XXVII International Workshop on Deep Inelastic Scattering and Related Subjects

Torino (Italy), 8 - 12 April 2019

precision QCD with the LHeC and FCC-eh

Claire Gwenlan, Oxford

with special thanks to M. Klein, U. Klein, G. Pownall

LHeC and FCC-eh

operating synchronously :

- with HL-LHC (or HE-LHC)
 p: 7 (14) TeV, √s ≈ 1.3 (1.8) TeV
- and/or later with an FCC
 p: 50 TeV, √s ≈ 3.5 TeV

energy recovery LINAC e beam: up to 60 GeV Lint \rightarrow 1 ab⁻¹ (1000× HERA; per 10 yrs)

(×15/120 (LHeC/FCCeh) extension in Q²,1/x reach)

ep colliders

Lepton–Proton Scattering Facilities

HERA: world's first and still only ep collider ($\sqrt{s} \approx 300 \text{ GeV}$)

LHeC: future ep (eA) collider, proposed to run concurrently with HL/HE-LHC; CDR arXiv:1206.2913 (complementary to LHC; extra discovery channels; Higgs; precision pdfs and α s)

FCC-eh: further future **ep** (eA) collider, integrated with FCC (further kinematic extension wrt **LHeC**)

situation today

kinematic coverage

 \times **15**/**120** extension in Q²,1/x reach vs HERA

kinematic coverage

 \times 15/120 extension in Q²,1/x reach vs HERA

visualising the LHeC timeline

LHeC pdf programme

completely resolve all **proton pdfs**, and α s to permille precision

 \rightarrow ubar, uv, dbar, dv, s, c, b, t, xg and α_s

unprecedented kinematic range; no higher twist; no nuclear corrs.; free of symmetry assumptions; N3LO theory possible; ...

LHeC pdf programme

simulation and pdf fit studies: M. Klein, CG, G. Pownall

completely resolve all **proton pdfs**, and α s to permille precision

\rightarrow	ubar.	uv,	dbar,	dv.	s.	C,	b,	t,	xq	and	αs
	unui,	uv,	unui,	чv,	з,	υ,	Ν,	۰,	~y	and	U2

unprecedented kinematic range; no higher twist, no nuclear corrs., free of symmetry assumptions, N3LO theory possible, ...

NEW LHeC simulations (e: **50 GeV**, p: 7TeV)

uncort cocumptions.		lumi (fb-1)	e pol.	e charge	dataset
elec. scale: 0.1%;	luminosity	5,50,1000	-0.8	_	NC/CC
hadr. scale 0.5% radcor: 0.3%;	positron	1,10,50	0	+	NC/CC
γp at high y: 1%	nolarisation	50	0	_	NC/CC
CC syst: 1.5%	polarisation	10,50	+0.8	_	NC/CC
luminosity: 0.5%					

NB, I will frequently refer to the following:

LHeC 1st Run (e-, 50 fb-1, P=-0.8)

LHeC full inclusive (e-, 1000 fb-1, P=-0.8) + (e-, 50 fb-1, P=+0.8) + (e+,50 fb-1)

QCD analysis a la HERAPDF, BUT no constraint that dbar=ubar at small x; **4+1 xuv, xdv, xUbar, xDbar** and **xg**

valence quarks from LHeC

precision determination, free from higher twist corrections and nuclear uncertainties large x crucial for HL/HE–LHC and FCC searches; also relevant for DY, MW etc.

d/u at large x

d/u essentially unknown at large x

no predictive power from current pdfs; conflicting theory pictures; data inconclusive, large nuclear uncerts.

resolve long-standing mystery of d/u ratio at large x

gluon at large x

gluon at large x is small and currently very poorly known; crucial for new physics searches

LHeC sensitivity at large x comes as part of overall package high luminosity (×50–1000 HERA); fully constrained quark pdfs; small x; momentum sum rule

gluon and sea intimately related **LHeC** can disentangle sea from valence quarks at large x, with precision measurements of **CC** and **NC** F2^{γZ}, xF3^{γZ}

impact of luminosity on LHeC pdfs

small and medium x quickly constrained (5 fb-1 ≡ ×5 HERA ≡ 1 year LHeC)
large x (≡ large Q2), gain from increased Lint

impact of positrons on LHeC pdfs

CC: e+ sensitive to d; **NC**: e± asymmetry gives $xF3^{\gamma Z}$, sensitive to valence

impact of polarisation on LHeC pdfs

impact of polarisation on pdfs generally small (but pol. important for ew) (CC: $\sigma(e\pm)$ scales as (1±P); NC: effects subtle; pol. asym. gives access to F2^{yZ}, new quark combinations)

15

empowering LHC searches

external, reliable pdfs needed for range extension and interpretation

gluons

quarks

SUSY (RPC, RPV), LQs, ...

exotic and extra boson searches at high mass

gluon at small x

no current data much below $x=5\times10^{-5}$

LHeC provides single, precise and unambiguous dataset down to x=10⁻⁶

FCC-eh probes to even smaller x=10⁻⁷

explore low x QCD: DGLAP vs BFKL; non-linear evolution; gluon saturation; implications for ultra high energy neutrino cross sections

gluon at small x

- recent evidence for onset of BFKL dynamics in HERA inclusive data
- impact for LHC and most certainly at ultra low x values probed at FCC

gluon at small x matters

effect of small x resummation on ggH cross section for LHC, HE-LHC, FCC impact on other EW observables could be of similar size

M. Bonvini and S. Marzani, arXiv:1802.07758

gluon at small x

arXiv:1710.05935

F2 and FL predictions for simulated kinematics of LHeC and FCC-eh

ep simulated data very precise – significant constraining power to discriminate between theoretical scenarios of small x dynamics

measurement of FL has a critical role to play

see also M. Klein, arXiv:1802.04317

c, b quarks

LHeC: enormously extended range and much improved precision c.f. HERA

- $\delta Mc = 50$ (HERA) to 3 MeV: impacts on αs , regulates ratio of charm to light, crucial for precision t, H
- **\deltaMb** to **10 MeV**; MSSM: Higgs produced dominantly via bb \rightarrow A

strange

strange pdf poorly known; suppressed cf. other light quarks? strange valence?

ATLAS[†] observe large strange fraction at mean Bjorken x around 0.01

[†]ATLAS arXiv:1203.4051, confirmed in 1612.03016, ATL-PHYS-PUB-2019-016; and by global fitters EG. 1706.00428, 1708.00047

strange

LHeC: direct sensitivity to **strange** via W+s \rightarrow c (x,Q²) mapping of (anti) strange for first time

G.R. Boroun, PLB 744 (2015) 142 G.R. Boroun, PLB 741 (2015) 197

impact of HQ data on LHeC pdfs

more flexible parameterisation (5+1): xuv, xdv, xU, xd, xs and xg

summary of LHeC pdfs

strong coupling, αs

arXiv:1206.2913,1211.5102, new studies underway

 α_s is least known coupling constant PDG2018: $\alpha_s = 0.1174 \pm 0.0016$ (w/o lattice QCD, 1.5% uncertainty)

precise αs needed:

to constrain GUT scenarios; for cross section predictions, including Higgs; ...

LHeC: permille precision possible in combined QCD fit for pdfs+αs

summary

precision determination of quark and gluon structure of proton and αs of fundamental importance for future hadron collider physics programme (Higgs, BSM, ...)

electron-proton colliders essential for full exploitation of these machines external precision pdf input; complete q,g unfolding, high luminosity $x \rightarrow 1$, s, c, b, (t); N3LO; small x; strong coupling to permille precision; ...

NEW LHeC pdf studies presented (all work in progress)

all critical pdf information can be obtained early (~50 fb-1 ≡×50 HERA), in parallel with HL-LHC operation

LHeC and PERLE documents submitted to european strategy update

Next Steps: ongoing collaborative studies with various groups; major new summary paper later this year; workshop in the autumn

QCD fit parameterisation

QCD fit ansatz based on HERAPDF2.0, with following differences

much more relaxed sea ie. no requirement that ubar=dbar at small x no negative gluon term (simply for the aesthetics of ratio plots – it has been checked that this does not impact size of projected uncertainties)

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} (1+D_g x) \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{aligned}$$

4+1 pdf fit (above) has 14 free parameters 5+1 pdf fit for HQ studies parameterises dbar and sbar separately, and has 17 free parameters

DIS formalism with polarisation

$$\sigma_{r,NC} = \mathbf{F_2} + \frac{Y_-}{Y_+} \mathbf{xF_3} - \frac{y^2}{Y_+} \mathbf{F_L}, \quad Y_{\pm} = 1 \pm (1-y)^2$$

 $\mathbf{F}_{2}^{\pm} = F_{2} + \kappa_{Z}(-v_{e} \mp Pa_{e}) \cdot F_{2}^{\gamma Z} + \kappa_{Z}^{2}(v_{e}^{2} + a_{e}^{2} \pm 2Pv_{e}a_{e}) \cdot F_{2}^{Z}$ $\mathbf{x}\mathbf{F}_{3}^{\pm} = \kappa_{Z}(\pm a_{e} + Pv_{e}) \cdot xF_{3}^{\gamma Z} + \kappa_{Z}^{2}(\mp 2v_{e}a_{e} - P(v_{e}^{2} + a_{e}^{2})) \cdot xF_{3}^{Z}.$

$$(F_2, F_2^{\gamma Z}, F_2^Z) = x \sum (e_q^2, 2e_q v_q, v_q^2 + a_q^2)(q + \bar{q})$$

$$(xF_3^{\gamma Z}, xF_3^Z) = 2x \sum (e_q a_q, v_q a_q)(q - \bar{q}),$$

$$\sigma_{r,NC}^{+}(P_{+}) - \sigma_{r,NC}^{-}(P_{-}) = -\kappa_{Z}a_{e}(P_{+} + P_{-}) \cdot F_{2}^{\gamma Z} + \frac{Y_{-}}{Y_{+}}\kappa_{Z}a_{e} \cdot [2xF_{3}^{\gamma Z} + (P_{+} - P_{-})\kappa_{Z}a_{e}xF_{3}^{Z}]$$

$$xF_{3}^{\gamma Z} \simeq (2u_{v} + d_{v})/3$$

$$\frac{\sigma_{r,NC}^{\pm}(P_L) - \sigma_{r,NC}^{\pm}(P_R)}{P_L - P_R} = \kappa_Z [\mp a_e F_2^{\gamma Z} + \frac{Y_-}{Y_+} v_e x F_3^{\gamma Z}] \simeq \mp \kappa_Z a_e F_2^{\gamma Z}$$

$$\sigma_{r,CC}^+ \sim x\overline{U} + (1-y)^2 xD,$$

$$\sigma_{r,CC}^- \sim xU + (1-y)^2 x\overline{D}.$$

30

Kinematics of a 100 TeV FCC

Plot by J. Rojo, Dec 2013

small x becomes relevant even for "common" physics (EG. W, Z, H, t)

pdf luminosities for HE-LHC and FCC

pdf luminosities

impact of LHC on today's pdfs

arXiv:1810.03639 + ongoing work

FL at LHeC

strong coupling αs

case	$\operatorname{cut}\left[Q^2 \text{ in } \operatorname{GeV}^2\right]$	relative precision in $\%$
HERA only (14p)	$Q^2 > 3.5$	1.94
HERA+jets (14p)	$Q^2 > 3.5$	0.82
LHeC only (14p)	$Q^2 > 3.5$	0.15
LHeC only $(10p)$	$Q^2 > 3.5$	0.17
LHeC only $(14p)$	$Q^{2} > 20$	0.25
LHeC+HERA (10p)	$Q^{2} > 3.5$	0.11
LHeC+HERA (10p)	$Q^{2} > 7.0$	0.20
LHeC+HERA (10p)	$Q^2 > 10.$	0.26

LHeC: NC+CC inclusive; total exp. uncertainties; independent of BCDMS

arXiv:1512.05194

Method	Current $\delta \alpha_{\rm s}({\rm m}_{\rm Z}^2)/\alpha_{\rm s}({\rm m}_{\rm Z}^2)$ uncertainty	Future $\delta \alpha_{\rm s}({\rm m}_{\rm Z}^2)/\alpha_{\rm s}({\rm m}_{\rm Z}^2)$ uncertainty				
	(theory & experiment state-of-the-art)	(theory & experiment progress)				
lattico	$\approx 1\%$	$\approx 0.1\%$ (~10 yrs)				
lattice	(latt. stats/spacing, $N^3LO pQCD$)	(improved computing power, $N^4LO pQCD$)				
π docay factor	$1.5\%_{\mathrm{th}} \oplus 0.05\%_{\mathrm{exp}} \approx 1.5\%$	$1\%_{\rm th} \oplus 0.05\%_{\rm exp} \approx 1\%$ (few yrs)				
# decay factor	$(N^{3}LO RGOPT)$	(N ⁴ LO RGOPT, explicit $m_{u,d,s}$)				
au decays	$1.4\%_{ m th} \oplus 1.4\%_{ m exp} pprox 2\%$	$0.7\%_{\rm th} \oplus 0.7\%_{\rm exp} \approx 1\%$ (+B-factories), ${<}1\%$ (FCC-ee)				
7 decays	$(N^{3}LO CIPT vs. FOPT)$	(N ⁴ LO, ~ 10 yrs. Improved spectral function data)				
$O\overline{O}$ decays	$4\%_{\rm th} \oplus 4\%_{\rm exp} \approx 6\%$	$1.4\%_{\rm th} \oplus 1.4\%_{\rm exp} \approx 2\%$ (few yrs)				
GG decays	(NLO only. Υ only)	(NNLO. More precise LDME and R_{γ}^{\exp})				
soft FFs	$1.8\%_{ m th} \oplus 0.7\%_{ m exp} pprox 2\%$	$0.7\%_{\rm th} \oplus 0.7\%_{\rm exp} \approx 1\%~({\sim}2~{\rm yrs}),{<}1\%~({\rm FCC\text{-}ee})$				
5010 1 1 5	$(NNLO^* \text{ only } (+NNLL), npQCD \text{ small})$	(NNLO+NNLL. More precise e^+e^- data: 90–350 GeV)				
hard FFs	$1\%_{\rm th} \oplus 5\%_{\rm exp} \approx 5\%$	$0.7\%_{\rm th} \oplus 2\%_{\rm exp} \approx 2\%$ (+B-factories), <1% (FCC-ee)				
hard 115	(NLO only. LEP data only)	(NNLO. More precise e^+e^- data)				
global DDF fits	$1.5\%_{\mathrm{th}} \oplus 1\%_{\mathrm{exp}} \approx 1.7\%$	$0.7\%_{\rm th} \oplus 0.7\%_{\rm exp} \approx 1\%$ (few yrs), 0.15% (LHeC/FCC-eh)				
global i Di mus	(Diff. NNLO PDF fits. DIS+DY data)	$(N^{3}LO. Full DIS+hadronic data fit)$				
iets in e [±] n ∞-n	$2\%_{\mathrm{th}} \oplus 1.5\%_{\mathrm{exp}} \approx 2.5\%$	$1\%_{\rm th} \oplus 1\%_{\rm exp} \approx 1.5\%$ (few yrs), $<1\%$ (FCC-eh)				
jeus me p, / p	$(NNLO^* \text{ only})$	(NNLO. Combined DIS + (extra?) γ -p data)				
F_{γ}^{γ} in $\gamma - \gamma$	$3.5\%_{ m th} \oplus 3\%_{ m exp} pprox 4.5\%$	$1\%_{\rm th} \oplus 2\%_{\rm exp} \approx 2\%$ (~2 yrs), <1% (FCC-ee)				
1 2 m / /	(NLO only)	(NNLO. More precise new F_2^{γ} data)				
e^+e^- evt shapes	$(1.5-4)\%_{\rm th} \oplus 1\%_{\rm exp} \approx (1.5-4)\%$	$1\%_{\rm th} \oplus 1\%_{\rm exp} \approx 1.5\%$ (+B-factories), $< 1\%$ (FCC-ee)				
	$(NNLO+N^{(3)}LL, npQCD significant)$	(NNLO+N ³ LL. Improved npQCD via \sqrt{s} -dep. New data)				
jets in e^+e^-	$(2-5)\%_{\rm th} \oplus 1\%_{\rm exp} \approx (2-5)\%$	$1\%_{\text{th}} \oplus 1\%_{\text{exp}} \approx 1.5\%$ (few yrs), $< 1\%$ (FCC-ee)				
jets m e e	(NNLO+NLL, npQCD moderate)	(NNLO+NNLL. Improved npQCD. New high- \sqrt{s} data)				
W decays	$0.7\%_{ m th} \oplus 37\%_{ m exp} pprox 37\%$	$(0.7-0.1)\%_{\rm th} \oplus (10-0.1)\%_{\rm exp} \approx (10-0.15)\%$ (LHC,FCC-ee)				
w decays	$(N^{3}LO, npQCD small.$ Low-stats data)	$(\rm N^4LO,{\sim}10$ yrs. High-stats/precise W data)				
Z decays	$0.7\%_{ ext{th}} \oplus 2.4\%_{ ext{exp}} pprox 2.5\%$	$0.1\%_{\rm th} \oplus (0.5-0.1)\%_{\rm exp} \approx (0.5-0.15)\%$ (ILC,FCC-ee)				
	$(N^{3}LO, npQCD small)$	$(N^4LO, \sim 10 \text{ yrs. High-stats/precise Z data})$				
jets in p-p, p- \overline{p}	$3.5\%_{ m th} \oplus (2-3)\%_{ m exp} \approx (4-5)\%$	$1\%_{\rm th} \oplus 1\%_{\rm exp} \approx 1.5\%$ (Tevatron+LHC, ~2 yrs)				
	(NLO only. Combined exp. observables)	(NNLO. Multiple datasets+observables)				
$t \bar{t}$ in p-p, p- \overline{p}	$1.5\%_{\mathrm{th}} \oplus 2\%_{\mathrm{exp}} \approx 2.5\%$	$1\%_{\rm th} \oplus 1\%_{\rm exp} \approx 1.5\%$ (Tevatron+LHC, ~2 yrs)				
	(NNLO+NNLL. CMS only)	(Improved m ^{pole} & PDFs. Multiple datasets)				

lattice QCD

ep: per mille level (LHeC/FCC-eh combined with HERA)

ee: order **per mille** with an FCC-ee

some other considerations

FCC not simply a scaled version of **LHC** (qualitatively new phenomena introduced)

FCC-eh and previous LHeC simulation

NC/CC	$E_e [GeV]$	$E_p [TeV]$	P(e)	charge	lumi. $[fb^{-1}]$
NC	60~(60)	50(7)	-0.8	-1	1000
$\mathbf{C}\mathbf{C}$	60~(60)	$50\ (7)$	-0.8	-1	1000
NC	60~(60)	50(7)	+0.8	-1	300
$\mathbf{C}\mathbf{C}$	60~(60)	50(7)	+0.8	-1	300
NC	60~(60)	50(7)	0	+1	100
$\mathbf{C}\mathbf{C}$	60~(60)	$50\ (7)$	0	+1	100
NC	20(60)	7(1)	0	-1	100
$\mathbf{C}\mathbf{C}$	20~(60)	7(1)	0	-1	100

error assumptions:

elec. scale: 0.1%; hadr. scale 0.5% radcor: 0.3%; γp at high y: 1% uncorrelated extra eff. 0.5%

LHeC pdfs: previous versus new

LHeC pdfs: previous versus new

42

kinematic coverage previous simulations

strange

ATLAS coll., arXiv:1612.0301

Figure 25: Ratio $R_s(x) = (s(x) + \bar{s}(x))/(\bar{u}(x) + \bar{d}(x))$ as a function of Bjorken-*x* at a scale of $Q^2 = 1.9 \text{ GeV}^2$ for the original MMHT14 and CT14 PDF sets (left) and for the MMHT14 and CT14 sets when profiled with the new *W*, *Z* differential cross-section data (right).

Figure 26: Distribution of $x\bar{u}$ (left), $x\bar{d}$ (middle) and xs (right) PDFs as a function of Bjorken-x at a scale of $Q^2 = 1.9 \text{ GeV}^2$ for the MMHT14 PDF set before and after profiling.

strange

NNPDF3.1, arXiv:1706.00428

* "xFITTER16" = ATLAS arXiv:1612.0301

Vcs

$\mathsf{HERA}\mathsf{+}\mathsf{ATLAS}\to\mathsf{Vcs}$

expect much better precision from LHeC or FCC-eh (×10 or more)