Next-generation spin physics measurements with polarized deuteron and spectator tagging

Wim Cosyn

Ghent University, Belgium

DIS2019

in collaboration with Ch. Weiss, JLab LDRD project on spectator tagging

Why focus on light ions at an EIC?

- Measurements with light ions address essential parts of the EIC physics program
 - neutron structure
 - nucleon interactions
 - coherent phenomena
- Light ions have unique features
 - polarized beams
 - breakup measurements & tagging
 - first principle theoretical calculations of initial state
- Intersection of two communities
 - high-energy scattering
 - low-energy nuclear structure

Use of light ions for high-energy scattering and QCD studies remains largely unexplored

EIC design characteristics (for light ions)

Polarized light ions

- ▶ ³He, other @ eRHIC
- d, ³He, other @ JLEIC (figure 8)
- spin structure, polarized EMC, tensor pol, ...

CM energy $\sqrt{s_{eA}} = \sqrt{Z/A} 20 - 100 \text{GeV}$ DIS at $x \sim 10^{-3} - 10^{-1}$, $Q^2 \le 100 \text{GeV}^2$

High luminosity enables probing/measuring

- exceptional configurations in target
- multi-variable final states
- polarization observables
 - Forward detection of target beam remnants
 - diffractive and exclusive processes
 - coherent nuclear scattering
 - nuclear breakup and tagging
 - forward detectors integrated in designs

Light ions at EIC: physics objectives

Neutron structure

- flavor decomposition of quark PDFs/GPDs/TMDs
- flavor structure of the nucleon sea
- singlet vs non-singlet QCD evolution, leading/higher-twist effects

Nucleon interactions in QCD

- medium modification of quark/gluon structure
- QCD origin of short-range nuclear force
- nuclear gluons
- coherence and saturation

Imaging nuclear bound states

- imaging of quark-gluon degrees of freedom in nuclei through GPDs
- clustering in nuclei

Need to control nuclear configurations that play a role in these processes

Theory: high-energy scattering with nuclei

Interplay of two scales: high-energy scattering and low-energy nuclear structure. Virtual photon probes nucleus at fixed lightcone time $x^+ = x^0 + x^3$

- Scales can be separated using methods of light-front quantization and QCD factorization
- Tools for high-energy scattering known from ep
- Nuclear input: light-front momentum densities, spectral functions, overlaps with specific final states in breakup/tagging reactions
 - framework known for deuteron
 - still low-energy nuclear physics, just formulated differently

```
Frankfurt, Strikman '80s
Kondratyuk, Strikman, NPA '84
```

Neutron structure with tagging

- EIC will measure inclusive DIS on light nuclei [d,³He, ³H(?)]
 - Simple, no FSI effects
 - Uncertainties limited by nuclear structure effects (binding, Fermi motion, non-nucleonic dof)
- Proton tagging offers a way of controlling the nuclear configuration

- Advantages for the deuteron
 - active nucleon identified
 - recoil momentum selects nuclear configuration (medium modifications)
 - ► limited possibilities for nuclear FSI, calculable
- Allows to extract free neutron structure with pole extrapolation
 - Eliminates nuclear binding and FSI effects [Sargsian,Strikman PLB '05]
- Suited for colliders: no target material $(p_p \rightarrow 0)$, forward detection, polarization. fixed target CLAS BONuS limited to recoil momenta ~ 70 MeV

General expression of SIDIS for a polarized spin 1 target

Tagged spectator DIS is SIDIS in the target fragmentation region

$$\vec{e} + \vec{T} \rightarrow e' + X + h$$

Dynamical model to express structure functions of the reaction

- First step: impulse approximation (IA) model
- Results for longitudinal spin asymmetries
- FSI corrections (unpolarized Strikman, Weiss PRC '18)
- Light-front structure of the deuteron
 - Natural for high-energy reactions as off-shellness of nucleons in LF quantization remains finite

Polarized spin 1 particle

Spin state described by a 3*3 density matrix in a basis of spin 1 states polarized along the collinear virtual photon-target axis

$$W_D^{\mu\nu} = Tr[\rho_{\lambda\lambda'}W^{\mu\nu}(\lambda'\lambda)]$$

Characterized by 3 vector and 5 tensor parameters

$$\mathcal{S}^{\mu} = \langle \hat{W}^{\mu}
angle$$
, $T^{\mu
u} = rac{1}{2} \sqrt{rac{2}{3}} \langle \hat{W}^{\mu} \hat{W}^{
u} + \hat{W}^{
u} \hat{W}^{\mu} + rac{4}{3} \left(\mathcal{g}^{\mu
u} - rac{\hat{P}^{\mu} \hat{P}^{
u}}{M^2}
ight)
angle$

Split in longitudinal and transverse components

$$\rho_{\lambda\lambda'} = \frac{1}{3} \begin{bmatrix} 1 + \frac{3}{2}S_L + \sqrt{\frac{3}{2}}T_{LL} & \frac{3}{2\sqrt{2}}S_T e^{-i(\phi_h - \phi_S)} & \sqrt{\frac{3}{2}}T_{TT} e^{-i(2\phi_h - 2\phi_{T_T})} \\ & -\sqrt{3}T_{LT} e^{-i(\phi_h - \phi_{T_L})} & \\ \frac{3}{2\sqrt{2}}S_T e^{i(\phi_h - \phi_S)} & 1 - \sqrt{6}T_{LL} & \frac{3}{2\sqrt{2}}S_T e^{-i(\phi_h - \phi_S)} \\ & -\sqrt{3}T_{LT} e^{i(\phi_h - \phi_{T_L})} & & +\sqrt{3}T_{LT} e^{-i(\phi_h - \phi_{T_L})} \\ \sqrt{\frac{3}{2}}T_{TT} e^{i(2\phi_h - 2\phi_{T_T})} & \frac{3}{2\sqrt{2}}S_T e^{i(\phi_h - \phi_S)} & 1 - \frac{3}{2}S_L + \sqrt{\frac{3}{2}}T_{LL} \\ & +\sqrt{3}T_{LT} e^{i(\phi_h - \phi_{T_L})} & \end{bmatrix}$$

Can be formulated in **covariant** manner $\rightarrow \rho^{\mu\nu} = \sum_{\lambda\lambda'} \rho_{\lambda\lambda'} \epsilon^{*\mu}(\lambda') \epsilon^{\nu}(\lambda)$

Spin 1 SIDIS: General structure of cross section

To obtain structure functions, enumerate all possible tensor structures that obey hermiticity and transversality condition (qW = Wq = 0)
 Cross section has 41 structure functions.

$$\frac{d\sigma}{dxdQ^2d\phi_{l'}} = \frac{y^2\alpha^2}{Q^4(1-\epsilon)}\left(F_U + F_S + F_T\right)d\Gamma_{P_h}\,,$$

▶ U + S part identical to spin 1/2 case [Bacchetta et al. JHEP ('07)]

$$F_{U} = F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} \cos\phi_h F_{UU}^{\cos\phi_h} + \epsilon \cos 2\phi_h F_{UU}^{\cos 2\phi_h} + \frac{h}{\sqrt{2\epsilon(1-\epsilon)}} \sin\phi_h F_{LU}^{\sin\phi_h}$$

$$\begin{split} F_{S} &= S_{L} \left[\sqrt{2\epsilon(1+\epsilon)} \sin \phi_{h} F_{US_{L}}^{\sin \phi_{h}} + \epsilon \sin 2\phi_{h} F_{US_{L}}^{\sin 2\phi_{h}} \right] \\ &+ S_{L} h \left[\sqrt{1-\epsilon^{2}} F_{LS_{L}} + \sqrt{2\epsilon(1-\epsilon)} \cos \phi_{h} F_{LS_{L}}^{\cos \phi_{h}} \right] \\ &+ S_{\perp} \left[\sin(\phi_{h} - \phi_{S}) \left(F_{US_{T},T}^{\sin(\phi_{h} - \phi_{S})} + \epsilon F_{US_{T},L}^{\sin(\phi_{h} - \phi_{S})} \right) + \epsilon \sin(\phi_{h} + \phi_{S}) F_{US_{T}}^{\sin(\phi_{h} + \phi_{S})} \\ &+ \epsilon \sin(3\phi_{h} - \phi_{S}) F_{US_{T}}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\epsilon(1+\epsilon)} \left(\sin \phi_{S} F_{US_{T}}^{\sin \phi_{S}} + \sin(2\phi_{h} - \phi_{S}) F_{US_{T}}^{\sin(2\phi_{h} - \phi_{S})} \right) \right] \\ &+ S_{\perp} h \left[\sqrt{1-\epsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LS_{T}}^{\cos(\phi_{h} - \phi_{S})} + \\ & \sqrt{2\epsilon(1-\epsilon)} \left(\cos \phi_{S} F_{LS_{T}}^{\cos \phi_{S}} + \cos(2\phi_{h} - \phi_{S}) F_{LS_{T}}^{\cos(2\phi_{h} - \phi_{S})} \right) \right] , \end{split}$$

Spin 1 SIDIS: General structure of cross section

To obtain structure functions, enumerate all possible tensor structures that obey hermiticity and transversality condition (qW = Wq = 0)
 Cross section has 41 structure functions,

$$rac{d\sigma}{dx dQ^2 d\phi_{l'}} = rac{y^2 lpha^2}{Q^4 (1-\epsilon)} \left(F_U + F_S + F_T
ight) d\Gamma_{P_h}$$
 ,

> 23 SF unique to the spin 1 case (tensor pol.), 4 survive in inclusive (b_{1-4}) [Hoodbhoy, Jaffe, Manohar PLB'88]

$$\begin{aligned} F_{T} &= T_{LL} \left[F_{UT_{LL},T} + \epsilon F_{UT_{LL},L} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{h} F_{UT_{LL}}^{\cos \phi_{h}} + \epsilon \cos 2\phi_{h} F_{UT_{LL}}^{\cos 2\phi_{h}} \right] \\ &+ T_{LL} h \sqrt{2\epsilon(1-\epsilon)} \sin \phi_{h} F_{LT_{LL}}^{\sin \phi_{h}} \\ &+ T_{L\perp} \left[\cdots \right] + T_{L\perp} h \left[\cdots \right] \\ &+ T_{L\perp} \left[\cos(2\phi_{h} - 2\phi_{T_{\perp}}) \left(F_{UT_{TT},T}^{\cos(2\phi_{h} - 2\phi_{T_{\perp}})} + \epsilon F_{UT_{TT},L}^{\cos(2\phi_{h} - 2\phi_{T_{\perp}})} \right) \right. \\ &+ \epsilon \cos 2\phi_{T_{\perp}} F_{UT_{TT}}^{\cos 2\phi_{T_{\perp}}} + \epsilon \cos(4\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(4\phi_{h} - 2\phi_{T_{\perp}})} \\ &+ \sqrt{2\epsilon(1+\epsilon)} \left(\cos(\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(\phi_{h} - 2\phi_{T_{\perp}})} + \cos(3\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(3\phi_{h} - 2\phi_{T_{\perp}})} \right) \right] \\ &+ T_{\perp\perp} h \left[\cdots \right] \end{aligned}$$

Tagged DIS with deuteron: model for the IA

 Hadronic tensor can be written as a product of nucleon hadronic tensor with deuteron light-front densities

$$W_D^{\mu\nu}(\lambda',\lambda) = 4(2\pi)^3 \frac{\alpha_R}{2-\alpha_R} \sum_{i=U,z,x,y} W_{N,i}^{\mu\nu} \rho_D^i(\lambda',\lambda) ,$$

 $\begin{aligned} & \text{All SF can be written as} \\ F_{ij}^k = \{ \text{kin. factors} \} \times \{ F_{1,2}(\tilde{x}, Q^2) \text{or } g_{1,2}(\tilde{x}, Q^2) \} \times \{ \text{bilinear forms} \\ & \text{in deuteron radial S} [U(k)] \text{ and } \mathbf{D}\text{-wave} [W(k)] \} \end{aligned}$

• In the IA the following structure functions are $extsf{zero} \rightarrow extsf{sensitive}$ to FSI

- beam spin asymmetry $[F_{LU}^{\sin \phi_h}]$
- target vector polarized single-spin asymmetry [8 SFs]
- target tensor polarized double-spin asymmetry [7 SFs]

Polarized structure function: longitudinal asymmetry

On-shell extrapolation of double spin asymmetry

Nominator

 $d\sigma_{||} = \frac{1}{4} \left[d\sigma(+\frac{1}{2},+1) - d\sigma(-\frac{1}{2},+1) - d\sigma(+\frac{1}{2},-1) + d\sigma(-\frac{1}{2},-1) \right] .$

Two possible denominators: 3-state and 2-state

$$\begin{split} d\sigma^{(3)} &\equiv \frac{1}{6} \sum_{\lambda_e} \left[\mathrm{d}\sigma(\lambda_e, +1) + \mathrm{d}\sigma(\lambda_e, -1) + \mathrm{d}\sigma(\lambda_e, 0) \right], \\ d\sigma^{(2)} &\equiv \frac{1}{4} \sum_{\lambda_e} \left[\mathrm{d}\sigma(\lambda_e, +1) + \mathrm{d}\sigma(\lambda_e, -1) \right]; \end{split}$$

Asymmetries: tensor polarization enters in 2-state one

$$A_{||}^{(3)} = \frac{d\sigma_{||}}{d\sigma^{(3)}} [\phi_h \operatorname{avg}] = \frac{F_{LS_L}}{F_T + \epsilon F_L}$$
$$A_{||}^{(2)} = \frac{d\sigma_{||}}{d\sigma^{(2)}} [\phi_h \operatorname{avg}] = \frac{F_{LS_L}}{F_T + \epsilon F_L + \frac{1}{\sqrt{6}} (F_{T_{LL}T} + \epsilon F_{T_{LL}L})}$$

Impulse approximation yields in the Bjorken limit

$$\boldsymbol{A}_{||d}^{(i)} \approx \boldsymbol{D}_{d}^{(i)}(\boldsymbol{\alpha}_{p}, |\boldsymbol{p}_{pT}|) \boldsymbol{A}_{||n} = \boldsymbol{D}_{d}^{(i)}(\boldsymbol{\alpha}_{p}, |\boldsymbol{p}_{pT}|) \frac{\boldsymbol{D}_{||\boldsymbol{g}_{1n}}(\tilde{\boldsymbol{x}}, \boldsymbol{Q}^{2})}{2(1 + \epsilon R_{n})F_{1n}(\tilde{\boldsymbol{x}}, \boldsymbol{Q}^{2})}$$

Nuclear structure factors $D_d^{(3)}$, $D_d^{(2)}$

WC, C. Weiss, arXiv:1902.03678; in preparation

• $-1 \le D_d^{(2)} \le 1$ has physical interpretation as ratio of nucleon helicity density to unpolarized density in a deuteron w polarization +1

Due to lack of OAM $D_d^{(2)} \equiv 1$ for $p_T = 0$

- Clear contribution from D-wave at finite recoil momenta
- D_d⁽³⁾ violates bounds due to lack of tensor pol. contribution

•
$$D_d^{(3)} \neq 0$$
 for $p_T = 0$

- $D_d^{(2)}$ closer to unity at small recoil momenta
- 2-state Asymm. also easier experimentally!!

Nuclear structure factors $D_d^{(3)}$, $D_d^{(2)}$

WC, C. Weiss, arXiv:1902.03678; in preparation

• $-1 \le D_d^{(2)} \le 1$ has physical interpretation as ratio of nucleon helicity density to unpolarized density in a deuteron w polarization +1

Due to lack of OAM $D_d^{(2)} \equiv 1$ for $p_T = 0$

- Clear contribution from D-wave at finite recoil momenta
- D_d⁽³⁾ violates bounds due to lack of tensor pol. contribution

•
$$D_d^{(3)} \neq 0$$
 for $p_T = 0$

- $D_d^{(2)}$ closer to unity at small recoil momenta
- 2-state Asymm. also easier experimentally!!

Tagging: simulations of pole extrapolation of $A_{||}$

- separate leading- /higher-twist
- non-singlet/singlet QCD evolution
- pdf flavor separation $\Delta u, \Delta d$. ΔG through singlet evolution
- non-singlet $g_{1p} g_{1n}$ and Bjorken sum rule

Extensions

- Final-state interactions modify cross section away from the pole
 - studied for unpolarized case at EIC kinematics, pole extrapolation still feasible

```
[Strikman, Weiss PRC '18]
```

- dominated by slow hadrons in target fragmentation region of the struck nucleon
- extend to $\vec{e} + \vec{d}$
- constrain FSI models
- non-zero azimuthal and spin observables through FSI
- Tensor polarized observables
- Tagging with complex nuclei A > 2
 - ▶ isospin dependence, universality of bound nucleon structure
 - ► A − 1 ground state recoil
- Resolved final states: SIDIS on neutron, hard exclusive channels

- Light ions address important parts of the EIC physics program
- Tagging and nuclear breakup measurements overcome limitations due to nuclear uncertainties in inclusive DIS → precision machine
- Unique observables with **polarized deuteron**: free neutron spin structure, tensor polarization
- Clear advantages in using two-state asymmetry to extract g_{1n}
- Extraction of nucleon spin structure in a wide kinematic range
- Lots of extensions to be explored!

Deuteron light-front wave function

- Up to momenta of a few 100 MeV dominated by NN component
- Can be evaluated in LFQM [Coester,Keister,Polyzou et al.] or covariant Feynman diagrammatic way [Frankfurt,Sargsian,Strikman]
- One obtains a Schrödinger (non-rel) like eq. for the wave function components, rotational invariance recovered
- Light-front WF obeys baryon and momentum sum rule

$$\Psi_{\lambda}^{D}(\boldsymbol{k}_{f},\lambda_{1},\lambda_{2}) = \sqrt{E_{k_{f}}} \sum_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}} \mathcal{D}_{\lambda_{1}\lambda_{1}^{\prime}}^{\frac{1}{2}} [R_{fc}(k_{1_{f}}^{\mu}/m_{N})] \mathcal{D}_{\lambda_{2}\lambda_{2}^{\prime}}^{\frac{1}{2}} [R_{fc}(k_{2_{f}}^{\mu}/m_{N})] \Phi_{\lambda}^{D}(\boldsymbol{k}_{f},\lambda_{1}^{\prime},\lambda_{2}^{\prime})$$

- Differences with non-rel wave function:
 - appearance of the Melosh rotations to account for light-front quantized nucleon states
 - ▶ k_f is the relative 3-momentum of the nucleons in the light-front boosted rest frame of the free 2-nucleon state (so not a "true" kinematical variable)