}p \rightarrow J/\psi \gamma X$<br>$p^{\uparrow}p \rightarrow J/\psi I/\psi X$ | $e  p^{\uparrow} \to e'  j_1  j_2  X$                |  |
| $c \perp q \mid +, + \mid (\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x})$ |                                                                                                                                                                                                                        |              |                        |                                                       |                                                                                            | /                                                    |  |
| $f_{1T}^{-s_{11}+1}$ (WW)                                                | ×                                                                                                                                                                                                                      | ×            | ×                      | ×                                                     | $\checkmark$                                                                               | $\checkmark$                                         |  |
| $f_{1T}^{\perp g [+,-]}$ (DP)                                            | $\checkmark$                                                                                                                                                                                                           | $\checkmark$ | $\checkmark$           | $\checkmark$                                          | *                                                                                          | X                                                    |  |
|                                                                          |                                                                                                                                                                                                                        |              |                        |                                                       |                                                                                            |                                                      |  |
| [+,+]                                                                    | $ f_{1T}^{\perp g\left[ep^{\uparrow} \to e^{\prime}Q\bar{Q}X\right]}\left(x,p_{T}^{2}\right) = -f_{1T}^{\perp g\left[p^{\uparrow}p \to \gamma\gammaX\right]}\left(x,p_{T}^{2}\right) \longleftarrow \left[-,-\right] $ |              |                        |                                                       |                                                                                            |                                                      |  |

Same sign-change relation expected for the other T-odd gTMDs  $h_1^g$  and  $h_{1T}^{\perp g}$ !

(projected results from AFTER@LHC arXiv:1702.01546v1)



L.L. Pappalardo - XXVII International Workshop on Deep Inelastic Scattering - Torino - April 8-12 2019

# Main reactions of interest

$$\begin{array}{c} & pp^{(\dagger)} \rightarrow \eta_{c} + X \quad (pp^{(\dagger)} \rightarrow \chi_{c,b} + X) \\ & pp^{(\dagger)} \rightarrow J/\psi + X \\ & pp^{(\dagger)} \rightarrow Y + X \\ & pp^{(\dagger)} \rightarrow J/\psi + J/\psi + X \\ & pp^{(\dagger)} \rightarrow J/\psi + \gamma + X \\ & pp^{(\dagger)} \rightarrow Y + \gamma + X \\ & pp^{(\dagger)} \rightarrow Y + \gamma + X \\ & pp^{(\dagger)} \rightarrow Y + \gamma + X \\ & pd \rightarrow \mu^{+}\mu^{-} + X \quad (pd \rightarrow e^{+}e^{-} + X) \\ & pd \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{+} \rightarrow e^{+}e^{-} + X) \\ & pd^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{\uparrow} \rightarrow e^{+}e^{-} + X) \\ & pd^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{\uparrow} \rightarrow e^{+}e^{-} + X) \\ & pd^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{\uparrow} \rightarrow e^{+}e^{-} + X) \\ & pd^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{\uparrow} \rightarrow e^{+}e^{-} + X) \\ & pd^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{\uparrow} \rightarrow e^{+}e^{-} + X) \\ & pd^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{\uparrow} \rightarrow e^{+}e^{-} + X) \\ & pd^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{\uparrow} \rightarrow e^{+}e^{-} + X) \\ & & pA, PbA \quad (A = He, Ne, Ar, Kr, ...) \end{array} \right\}$$

#### We warmly encourage our theory colleagues to propose new physics cases and new reactions of interest for LHCSpin!

L.L. Pappalardo - XXVII International Workshop on Deep Inelastic Scattering - Torino - April 8-12 2019

# SMOG2 projections for LHC Run3

| Storage cell | gas            | gas flow             | peak density         | areal density     | time per year  | int. lum.   |
|--------------|----------------|----------------------|----------------------|-------------------|----------------|-------------|
| assumptions  | type           | $(s^{-1})$           | $(\mathrm{cm}^{-3})$ | $(cm^{-2})$       | (s)            | $(pb^{-1})$ |
|              | He             | $1.1 \times 10^{16}$ | $10^{12}$            | $10^{13}$         | $3 	imes 10^3$ | 0.1         |
|              | Ne             | $3.4	imes10^{15}$    | $10^{12}$            | 1013              | $3 	imes 10^3$ | 0.1         |
|              | Ar             | $2.4	imes10^{15}$    | $10^{12}$            | $10^{13}$         | $2.5	imes10^6$ | 80          |
|              | Kr             | $8.5	imes10^{14}$    | $5 	imes 10^{11}$    | $5	imes 10^{12}$  | $1.7	imes10^6$ | 25          |
| SMOG2 SC     | Xe             | $6.8	imes10^{14}$    | $5 	imes 10^{11}$    | $5 	imes 10^{12}$ | $1.7	imes10^6$ | 25          |
|              | $H_2$          | $1.1	imes10^{16}$    | $10^{12}$            | 1013              | $5	imes 10^6$  | 150         |
|              | $D_2$          | $7.8	imes10^{15}$    | $10^{12}$            | $10^{13}$         | $3	imes 10^5$  | 10          |
|              | $O_2$          | $2.7	imes10^{15}$    | $10^{12}$            | $10^{13}$         | $3	imes 10^3$  | 0.1         |
|              | N <sub>2</sub> | $3.4	imes10^{15}$    | 1012                 | 1013              | $3 	imes 10^3$ | 0.1         |

#### SMOG2 example pAr @115 GeV

| Int. Lumi       | 80/pb       |          |       |
|-----------------|-------------|----------|-------|
| Sys.error       | of $J/\Psi$ | xsection | ~3%   |
| $J/\Psi$        | yield       |          | 28 M  |
| $D^0$           | yield       |          | 280 M |
| $\Lambda_c$     | yield       |          | 2.8 M |
| $\Psi'$         | yield       |          | 280 k |
| $\Upsilon(1S)$  | yield       |          | 24 k  |
| $DY \mu^+\mu^-$ | - yield     |          | 24 k  |