## Prospects for Higgs Physics with Electron-Proton Colliders



Max Klein
(7) UNiversity of
on behalf of
the LHeC/FCC-eh Higgs Group


Based on Uta Klein, Talk at FCC CDR
4.3.2019 at CERN
and Higgs in ep paper, in preparation

## Physics with Energy Frontier DIS



Raison(s) d'etre of the LHeC

Cleanest High Resolution Microscope: QCD Discovery

Empowering the LHC Search Programme

Transformation of LHC into high precision Higgs facility

Discovery (top, H, heavy v's..) Beyond the Standard Model

A Unique Nuclear Physics Facility

## $\mathrm{LHe}+\mathrm{FCC}-\mathrm{he}$ <br> Organisation"

International Advisory Committee with CERN mandate to provide "..Direction for ep/eA both at LHC+FCC"

Sergio Bertolucci (CERN/Bologna)
Nichola Bianchi (Frascati)
Frederick Bordry (CERN)
Stan Brodsky (SLAC)
Hesheng Chen (IHEP Beijing)
Eckhard Elsen (CERN)
Stefano Forte (Milano)
Andrew Hutton (Jefferson Lab)
Young-Kee Kim (Chicago)
Victor A Matveev (JINR Dubna)
Shin-Ichi Kurokawa (Tsukuba)
Leandro Nisati (Rome)
Leonid Rivkin (Lausanne)
Herwig Schopper (CERN) - Chair
Jurgen Schukraft (CERN)
Achille Stocchi (LAL Orsay)
John Womersley (ESS)
Coordination Group
Accelerator+Detector+Physics
Nestor Armesto
Oliver Brüning - Co-Chair
Andrea Gaddi
Erk Jensen
Walid Kaabi
Max Klein - Co-Chair
Peter Kostka
Bruce Mellado
Paul Newman
Daniel Schulte
Frank Zimmermann
5(11) are members of the
FCC coordination team
OB+MK: FCC-eh coordinators
FCC IAC: Guenter Dissertori +

## Working Groups

## PDFs, QCD

Fred Olness,
Claire Gwenlan
Higgs
Uta Klein,
Masahiro Kuze
BSM
Georges Azuelos, Monica D’Onofrio Oliver Fischer

## Top

Olaf Behnke,
Christian
Schwanenberger
eA Physics
Nestor Armesto
Small $x$
Paul Newman,
Anna Stasto
Detector
Alessandro Polini
Peter Kostka

## Energy Recovery Linac for LHeC/FCCeh

Spreader 38m Recombiner 38m Injector
RF Compensation Linac1 1008m + Doglegs

+ Matching 96m
RF Compensation
+ Doglegs
+ Matching 120m

$$
U(E R L)=1 / 3 U(L H C)
$$

Recombiner 38m

+ Matching 20m Spreader 38m
Linac2 1008m
Concurrent operation to pp, LHC/FCC become 3 beam facilities. Power limit: 100 MW $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ luminosity and factor of $15 / 120$ (LHC/FCCeh) extension of $Q^{2}, 1 / x$ reach 1000 times HERA luminosity. It therefore extends up to $x \sim 1$.
Four orders of magnitude extension in deep inelastic lepton-nucleus (ion) scattering.


## Future ep Colliders at CERN with electron ERL



## 1.2-1.3 TeV cms energy

 $10^{34}$ luminosity: $1 \mathrm{ab}^{-1}$ in 10 years.] $2 \mathrm{ab}^{-1}$ with HE LHC [interesting ERL Programme standalone in transition!] WW $\rightarrow$ H Cross section similar to $\mathbf{Z}^{*} \rightarrow \mathbf{Z H}$ Note: $\mathrm{gg} \rightarrow \mathrm{H}$ is about 50 pb at LHC
3.5 TeV cms energy
$1.510^{\mathbf{3 4}}$ luminosity: 2-3 ab-1 in $\mathbf{2 0}$ years CC Higgs cross section ~ 1pb This is 4 times higher than FCC-ee Expect similar precision for both eh and ee

## HERA's legacy: the gluon dominated proton



Fraction of Overall Proton Momentum Carried by Parton
Rapidity plateau at $x=M_{H} / 2 E_{p}=0.01$ : Precise knowledge of $x g$ is a base for LHC Higgs physics Prospect: very high precision PDFs and coupling from LHeC: to $\mathbf{N}^{3}$ LO $\rightarrow$ precision in pp (+ep)

## SM Higgs Production in ep well understood



## DIS Kinematics at FCC-eh @ $\sqrt{ } \mathrm{s}=3.5 \mathrm{TeV}$

MadGraph scale: $\mathrm{p}_{\mathrm{T}}$ of leading jet



Parton-level


DIS kinematics very well behaved
[btw also at HERA, but the cross section was 0.7 (0.1) fb in CC (NC) while H 1 and ZEUS each collected only about $0.5 \mathrm{fb}^{-1}$ of luminosity. LHeC: cross section 200 times larger and luminosity 500 times larger:
$\rightarrow$ ep becomes a Higgs laboratory]

## $\eta$ Distributions in Higgs events at FCC-eh

Parton-level
MG5 scale: $p_{T}$ of leading jet
$\stackrel{\infty}{\stackrel{0}{\square}}$




Forward Struck Quark

Higgs decay particles (here to WW), struck quark and scattered lepton are well separated in polar angle and in detector acceptance. Very fwd jet at FCC.

## VBF Higgs Production and experimental conditions


ep: Higgs production in ep comes uniquely from either CC or NC DIS via VBF

Clean bb final state, $\mathrm{S} / \mathrm{B}>1$
e-h Cross Calibration for Precision ep
Clean, precise reconstruction and easy distinction of ZZH and WWH pile-up in ep:
<0.1@LHeC up to 1@FCCeh events
pp: Higgs production in pp comes predominantly ( $\sim 80 \%$ ) from $\mathrm{gg} \rightarrow \mathrm{H}$ : high rates crucial for rare decays


Pile-up in pp at $510^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ is $150 @ 25 \mathrm{~ns}$ FCC-hh: pile-up 500-1000 (!)
S/B very small for bb, too harsh for cc Final precision in pp needs
accurate $\mathrm{N}^{3}$ LO PDFs \& $\alpha_{\mathrm{s}}$

## 

| LHeC Higgs | CC ( $e^{-} p$ ) | NC ( $\left.e^{-} p\right)$ | $\mathrm{CC}\left(e^{+} p\right)$ |
| :---: | :---: | :---: | :---: |
| Polarisation | -0.8 | -0.8 | 0 |
| Luminosity [ $\mathrm{ab}^{-1}$ ] | 1 | 1 | 0.1 |
| Cross Section [fb] | 196 | 25 | 58 |
| Decay BrFraction | $\mathrm{N}_{C C}^{H} e^{-} p$ | $\mathrm{N}_{N C}^{H} e^{-} p$ | $\mathrm{N}_{C C}^{H} e^{+} p$ |
| $H \rightarrow b \bar{b} \quad 0.577$ | 113100 | 13900 | 3350 |
| $H \rightarrow c \bar{c} \quad 0.029$ | 5700 | 700 | 170 |
| $H \rightarrow \tau^{+} \tau^{-} 0.063$ | 12350 | 1600 | 370 |
| $H \rightarrow \mu \mu \quad 0.00022$ | 50 | 5 | - |
| $H \rightarrow 4 l \quad 0.00013$ | 30 | 3 | - |
| $H \rightarrow 2 l 2 \nu \quad 0.0106$ | 2080 | 250 | 60 |
| $H \rightarrow g g \quad 0.086$ | 16850 | 2050 | 500 |
| $H \rightarrow W W \quad 0.215$ | 42100 | 5150 | 1250 |
| $H \rightarrow Z Z \quad 0.0264$ | 5200 | 600 | 150 |
| $H \rightarrow \gamma \gamma \quad 0.00228$ | 450 | 60 | 15 |
| $H \rightarrow Z \gamma \quad 0.00154$ | 300 | 40 | 10 |



Approximately
$x 4$ at HE LHC
x10 at FCC-eh a million bb ..

Due to longer operation, higher luminosity and higher cross sections

## Analysis Framework and 'Detector'

## Event generation

- SM or BSM production
- CC \& NC DIS background
by MadGraph5/MadEvent


## - Fragmentation

- Hadronization
by PYTHIA (modified for ep)

Fast detector simulation
by Delphes
$\rightarrow$ test of LHeC detector

S/B analysis $\rightarrow$ cuts or BDT

- Calculate cross section with tree-level Feynman diagrams (any UFO) using pT of scattered quark as scale (CDR ŝ ) for ep processes with MadGraph5 ; parton-level x-check CompHep
- Higgs mass 125 GeV as default
- Fragmentation \& hadronisation uses epcustomised Pythia.
- Delphes 'detector'
$\rightarrow$ displaced vertices and signed impact parameter distributions $\rightarrow$ studied for LHeC, and used for FCC-eh SM Higgs extrapolations [PGS for CDR and until 2014]
- 'Standard' GPD LHC-style detectors used and further studied based on optimising Higgs measurements, i.e. vertex resolution a la ATLAS IBL, excellent hadronic and elmag resolutions using 'best' state-of-the art detector technologies (no R\&D 'needed')

Values given in case of $2 \sigma$ and $\mathrm{L}=1 \mathrm{ab}^{-1}$

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech


PORTAL to Dark Matter ?

LHeC parton-level, cut based <6\% [arXiv: 1508.01095] HL-LHC @ 3 ab $^{-1}<3.5 \%$ [arXiv:1411. 7699]
$\checkmark$ Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques
$\checkmark$ Results for full MG5+Delphes analyses, done for 3 c.m.s. energies $\rightarrow$ very encouraging for a measurement of the branching of Higgs to invisible in ep down to $1.2 \%(1.7 \%)$ for 2 (1) $a b^{-1}$
$\checkmark$ A lot of checks done: We also checked LHeC $\longleftrightarrow \rightarrow$ FCC-he scaling with the corresponding cross sections (* results in table) : Downscaling FCC-he simulation results to LHeC would give $4.5 \%$, while up-scaling of LHeC simulation to FCC-he would result in $2.1 \% \rightarrow$ all well within uncertainties of projections of $\sim 25 \%$
$\Rightarrow$ further detector and analysis details have certainly an impact on results

# CDR Updates: Two independent analyses 

[ after Higgs discovery $M_{H}=125 \mathrm{GeV}, \mathrm{E}_{\mathrm{p}}=7 \mathrm{TeV}, \mathrm{E}_{\mathrm{e}}=60 \mathrm{GeV}$; cut-based \& conservative]


## ICHEP 2014

Master Thesis Ellis Kay, Liverpool 2014, PGS "detector" ATLAS-style and \& modeling of PHP background using low $Q^{2}$ NC DIS


Confirmed CDR: S/N>1 using conservative light misID and cutbased $\delta \mu=2 \%$ for 1 ab $^{-1}$

PGS of LHC detector

+ flat parton-level b-tagging for $|\eta|<3.0$
b: 60\%, c: 10\%, udsg: 1\% CAL coverage $|\eta|<5.0$

$100 \mathrm{fb}^{-1}$
1 year of data


## Hunting for Precision Hbb

Dijet Mass Candidates HFL untagged at detector level

'Worst' case scenario plot : Photoproduction background (PHP) is assumed to be 100\%! PHP update: Modelled via Weiszaecker-Williams and cross-checked with Pythia.
$\rightarrow$ addition of small angle electron taggers will reduce PHP to ~1-2\%

## Top: Mass of three highest $\mathrm{p}_{\mathrm{T}}$ Jets

HFL untagged

$\rightarrow$ cut-based analysis: usual cut to accept Higgs candidates on cost of signal efficiency

$\rightarrow$ Realistic and conservative HFL tagging (a la Tevatron) within Delphes realised and dependence on vertex resolution (nominal $10 \mu \mathrm{~m}$ ) and anti-kt jet radius studied
$\rightarrow$ Light jet misID efficiency very conservative, worse than ATLAS-BDT-based
$\rightarrow$ used in full LHeC analysis and for FCC-eh extrapolations


## BDT Results for Higgs @ LHeC

Daniel Hampson, MPHYS 2016

Signal Events Hbb

## Hén = H - $\mathrm{clean} \mathrm{S} / \mathrm{B}$, no pile-up


$\Rightarrow$ Main systematic checks: variations of background contribution and tagging efficiencies

## Further Estimates of Higgs Prospects

- Use LO Higgs cross sections $\boldsymbol{\sigma}_{\mathrm{H}}$ for $\mathbf{M}_{\mathbf{H}}=\mathbf{1 2 5} \mathbf{~ G e V}$, in [fb], and branching fractions BR(H $\rightarrow X X$ from Higgs Cross Section Handbook (c.f. appendix)
- Apply further branching, $B R(X \rightarrow F S)$ in case e.g. of $W \rightarrow 2$ jets and use acceptance, Acc, estimates based on MG5, for further decay
- Use reconstruction efficiencies, $\varepsilon$, achieved at LHC Run-1, see e.g. prospect calculations explored in arXiV:1511.05170
- Use fully simulated LHeC Hbb and Hcc results as baseline for $\mathrm{S} / \mathrm{B}$ ranges
- Use fully simulated Higgs to invisible for 3 ep c.m.s. scenarios as guidance for extrapolation uncertainty ( $\sim 25 \%$ )
- Estimate HIggs events per decay channel for certain Luminosity in [fb ${ }^{-1}$ ]

$$
N=\sigma_{H} \bullet B R(H \rightarrow X X) \bullet B R(X \rightarrow F S) \bullet L
$$

- Calculate uncertainties of signal strengths w.r.t. SM expectation

$$
\frac{\delta \mu}{\mu}=\frac{1}{\sqrt{N}} \bullet f \quad \text { with } \quad f=\sqrt{\frac{1+1 /(S / B)}{A c c} \bullet \varepsilon}
$$

## SM Higgs Signal Strengths in ep


submitted to EU strategy CERN-ACC-Note-2018-0084
Charged Currents: ep $\rightarrow$ vHX Neutral Currents: ep $\rightarrow$ eHX

## $\rightarrow$ NC and CC DIS together over-constrain Higgs couplings in a combined SM fit.

$E_{e}=60 \mathrm{GeV}$ LHeC $E_{p}=7 \mathrm{TeV} \mathrm{L}=1 a b^{-1}$ HE-LHC $E_{p}=14 \mathrm{TeV} \mathrm{L}=2 a b^{-1} \quad$ FCC: $\mathrm{E}_{\mathrm{p}}=50 \mathrm{TeV} \mathrm{L}=2 a b^{-1}$

# Systematic errors of $\mu$ for bb 

$$
\begin{aligned}
& \mu_{i}^{k}=\frac{\sigma_{i, \exp }^{k}}{\sigma_{i, S M}^{k}} \\
& \sigma_{i}^{k}=\sigma_{p r o d}^{k} \cdot b r_{i}^{k} \\
& \frac{\sigma_{p r o d}^{k, \exp }}{\sigma_{p r o d}^{k, S M}}=\kappa_{k}^{2} \\
& \frac{b r_{i}^{e x p}}{b r_{i}^{S M}}=\frac{\Gamma_{i}^{\exp }}{\Gamma_{i}^{S M}} \cdot \frac{\Gamma_{t o t}^{S M}}{\Gamma_{t o t}^{\exp }=\kappa_{i}^{2} \cdot \frac{\sum_{j}}{\sum_{j}^{2} b r_{j}^{S M}}} \\
& \mu_{i}^{k}=\kappa_{k}^{2} \cdot \kappa_{i}^{2} \cdot \frac{1}{\sum_{j}^{2} \kappa_{j}^{2} b r_{j}^{S M}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\delta \mu}{\mu}=\frac{1}{\sqrt{N}} \bullet f \\
f=\sqrt{\frac{1+1 /(S / B)}{A c c \bullet \varepsilon}} \quad \mathrm{~N} \approx 10^{5}
\end{gathered}
$$

Dominant HFL tagging: light jet misID [ATLAS vs 3 ATLAS] Photoproduction: reduced down to $10 \%$ vs $2 \%$ Acceptance x Efficiency: $\pm 5 \%$
$\rightarrow$ Estimated effects on $f$

Variation of hadronic energy resolution (M Tanaka, 2017): 7\% on cross section Luminosity 0.5 to 1\%: negligible

Prediction of ep CC SM H $\rightarrow$ bb cross section: $2 \%$ Based on LHeC measurements and PDFs
$\rightarrow \delta \mu / \mu=(0.80 \pm 0.10$ light $q \pm 0.02$ Acc $\pm 0.02 y p$ $\pm 0.06$ hadr cal $\left.\pm 0.02 \sigma_{\text {SM }}\right) \%$
$=(0.80 \pm 0.12) \% \quad$ [preliminary]
$\rightarrow \delta_{k}(\mathrm{bb})=(1.40 \pm 0.03) \%$
$\rightarrow \delta_{k}(W W)=(0.54 \pm 0.03) \%$
Note:
Doubling the WW signal strength uncertainty increases $\delta \kappa(\mathrm{bb})$ from 1.4 to $1.9 \%$ and $\delta \kappa(\mathrm{WW})$ from .54 to $.74 \% / 2$

## к Coupling Fit Comparison

$$
\mu_{i}^{k}=\kappa_{k}^{2} \cdot \kappa_{i}^{2} \cdot \frac{1}{\sum \kappa_{j}^{2} b r_{j}^{S M}}
$$

So far we considered 7 most abundant SM Higgs decay channels, i=1..7
$\diamond b b, W W, g g, \tau \tau, c c, Z Z, Y Y$
$\diamond \mathrm{ttH}$ may be added. (ep: 1.3 TeV cms!)
$\rightarrow$ eight measurements of $\mathrm{K}_{w}$ and $\mathrm{K}_{z}$
$\rightarrow$ two simultaneous measurements of the other couplings (in CC and NC)

## For LHeC nominal

0) Parameter "Kw" : $1+0.0054$
1) Parameter "Kz" : $1+0.012$
2) Parameter "Kg" : $1+0.030$
3) Parameter "Kga" : $1+0.072$
4) Parameter "Кс" : $1+-0.037$
5) Parameter "Kb" : $1+0.014$
6) Parameter "Ktau" : $1+-0.028$

| xww | 1. | $0.54536 \mathrm{E}-02$ |
| :---: | :---: | :---: |
| xzz | 1. | $0.11857 \mathrm{E}-01$ |
| xgg | 1. | $0.30503 \mathrm{E}-01$ |
| xyy | 1. | $0.72375 \mathrm{E}-01$ |
| xcc | 1. | $0.37344 \mathrm{E}-01$ |
| xbb | 1. | $0.13978 \mathrm{E}-01$ |
| xttau | 1. | $0.28223 \mathrm{E}-01$ |

J de Blas
M Klein

Two independent fit programs: results are in very good agreement.

## Model-dependent Coupling Fit не LНес а ғсс-ен

$\rightarrow$ Assuming SM branching fractions weighted by the measured k values, and $\Gamma_{m d}$ (c.f. CLIC model-dependent method)


$$
E_{e}=60 \mathrm{GeV} \text { L=2ab-1 HE-LHC } E_{p}=14 \mathrm{TeV} \quad \text { FCC: } E_{p}=50 \mathrm{TeV}
$$

See also talk by Jorge de Blas@FCC-Week2018 for further fits and ep+ee combinations.

## ... and Consistency Checks of EW Theory

$\rightarrow$ similar tests possible using various cms energy CLIC machines, however, in ep, we could perform them with one machine

$$
\frac{\sigma_{W W \rightarrow H \rightarrow i i}}{\sigma_{Z Z \rightarrow H \rightarrow i i}}=\frac{\kappa_{W}^{2}}{\kappa_{Z}^{2}}
$$

$$
\frac{\kappa_{W}}{\kappa_{Z}}=\cos ^{2} \theta_{W}=1-\sin ^{2} \theta_{W}
$$

$\rightarrow$ Dominated by $\mathrm{H} \rightarrow$ bb decay channel precision
$>$ Very interesting consistency check of EW theory

$>$ Values for $\cos ^{2} \Theta$ given here are the PDG value as central value
0.777 and uncertainty from ep Higgs measurement prospects

LHeC: $\quad \pm 0.010$
HE -LHeC $\quad \pm 0.006$
FCC-he $\pm 0.004$
$\rightarrow$ Another nice test: How does the Higgs couple to $3^{\text {rd }}$ and $\mathbf{2}^{\text {nd }}$ generation quark?
b is down-type and c is up-type

$$
\frac{\sigma_{W W \rightarrow H \rightarrow c \bar{c}}}{\sigma_{W W \rightarrow H \rightarrow b \bar{b}}}=\frac{\kappa_{c}^{2}}{\kappa_{b}^{2}}
$$

## $\mathrm{LHe}_{\mathrm{C}} \mathrm{LHeC}$ and HL-LHC Higgs Prospects

Hcc@pp: ~2.0-5.5 $\sigma_{\text {SM }} @ H L-L H C$
[HL-LHC Oct 2017]
submitted to ECFA:
preliminary

$\rightarrow$ Amazing prospect for measuring fundamental Higgs couplings to high precision (dark blue) at LHC with pp + ep using SM assumptions.

HL-LHC prospects using new CMS projections ( $3 a b^{-1}$ ) with two scenarios, S1 and S2, in a SM coupling fit
4.2. Determination of Higgs Couplings in pp and ep

HL-LH(e)C ensures centre of Higgs physics stays at CERN in the thirties. High precision


Figure 4: PRELIMINARY Uncertainties of coupling constant determinations using the kappa framework at the LHC in the six most frequent decay channels from the combination of ATLAS and CMS prospects at HL-LHC (blue, $3 \mathrm{ab}^{-1}$ ), the LHeC (gold, $1 \mathrm{ab}^{-1}$ ) and the combination of $p p$ and $e e$ (dark blue).

## Higgs precision observables at FCC ee and eh

- Fit to modified Higgs couplings (assuming no extra invisible decays)

| Coupling | FCC-ee | FCC-eh |  |
| :---: | :---: | :---: | :---: |
|  | Relative precision | Coupling | Relative precision |
| $\kappa_{b}$ | 0.58\% | $\kappa_{b}$ | 0.74\% |
| $\kappa_{t}$ | - | $\kappa_{t}$ | - |
| $\kappa_{\tau}$ | 0.78\% | $\kappa_{\tau}$ | 1.10\% |
| $\kappa_{c}$ | 1.05\% | $\kappa_{c}$ | 1.35\% |
| $\kappa_{\mu}$ | 9.6\% | $\kappa_{\mu}$ | - |
| $\kappa_{Z}$ | 0.16\% | $\kappa_{\text {K }}$ | 0.43\% |
| $\kappa_{W}$ | $0.41 \%$ | $n_{W}$ | 0.26\% |
| $\kappa_{g}$ | 1.23\% | $\kappa_{g}$ | 1.17\% |
| $\kappa_{\gamma}$ | 2.18\% | $\kappa_{\gamma}$ | 2.35\% |
| $\kappa_{Z \gamma}$ | - | $\kappa_{Z \gamma}$ | - |

$$
\kappa_{i} \equiv g_{h i} / g_{h i}^{S M}
$$

Published in book 1 of FCC

## Higgs coupling prospects in kepapa tamenork

| Collider | HL-LHC | ILC $_{250}$ | CLIC $_{380}$ | FCC-ee |  |  | FCC-eh |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Luminosity $\left(\mathrm{ab}^{-1}\right)$ | 3 | 2 | 0.5 | $5 @$ |  |  |  |
|  |  |  |  | $+1.5 @$ <br> 240 GeV | + <br> 365 GeV | 2 |  |
| HL-LHC |  |  |  |  |  |  |  |
| Years | 25 | 15 | 8 | 3 | +4 | - | 20 |
| $\delta \Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}(\%)$ | SM | 3.6 | 4.7 | 2.7 | $\mathbf{1 . 3}$ | 1.1 | SM |
| $\delta g_{\mathrm{HZZ}} / g_{\mathrm{HZZ}}(\%)$ | 1.5 | 0.30 | 0.60 | 0.2 | $\mathbf{0 . 1 7}$ | 0.16 | 0.43 |
| $\delta g_{\mathrm{HWW}} / g_{\mathrm{HWW}}(\%)$ | 1.7 | 1.7 | 1.0 | 1.3 | $\mathbf{0 . 4 3}$ | 0.40 | 0.26 |
| $\delta g_{\mathrm{Hbb}} / g_{\mathrm{Hbb}}(\%)$ | 3.7 | 1.7 | 2.1 | 1.3 | $\mathbf{0 . 6 1}$ | 0.56 | 0.74 |
| $\delta g_{\mathrm{Hcc}} / g_{\mathrm{Hcc}}(\%)$ | SM | 2.3 | 4.4 | 1.7 | $\mathbf{1 . 2 1}$ | 1.18 | 1.35 |
| $\delta g_{\mathrm{Hgg}} / g_{\mathrm{Hgg}}(\%)$ | 2.5 | 2.2 | 2.6 | 1.6 | $\mathbf{1 . 0 1}$ | 0.90 | 1.17 |
| $\delta g_{\mathrm{H} \mathrm{\tau} \mathrm{\tau}} / g_{\mathrm{H} \mathrm{\tau} \mathrm{\tau}}(\%)$ | 1.9 | 1.9 | 3.1 | 1.4 | $\mathbf{0 . 7 4}$ | 0.67 | 1.10 |
| $\delta g_{\mathrm{H} \mu \mu} / g_{\mathrm{H} \mu \mu}(\%)$ | 4.3 | 14.1 | n.a. | 10.1 | $\mathbf{9 . 0}$ | 3.8 | n.a. |
| $\delta g_{\mathrm{H} \gamma \gamma} / g_{\mathrm{H} \gamma \gamma}(\%)$ | 1.8 | 6.4 | n.a. | 4.8 | $\mathbf{3 . 9}$ | 1.3 | 2.3 |
| $\delta g_{\mathrm{Htt}} / g_{\mathrm{Htt}}(\%)$ | 3.4 | - | - | - | - | 3.1 | 1.7 |
| $\mathrm{BR}_{\mathrm{EXO}}(\%)$ | SM | $<1.8$ | $<3.0$ | $<1.2$ | $<\mathbf{1 . 0}$ | $<1.0$ | n.a. |

Table from Book1 of FCC. (w/o LHeC and CepC)
Synergetic evaluation under way by ECFA Higgs working group $\rightarrow$ preparation for Granada. Note: rare channels are for pp. Muon has $0.02 \%$ branching fraction $-10 \%$ error in e+e-

## Higgs complementarities: Global fit to Higgs couplings at FCC

- All single Higgs couplings can be determined below the $1 \%$

FCC-ee/FCC-eh
Precise determinations for the leading couplings
HZZ Crucial for normalization of FCC-hh results

FCC-hh
Completes the picture with precise
determinations of Top and coupling associated to rare decays

NOT MODEL-INDEPENDENT:
Results assume that, if there is New physics, it can only be in the Higgs couplings

| HLLHC + FCC |  |
| :---: | :---: |
| Coupling | Relative precision |
| $\kappa_{b}$ | $0.38 \%$ |
| $\kappa_{t}$ | $0.51 \%$ |
| $\kappa_{\tau}$ | $0.58 \%$ |
| $\kappa_{c}$ | $0.79 \%$ |
| $\kappa_{\mu}$ | $0.42 \%$ |
| $\kappa_{Z}$ | $0.14 \%$ |
| $\kappa_{W}$ | $0.17 \%$ |
| $\kappa_{g}$ | $0.74 \%$ |
| $\kappa_{\gamma}$ | $0.40 \%$ |
| $\kappa_{Z \gamma}$ | $0.52 \%$ |

$$
\kappa_{i} \equiv g_{h i} / \overline{g_{h i}^{S M}}
$$

## what Higgs precision do we need?

- If new particles with TeV mass, effects on Higgs couplings are small, need ILC precision to confirm and decipher them
- Little Higgs models with TeV scale partners

$$
\begin{aligned}
& \frac{g_{h g g}}{g_{h_{\mathrm{sM} g g}}}=1-(5 \% \sim 9 \%) \\
& \frac{g_{h \gamma \gamma}}{g_{h_{\mathrm{sM} \gamma \gamma}}}=1-(5 \% \sim 6 \%)
\end{aligned}
$$

- Heavy Higgs effects

$$
\frac{g_{h b b}}{g_{h_{\mathrm{SM}} b b}}=\frac{g_{h \tau \tau}}{g_{h_{\mathrm{SM}} \tau \tau}} \simeq 1+1.7 \%\left(\frac{1 \mathrm{TeV}}{m_{A}}\right)^{2}
$$

- Scalar top partner effects

$$
\frac{g_{h g g}}{g_{h_{\mathrm{gm} g g}}} \simeq 1+1.4 \%\left(\frac{1 \mathrm{TeV}}{m_{T}}\right)^{2}, \quad \frac{g_{h \gamma \gamma}}{g_{h_{\mathrm{sm} \gamma \gamma}}} \simeq 1-0.4 \%\left(\frac{1 \mathrm{TeV}}{m_{T}}\right)^{2}
$$

## ILC TDR Volume 2

## Exotic Higgs Decays

C. Zhang@Poetic 2016

$$
h \rightarrow \phi \phi \rightarrow 4 b
$$

$$
\mathcal{L}_{e f f}=\lambda_{h} v h \phi^{2}+\lambda_{b} \phi \bar{b} b+\mathcal{L}_{\phi \text { decay }, \text { other }}
$$

$\phi$ : a spin-0 particle from new physics.
$e q \rightarrow \nu_{e} h q^{\prime} \rightarrow \nu_{e} \phi \phi q^{\prime} \rightarrow \nu_{e} b \bar{b} b \bar{b} q^{\prime}$

$C_{4 b}^{2}=\kappa_{V}^{2} \times \operatorname{Br}(h \rightarrow \phi \phi) \times \operatorname{Br}^{2}(\phi \rightarrow b \bar{b})$
S. Liu, Y. L. Tang, C. Zhang, S. Zhu, 1608.08458

- Well motivated signature in extended Higgs sector.
- Difficult to probe at hadron colliders.
- LHeC signal: here using CC channel.
- Backgrounds: CC multijet, CC t/h/W/Z+jets, PHP multijet.
- PHP backgrounds assumed to be negligible after MET requirements and electron tagging.
- Current analysis is done at parton level.
@LHeC: $95 \%$ C.L. for $\mathrm{m}_{\phi}$ of 20, 40, 60 GeV is $\mathbf{0 . 3 \%}, \mathbf{0 . 2 \%}$ and $0.1 \%$ for $\mathrm{C}_{4 \mathrm{~b}}{ }^{2}$


## First Results @ FCC-eh

Uta Klein \&

| $\mathbf{L}=\mathbf{1} \mathbf{a b}^{\mathbf{1}}$ | Michael O'Keefe |
| :--- | :--- |
| $\mathbf{P}_{\mathrm{e}}=-\mathbf{8 0 \%}$ |  |



Very promising first results to discover an exotic Higgs decay into two new light scalars at FCChe down to a BR of $1 \%$ for 1 ab $^{-1}$. A BR of 10\% could be discovered within 1 year ( $100 \mathrm{fb}^{-1}$ ).

| Values for BDT>0 | $\mathrm{M}_{\mathrm{Q}}(\mathrm{GeV})$ |  |  |  |  | $Z=\sqrt{2\left[(S+B) \ln \left(1+\frac{S}{B}\right)-S\right]}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 20 |  |  | 60 |  |
| BR (\%) | $\sigma$ (fb) | $\Delta \sigma$ (fb) | Z | $\sigma$ (fb) | $\Delta \sigma$ (fb) | Z |
| 0.2 | 0.03 | 0.02 | 1.14 | 0.03 | 0.03 | -1.17 |
| 0.4 | 0.05 | 0.02 | 2.27 | 0.07 | 0.03 | - 2.33 |
| 0.6 | 0.08 | 0.02 | 3.37 | 0.10 | 0.03 | - 3.47 |
| 0.8 | 0.10 | 0.02 | 4.46 | 0.13 | 0.03 | - 4.59 |
| 1 | 0.13 | 0.03 | 5.54 | 0.17 | 0.03 | - 5.71 |

## Full simulation of DIS ${ }_{\text {[EM, had calibration, tracking, backgrounds, ..] }}$

$$
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{x}^{1} d z\left[F_{2}\left(\frac{x}{z}\right) P_{q q}(z)+2 \sum_{i=1}^{N_{f}} e_{i}^{2} \cdot G\left(\frac{x}{z}\right) P_{q G}(z)\right]
$$

LHeC


High precision $F_{2}\left(x, Q^{2}\right)$ from few days of nominal ep running. Needs large $\mathbf{Q}^{2}$

## Precision PDFs and LHC Higgs physics

NNNLO pp-Higgs Cross Sections at 14 TeV


Cross section to $\mathrm{N}^{3}$ LO needs PDFs to $\mathrm{N}^{3} \mathrm{LO}$ and strong coupling to per mile precision

LHeC with $50 \mathrm{fb}^{-1}$

$$
\sigma=48.58 \mathrm{pb}_{-3.27 \mathrm{pb}(-6.72 \%)}^{+2.22 \mathrm{pb}(+4.56 \%)}(\text { theory }) \pm 1.56 \mathrm{pb}(3.20 \%)\left(\mathrm{PDF}+\alpha_{s}\right)
$$

## Precision Higgs Physics at High-Energy Electron-Proton Colliders

## LHeC Higgs Study Group

G. Azuelos, S. Behera, J. De Blas, D. Hampson, R. Islam, S. Kawaguchi, E. Kay, U. Klein, M. Klein, P. Kostka, M. Kumar, M. Kuze, B. Mellado, M. O’Keefe, R. Li, C. Gwenlan, R. Ruan, T. Sekine, A. Senol, H. Sun, M. Tanaka, K. Wang, C. Zhang Tentative authorlist - TO BE UPDATED

Abstract. The Higgs boson and its physics have become a central topic of modern particle physics and a key parameter in the evaluation of future high energy collider projects. This paper provides a summary and overview on the potential of future luminous, energy frontier electron-proton colliders, especially the LHeC, the HE-LHC and the FCC-eh, for precision Standard Model measurements of the properties of the Higgs boson in deep inelastic scattering. Detailed analyses are presented on the prospects for accurate measurements of the Higgs boson decays into pairs of bottom and charm quarks. An extended study is performed for estimating the precision on the Higgs couplings in the most abundant decay channels, based on measurements in the charged and weak neutral current DIS reactions. The addition of $e p$ information to the expected HL-LHC Higgs coupling measurements is demonstrated to lead to major improvements on the Higgs results one can expect to come from the LHC facility at large.

## We hope to see $\mathrm{H} \rightarrow \mathrm{bb}$ in the LHeC Detector

## LHC-p

P. Kostka et al., Orsay WS 2018

## Wrap Up iva kelen at Fcc cor meeting

- LHeC (FCC-he) could measure the dominant Higgs couplings, including ttH, to 0.6-17\% (0.2-2\%) precision [CC+NC DIS, no pile-up, clean final state..]
- Striking synergy of ep (>~1 TeV) and ee (250-350 GeV) and pp for Higgs coupling measurements!
- ep would empower the physics potential of pp (non-resonant searches, EW, Higgs..) through high precision QCD measurements: flavour separated PDFs at $\mathrm{N}^{3}$ LO, $\alpha_{\mathrm{s}}$ to per mille ...
- Higgs measurements in ep are self consistent experimentally and theoretically based on DIS cross sections with very small systematic uncertainties
- Combining pp with ep, a very powerful Higgs facility can be established at the LHC and subsequently at higher energy hadron colliders.


## Additional material

## References

[1] S. P. Das, J. Hernandez-Sanchez, S. Moretti and A. Rosado, Prospects for discovering a ligh charged Higgs boson within the NMSSM at the FCC-eh collider, 1806.08361.
[2] A. Caliskan and S. O. Kara, Single production of the excited electrons at the future FCC-based lepton-hadron colliders, 1806.02037.
[3] H. Hesari, H. Khanpour and M. Mohammadi Najafabadi, Study of Higgs Effective Couplings at Electron-Proton Colliders, Phys. Rev. D97 (2018) 095041, [1805.04697].
[4] L. Duarte, G. Zapata and O. A. Sampayo, Angular and polarization trails from effective interactions of Majorana neutrinos at the LHeC, Eur. Phys. J. C78 (2018) 352, [1802. 07620 ].
[5] C. Han, R. Li, R--Q. Pan and K. Wang, Searching for the light Higgsinos at the CERN LHeC, 1802.03679.
[6] G. Azuelos, H. Sun and K. Wang, Search for singly charged Higgs bosons in vector-boson cattering at ep colliders, Phys. Rev. 197 (2018) 116005, [1712.07505]
[7] D. Curtin, K. Deshpande, O. Fischer and J. Zurita, New Physics Opportunities for Long-Lived Particles at Electron-Proton Colliders, 1712.07135.
${ }^{[8]}$ R. Li, X.-M. Shen, K. Wang, T. Xu, L. Zhang and G. Zhu, Probing anomalous $W$ W $\gamma$ triple gauge bosons coupling at the LHeC, Phys. Rev. D97 (2018) 075043, [1711.05607].
[9] K. He, H.-Y. Bi, R.-Y. Zhang, X.-Z. Li and W.-G. Ma, P-wave excited B** meson
photoproduction at the LHeC, J. Phys. G45 (2018) 055005, [1710.11508].
[10] H. Sun, X. Luo, W. Wei and T. Liu, Searching for the doubly-charged Higgs bosons in the Georgi-Machac
[1710.06284].
[11] Y. O. Günaydın, M. Sahin and S. Sultansoy, Resonance Production of Excited u-quark at the FCC Based $\gamma$ p Colliders, 1707 - 00056.
[12] A. Caliskan, Excited neutiino search potential of the FCC-based electron-hadron colliders, Adv. High Energy Phys. 2017 (2017) 4726050, [1706 - 09797$]$ -
[13] L. Han, Y.-J. Zhang and Y.-B. Liu, Single vector-like T-quark search via the $T \rightarrow$ Wb decay
channel at the LHeG, Phys. Lett. B771 (2017) 106-112.
[14] I. Turk Cakir, A. Yilmaz, H. Denizli, A. Senol, H. Karadeniz and O. Cakir, Probing the 2017 (2017) 1572053, [1705. 05419].
[15] Y--B. Liu, Search for single production of vector-like top partners at the Large Hadron Electron Collider, Nucl. Phys. B923 (2017) 312-323, [1704.02059].
[16] Y.-J. Zhang, L. Han and Y.-B. Liu, Single production of the top partner in the $T \rightarrow t Z$
channel at the LHeC, Phys. Lett. B768 (2017) 241-247.
[17] X. Wang, H. Sun and X. Luo, Searches for the Anornalous FCNC Top-Higgs Couplings with [1703.02691].
[18] H.-Y. Bi, R.-Y. Zhang, X.-G. Wu, W.-G. Ma, X.-Z. Li and S. Owusu, Photoproduction of doubly heavy baryon at the LHeC, Phys. Rev. D95 (2017) 074020, [1702.07181].
[19] B. Coleppa, M. Kumar, S. Kumar and B. Mellado, Measuring CP nature of top-Higgs couplings at th.
[20] H. Denizli, A. Senol, A. Yilmaz, I. Turk Cakir, H. Karadeniz and O. Cakir, Top quark FCNC couplings at future circular hadron electron colliders, Phys. Rev. D96 (2017) 015024, [1701. 06932].
[21] H.-Y. Bi, R.-Y. Zhang, H.-Y. Han, Y. Jiang and X.-G. Wu, Photoproduction of the Be ${ }_{c}^{(*)}$
meson at the LHeC, Phys. Rev. D95 (2017) 034019 [1612, neson at the LHeC, Phys. Rev. D95 (2017) 034019, [1612.07990].
[22] S. P. Das and M. Nowakowski, Light neutral CP-even Higgs boson within Next-to-Minimal Supersymmetric Standard model (NMSSM) at the Large Hadron electron Collider (LHeC), Phys. Rev. D96 (2017) 055014, [1612.07241].
[23] J. Hernández-Sánchez, O. Flores-Sánchez, C. G. Honorato, S. Moretti and S. Rosado, CHARGED2016 (2017) 032, [1612. 06316].
[24] S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future $e^{-} e^{+}, p p$, and $e^{-}$ colliders, Int. J. Mod. Phys. A32 (2017) 1750078, [1612.02728].
[25] S. Liu, Y.-L. Tang, C. Zhang and S.-h. Zhu, Exotic Higgs Decay $h \rightarrow \phi \phi \rightarrow 4 b$ at the LHeC Еит. Phys. J. С77 (2017) 457, [1608.08458].
26] A. Ozansoy, V. Arr and V. Cetinkaya, Search for excited spin-3/2 neutrinos at LHeC, Adv High Energy Phys 2016 (2016) 1739027, [1607-04437].
[27) G. R. Boroun, B. Rezaei and S. Heidari, Nuclear Longitudinal structure function in eA processes at the LHeC, Int. J. Mod. Phys. A32 (2017) 1750197, [1606. 02864]
8] Y. Acar, U. Kaya, B. B. Oner and S. Sultansoy, Color octet electron search potential of CC based e-p colliders, J. Phys. G44 (2017) 045005, [1605.08028].
$29]$ S. Mondal and S. K. Rai, Probing the Heavy Neutrinos of Inverse Seesaw Model at the He C, Phys. Rev. $\mathbf{D 9 4}$ (2016) 033008, [1605. 04508]
[30] M. Lindner, F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Left-Right Symmetry and Lepton Number
[1604. 08596].
[31] H. Sun and X. Wang, Exploring the Anomalous Top-Higgs FCNC Couplings at the electron proton colliders, Eur. Phys. J. C78 (2018) 281, [1602.04670]-
[32] S. Mondal and S. K. Rai, Polarized window for left-right symmetry and a right-handed
neutrino at the Large Hadron-Electron Collider, Phys. Rev. D93 (2016) 011702, [1510.08632].
[33] G. R. Boroun, Top reduced cross section behavior at the LHeC kinematic range, Chin. Phys. C41 (2017) 013104, [1510.02914].
[34] M. Kumar, X. Ruan, R. Islam, A. S. Cornell, M. Klein, U. Klein et al., Probing anomalous couplings using di-Higgs production in electron-proton collisions, Phys. Lett. B764 (2017) 247-253, [1509.04016].
[35] Y.-L. Tang, C. Zhang and S.-h. Zhu, Invisible Higgs Decay at the LHeC, Phys. Rev. D94 (2016) 011702, [1508.01095].
[36] W. Liu, H. Sun, X. Wang and X. Luo, Probing the anomalous FCNC top-Higgs Yukawa couplings at the Large Hadron Electron Collider, Phys. Rev. D92 (2015) 074015, [1507.03264].
[37] G. R. Boroun, Geometrical scaling behavior of the top structure functions ratio at the LHeC, Phys. Lett. B744 (2015) 142-145, [1503. 01590].
[38] S. P. Das, J. Hernández-Sánchez, S. Moretti, A. Rosado and R. Xoxocotzi, Flavor violating signatures of lighter and heavier Higgs bosons within the Two Higgs Doublet Model Type-III at the LHeC, Phys. Rev. D94 (2016) 055003, [1503.01464].
[39] L. Duarte, G. A. González-Sprinberg and O. A. Sampayo, Majorana neutrinos production at LHeC in an effective approach, Phys. Rev. D91 (2015) 053007, [1412.1433]
[40] I. A. Sarmiento-Alvarado, A. O. Bouzas and F. Larios, Analysis of top-quark charged-current coupling at the LHeC, J. Phys. G42 (2015) 085001, [1412.6679].
[41] G. R. Boroun, Top structure function at the LHeC, Phys. Lett. B741 (2015) 197-201, [1411.6492].
[42] I. T. Cakir, O. Cakir, A. Senol and A. T. Tasci, Search for anomalous $W W \gamma$ and $W W Z$ couplings with polarized e-beam at the LHeC, Acta Phys. Polon. B45 (2014) 1947, [1406.7696].
[43] R.-Y. Zhang, H. Wei, L. Han and W.-G. Ma, Probing L-violating coupling via sbottom resonance production at the LHeC, Mod. Phys. Lett. A29 (2014) 1450029, [1401.4266].
[44] J. T. Amaral, V. P. Goncalves and M. S. Kugeratski, Probing gluon number fluctuation effects in future electron-hadron colliders, Nucl. Phys. A930 (2014) 104-116, [1312.4741].
[45] X.-P. Li, L. Guo, W.-G. Ma, R.-Y. Zhang, L. Han and M. Song, Single (anti-)top quark production in association with a lightest neutralino at the LHeC, Phys. Rev. D88 (2013) 014023, [1307. 2308].
[46] S. Dutta, A. Goyal, M. Kumar and B. Mellado, Measuring anomalous $W t b$ couplings at $e^{-} p$ collider, Eur. Phys. J. C75 (2015) 577, [1307.1688].
[47] I. T. Cakir, O. Cakir, A. Senol and A. T. Tasci, Probing Anomalous HZZ Couplings at the LHeC, Mod. Phys. Lett. A28 (2013) 1350142, [1304.3616].
[48] S. Kuday, Resonant Production of Sbottom via RPV Couplings at the LHeC, J. Korean Phys. Soc. 64 (2014) 1783-1787, [1304.2124].
[49] M. Sahin, Resonant production of spin-3/2 color octet electron at the LHeC, Acta Phys Polon. B45 (2014) 1811, [1302.5747].
[50] I. T. Cakir, A. Senol and A. T. Tasci, Associated Production of Single Top Quark and W-boson Through Anomalous Couplings at LHeC based $\gamma p$ Colliders, Mod. Phys. Lett. A29 (2014) 1450021, [1301. 2617].

50 journal papers on BSM with LHeC in recent years

## LHeC / HE-LHeC / FCCeh Calorimeter Characteristic

| Calo $_{\text {LHeC }}$ | FHCPlug[ $\mathrm{SNW}^{\text {W }}$ ] | FECPlug[ 3 W] $]$ | EMCBar[SclPb] | HCBar/Ecap [SclPb] | BECPlug[ $[1 / \mathrm{Pb}]$ | BHCPlug[ $\mathrm{SHCu}^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\eta_{\max / \min }$ | 5.2 | 5.1 | 2.7/-2.1 | 2.1/-1.7 | -4.5 | -4.7 |
| $\begin{aligned} & \sigma_{E} / E \quad[\neq] \\ & =\mathbf{a} / \sqrt{E} \oplus \mathbf{b} \end{aligned}$ | $\begin{aligned} & \text { 1) } \\ & \text { 2) } \end{aligned}$ |  | 13.51 .7 | 31.82 .4 |  |  |
| E-Flow | $\sigma_{E_{\text {jet }}} / E_{\text {jet }}=0.03$ (at lower energies $25 \% / \sqrt{E} ;$ sampling $\sim 50 ; \sigma_{\text {jet }} \sim 3 \%$ ) |  |  |  |  |  |
| $\Lambda_{I} / X_{0}$ | $\Lambda_{I} \geq 12$ | $X_{0} \geq 28$ | $X_{0} \geq 28$ | $\Lambda_{I} \geq 12$ | $X_{0} \geq 25$ | $\Lambda_{I} \geq 10$ |
| Volume [ $\mathrm{m}^{3}$ ] | 6.7 | 1.6 | 15.1 | 165. | 1.6 | 5.8 |
| Sum-Si [ $\left.\mathrm{m}^{2}\right]$ | 197.4 |  |  |  |  |  |


| Calo $_{\text {HE-LHEC }}$ | FHCPlug[]sw] | FECPlug[\|ITW] | EMCBar[8ciPb] | HCBar/Ecap[8cIFE] | BECPlug[[IPP] | BHCPlug[ [1Cu] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\eta_{\max / \min }$ | 5.7 | 5.3 | 2.8/-2.5 | 2.1/-1.8 | -5.1 | -5.4 |
| $\begin{aligned} & \sigma_{E} / E \quad{ }^{[\%]} \\ & =\mathbf{a} / \sqrt{E} \oplus \mathbf{b} \end{aligned}$ | ${ }^{\text {1) }}$ 2) 680.71 .8 | 17.70 .2 | 17.00 .8 | 28.02 .2 | 13.90 .6 | 52.33 .1 |
| E-Flow | $\sigma_{E_{\text {jet }}} / E_{\text {jet }}=0.03$ (at lower energies $25 \% / \sqrt{E}$; sampling $\sim 55 ; ~ \sigma_{\text {jet }} \sim 3 \%$ ) |  |  |  |  |  |
| $\Lambda_{I} / X_{0}$ | $\Lambda_{I} \geq 12$ | $X_{0} \geq 28$ | $X_{0} \geq 28$ | $\Lambda_{I} \geq 12$ | $X_{0} \geq 25$ | $\Lambda_{I} \geq 10$ |
| Volume ${ }^{\left[\mathrm{m}^{3}\right]}$ | 13.2 | 3.1 | 28.8 | 407 | 1.98 | 7.0 |
| Sum-Si [ $\left.{ }^{2}\right]$ | 461 |  |  |  |  |  |

HE-LHeC

| $\mathrm{Calo}_{\text {FCOCh }}$ | FHCPlug[SW] | FECPlug[[SW] | EMCBar[SclPb] | HCBar/Ecap [Sclpe] | BECPlug[ $[1 \mathrm{~Pb}]$ | BHCPlug[ $\mathrm{SHCu}^{\text {c }}$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\eta_{\max / \min }$ | 6.0 | 5.6 | 3.0/-2.7 | 2.5/-2.2 | -5.3 | -5.6 |
| $\sigma_{E} / E \quad[\%]$ | ${ }^{1)} \quad 58.2$. | 19. 0.01 | 17. 1. | 28. 1.9 | 14. 0.8 | 48. 3 . |
| $=\mathbf{a} / \sqrt{E} \oplus \mathbf{b}$ | $\left.{ }^{2}\right) \quad 66.2$. | 18. 0.01 | 17. 1. | 28. 2. | 14. 1. | 542. |
| E-Flow | $\sigma_{E_{\text {jet }}} / E_{\text {jet }}=0.03$ (at lower energies $25 \% / \sqrt{E} ;$ sampling $\sim 55 ; \sigma_{j e t} \sim 3 \%$ ) |  |  |  |  |  |
| $\Lambda_{I} / X_{0}$ | $\Lambda_{I} \geq 12$ | $X_{0} \geq 28$ | $X_{0} \geq 28$ | $\Lambda_{I} \geq 12$ | $X_{0} \geq 25$ | $\Lambda_{I} \geq 10$ |
| Volume [ $\mathrm{m}^{3}$ ] | 13.2 | 3.1 | 28.8 | 407 | 1.98 | 7.0 |
| Sum-Si [m ${ }^{2}$ | 461 |  |  |  |  |  |

FCCeh
${ }^{1)}$ GEANT4 simulation based fits; ${ }^{2}$ ) DDG4 simulation based fits

## LHeC / HE-LHeC / FCCeh Tracker Characteristic

| Tracker $_{\text {LHeC }}$ Part | Inner Barrel |  | $\begin{gathered} \text { ECAP Barrel } \\ \text { Pix } \end{gathered}$ | Forward Tracker |  | Backward Tracker |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pix | Strix |  | Pix | Strix | Pix | Strix |
| \#Layers/Wheels | $4_{\text {tnaar }}$ | 3 outar | 4 | 3 |  | 2 |  |
| \#Mods/Ring/Wheel | $\max 12 \mathrm{flat}$ | $\max 24^{\text {ath }}$ | 2 | $2_{\text {inner }}$ | $2_{\text {oustar }}$ | $2_{\text {inner }}$ | $2_{\text {outer }}$ |
| \#Modules | 6010 |  |  | 648 |  | 432 |  |
| $\eta_{\text {max } / \text { min }}$ | $\pm 1.5$ |  | $\pm 2.5$ | 2.5-5.1 |  | -2.5--4.8 |  |
| $\sigma^{r-\phi}[\mu \mathrm{m}]$ | 5-7.5 | 7-9.5 | 5-7.5 | 5-7.5 | 7-9.5 | 5-7.5 | 7-9.5 |
| $\sigma^{z} \quad[\mu \mathrm{~m}]$ | 15 | 15 | 15 | 15 | 30 | 15 | 30 |
| $X_{0} / \Lambda_{I}$ [\%] | 9.42/2.92 |  |  | $2.27 / 0.71$ |  | $1.52 / 0.47$ |  |
| Sum-Si $\left[\mathrm{m}^{2}\right]$ | 17. |  |  | 3.3 |  | 2.2 |  |


| Tracker $_{H E-L H e C}$ Part | Inner Barrel |  | $\begin{gathered} \text { ECAP Barrel } \\ \text { Pix } \\ \hline \end{gathered}$ | Forward Tracker  <br> Pix Strix |  | Backward Tracker |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pix | Strix |  |  |  | Pix | Strix |
| \#Layers/Wheels | $4_{\text {innar }}$ | 3 euter | 4 | 6 |  | 4 |  |
| \#Mods/Ring/Wheel | $\max 12^{\text {flet }}$ | max $24{ }^{\text {tult }}$ | 2 | $2_{\text {inner }}$ | $2_{\text {outar }}$ | $22_{\text {tnner }}$ | $2{ }_{\text {cuter }}$ |
| \#Modules | 5794 |  |  | 1296 |  | 864 |  |
| $\eta_{\max / \mathrm{min}}$ | $\pm 1.5$ |  | $\pm 2.5$ | 2.5-5.5 |  | -2.5--5.3 |  |
| $\sigma^{r-\phi} \quad[\mu \mathrm{m}]$ | 5-7.5 | 7-9.5 | 5-7.5 | 5-7.5 | 7-9.5 | 5-7.5 | 7-9.5 |
| $\sigma^{z} \quad[\mu \mathrm{~m}]$ | 15 | 15 | 15 | 15 | 30 | 15 | 30 |
| $X_{0} / \Lambda_{I}$ [\%] | 9.51/2.95 |  |  | $4.55 / 1.41$ |  | 3.03/0.94 |  |
| Sum-Si $\left[\mathrm{m}^{2}\right]$ | 15.8 |  |  | 6.6 |  | 4.4 |  |


| Tracker ${ }_{\text {FCCeh }}$ Part | Inner Barrel |  | $\begin{gathered} \hline \text { ECAP Barrel } \\ \text { Pix } \end{gathered}$ | Forward Tracker |  | Backward Tracker |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pix | Strix |  | Pix | Strix | Pix | Strix |
| \#Layers/Wheels | $4_{\text {tnmar }}$ | $3_{\text {outer }}$ | 4 | 7 |  |  |  |
| \#Mods/Ring/Wheel | max 12 flat | max $24{ }^{\text {stil }}$ | 2 | $2_{\text {innar }}$ | $2{ }_{\text {ostar }}$ | $22_{\text {tnuer }}$ | $2{ }_{\text {outar }}$ |
| \#Modules | 5794 |  |  | 1512 |  | 1080 |  |
| $\eta_{\max / \min }$ | $\pm 1.5$ |  | $\pm 2.5$ | 2.5-6.0 |  | $-2.5-6.0$ |  |
| $\sigma^{r-\phi}$ [ $\quad[\mu m]$ | 5-7.5 | 7-9.5 | 5-7.5 | 5-7.5 | 7-9.5 | 5-7.5 | 7-9.5 |
| $\sigma^{z} \quad[\mu \mathrm{~m}]$ | 15 | 15 | 15 | 15 | 30 | 15 | 30 |
| $X_{0} / \Lambda_{I}$ [\%] | 9.51/2.95 |  |  | 5.31/1.65 |  | $3.79 / 1.18$ |  |
| Sum-Si $\left[\mathrm{m}^{2}\right]$ | 15.8 |  |  | 7.7 |  | 5.5 |  |

LHeC Detector for the HL/HE-LHC
[arXiv:1802.04317]
1562


Length x Diameter: LHeC (13.3 x $9 \mathrm{~m}^{2}$ ) HE-LHC ( $15.6 \times 10.4$ ) FCCeh (19 x 12) ATLAS (45 x 25) CMS (21 x 15): [LHeC < CMS, FCC-eh ~ CMS size] If CERN decides that the HE LHC comes, the LHeC detector should anticipate that

## Model-dependent Coupling Fit


$\rightarrow$ Couplings of the dominant Higgs decays could be measured to few percent precision at ep@HL-LHC.
$\rightarrow$ Impressive complementarity of ee and ep $\rightarrow$ to get model independent couplings, use absolute HZZ cross section from ee.


## Additional Sources \& Thanks to

- Much more material can be found here: LHeC and FCC-eh Workshop, September 2017, CERN https://indico.cern.ch/event/639067/
- The LHeC/FCC-eh study group, http://cern.ch/lhec.
- "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]
- $1^{\text {st }}$ FCC Physics Workshop, 16.1.-20.1.2017, CERNhttps://indico.cern.ch/event/550509/
- Before April 2018: Higgs branching fractions and uncertainties taken from
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportP ageBR2014
- Update used from April

2018https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowRep ortPageBR

- FCC Week 2018, Amsterdam, https://indico.cern.ch/event/656491/

Special thanks to my colleagues in the LHeC/FCC-he Higgs group and to Jorge de Blas for the discussion of model-dependent coupling fits.

# Double Higgs Production <br> FCC-eh cut-based study 

[1509.04016]

## FCChe gннн ~ 20\% in ep




Here $g_{(\ldots)}^{(i)}, i=1,2$, and $\tilde{g}_{(\ldots)}$ are real coefficients corresponding to the CP-even and CP-odd couplings respectively, of the $h h h, h W W$ and $h h W W$ anomalous vertices.

## Double Higgs Production at FCC-eh

"Probing anomalous couplings using di-Higgs production in electron-proton collisions" by Mukesh Kumar, Xifeng Ruan, Rashidul Islam, Alan S. Cornell, Max Klein, Uta Klein, Bruce Mellado,
Physics Letters B 764 (2017) 247-253 [arXiv:1509.04016]

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{h h h}^{(3)}+\mathcal{L}_{h W W}^{(3)}+\mathcal{L}_{h h W W}^{(4)}
$$

FCC-eh
SM(P=-0.8)
$\sigma(\mathrm{HH})=430 \mathrm{ab}$ in VBF!

$$
\begin{gather*}
\mathcal{L}_{h h n}^{(3)}=\frac{m_{h}^{2}}{2 v}\left(1-g_{h h h}^{(1)}\right) h^{3}+\frac{1}{2 v} g_{h h h}^{(2)} h \partial_{\mu} h \partial^{\mu} h  \tag{2}\\
\mathcal{L}_{h W W}^{(3)}=-g\left[\frac{g_{h W W}^{(1)}}{2 m_{W}} W^{\mu v} W_{\mu \nu}^{\dagger} h+\frac{g_{h W W}^{(2)}}{m_{W}}\left(W^{v} \partial^{\mu} W_{\mu \nu}^{\dagger} h+\mathrm{h.c}\right)\right. \\
\left.+\frac{\tilde{g}_{h W W}}{2 m_{W}} W^{\mu \nu} \widetilde{W}_{\mu \nu}^{\dagger} h\right] \\
\mathcal{L}_{h h W W}^{(4)}=-g^{2}\left[\frac{g_{h h W W}^{(1)}}{4 m_{W}^{2}} W^{\mu v} W_{\mu \nu}^{\dagger} h^{2}+\frac{g_{h h W W}^{(2)}}{2 m_{W}^{2}}\left(W^{v} \partial^{\mu} W_{\mu \nu}^{\dagger} h^{2}+\mathrm{h.c}\right)\right. \\
\left.+\frac{\tilde{g}_{h h W W}}{4 m_{W}^{2}} W^{\mu v} \widetilde{W}_{\mu \nu}^{\dagger} h^{2}\right]
\end{gather*}
$$

$\rightarrow$ All other g coefficients are anomalous couplings to the hhh, hWW and hhWW anomalous vertices
$\rightarrow$ those are 0 in SM

$$
\begin{align*}
& \Gamma_{h h h}=-6 \lambda v\left[g_{h h h}^{(1)}+\frac{g_{h h h}^{(2)}}{3 m_{h}^{2}}\left(p_{1} \cdot p_{2}+p_{2} \cdot p_{3}+p_{3} \cdot p_{1}\right)\right],  \tag{6}\\
& \Gamma_{h W^{-} W^{+}}=g m_{W}[ \left\{1+\frac{g_{h W W}^{(1)}}{m_{W}^{2}} p_{2} \cdot p_{3}+\frac{g_{h W W}^{(2)}}{m_{W}^{2}}\left(p_{2}^{2}+p_{3}^{2}\right)\right\} \eta^{\mu_{2} \mu_{3}} \\
&-\frac{g_{h W W}^{(1)}}{m_{W}^{2}} p_{2}^{\mu_{3}} p_{3}^{\mu_{2}}-\frac{g_{h W W}^{(2)}}{m_{W}^{2}}\left(p_{2}^{\mu_{2}} p_{2}^{\mu_{3}}+p_{3}^{\mu_{2}} p_{3}^{\mu_{3}}\right) \\
&\left.-\mathrm{i} \frac{\tilde{g}_{h W W}}{m_{W}^{2}} \epsilon_{\mu_{2} \mu_{3} \mu v} p_{2}^{\mu} p_{3}^{v}\right], \tag{7}
\end{align*}
$$


$1,2,3=$ $h, h, h$

1,2,3 = h,W-,W+

$$
\Gamma_{h h W^{-} W^{+}}=g^{2}\left[\left\{\frac{1}{2}+\frac{g_{h h W W}^{(1)}}{m_{W}^{2}} p_{3} \cdot p_{4}+\frac{g_{h W W W}^{(2)}}{m_{W}^{2}}\left(p_{3}^{2}+p_{4}^{2}\right)\right\} \eta^{\mu_{3} \mu_{4}}\right.
$$

$$
\begin{aligned}
& -\frac{g_{h h W W}^{(1)}}{m_{W}^{2}} p_{3}^{\mu_{4}} p_{4}^{\mu_{3}}-\frac{g_{h h W W}^{(2)}}{m_{W}^{2}} \\
& \left.-\mathrm{i} \frac{\tilde{g}_{h h W W}}{m_{W}^{2}} \epsilon_{\mu_{3} \mu_{4} \mu \nu} p_{3}^{\mu} p_{4}^{v}\right] .
\end{aligned}
$$

Note the dependence on momenta in non-SM vertices. This induces significant impact on scattering kinematics.

## SM Higgs in ep

U. Klein, @DIS2015



LHeC / FCC-eh: Sizeable Higgs rates in charged current (CC) DIS for L=100-1000 fb-1

## FCC-eh cut based results

Masahiro Tanaka, Masahiro Kuze, Tokyo Tech 2017

- unpolarised samples using $\mathrm{E}_{\mathrm{e}}=60 \mathrm{GeV}$ and Ep of 7 and 50 TeV

LHeC

|  | $\sigma(\mathrm{pb})$ | Nsample | $\mathrm{N} / \sigma\left(\mathrm{fb}^{-1}\right)$ |
| :---: | :---: | :---: | :---: |
| Signal CC:H->bb | 0.113 | 0.2 M | 1760 |
| CCiji no top | 4.5 | 2.6 M | 570 |
| CC single top | 0.77 | 0.9 M | 1160 |
| CC Z | 0.52 | 0.6 M | 1160 |
| NC Z | 0.13 | 0.15 M | 1140 |
| PAiji | 41 | 14 M | 350 |

FCC

|  | $\sigma(\mathrm{pb})$ | Nsample | $\mathrm{N} / \sigma\left(\mathrm{fb}^{-1}\right)$ |
| :---: | :---: | :---: | :---: |
| Signal CC:H->bb | 0.467 | 0.15 M | 321 |
| CCjij no top | 21.2 | 1.95 M | 92 |
| CC single top | 9.75 | 1.05 M | 108 |
| CC Z | 1.6 | 0.15 M | 94 |
| NC Z | 0.33 | 0.15 M | 455 |
| PAjij | 262 | 12.9 M | 49 |

## Mass of 2 b-jets after event selection




Higgs in ee vs ep
ee: Dominant Higgs productions pe vs e+e- Higgs cross sections




## Azimuthal Angle Distributions

[arXiv:1509.04016]
between missing transverse energy and forward jet, at Delphes detector-level, including background : bbbbj, bbjjj, Z(bb)h(bb)j, ttj, h(bb)bbj
$\rightarrow$ For signal, we consider $h h \rightarrow$ bbbb decays motivated by $h \rightarrow$ bb studies.



$\rightarrow$ normalised DIS cross sections are sensitive to non-BSM vertices
$\rightarrow$ initial study published for this novel variable
$\rightarrow$ potential for a deeper analysis and interpretation

|  | bb | WW | gg | $\tau \tau$ | cc | ZZ | YV |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BR | $\mathbf{0 . 5 7 7}$ | $\mathbf{0 . 2 1 5}$ | $\mathbf{0 . 0 8 6}$ | $\mathbf{0 . 0 6 3 2}$ | $\mathbf{0 . 0 2 9 1}$ | $\mathbf{0 . 0 2 6 4}$ | $\mathbf{0 . 0 0 2 2 8}$ |
| $\delta$ R $_{\text {theory }}$ | $3.2 \%$ | $4.2 \%$ | $10.1 \%$ | $5.7 \%$ | $12.2 \%$ | $4.2 \%$ | $5.0 \%$ |
| $\mathbf{N}$ | $\mathbf{1 . 1 5} \mathbf{1 0}^{\mathbf{6}}$ | $\mathbf{4 . 3} \mathbf{1 0}^{\mathbf{5}}$ | $\mathbf{1 . 7 2} \mathbf{1 0}^{\mathbf{5}}$ | $\mathbf{1 . 2 6} \mathbf{1 0}^{\mathbf{5}}$ | $\mathbf{5 . 8} \mathbf{1 0}^{\mathbf{4}}$ | $\mathbf{5 . 2} \mathbf{1 0}^{\mathbf{4}}$ | $\mathbf{4 6 0 0}$ |
| f | 2.86 BDT | 16 | 7.4 | 5.9 | 5.6 вDT | 8.9 | 3.23 |
| $\boldsymbol{\delta \mu} \boldsymbol{\mu}[\%]$ | $\mathbf{0 . 2 7}$ | $\mathbf{2 . 4 5}$ | $\mathbf{1 . 7 8}$ | $\mathbf{1 . 6 5}$ | $\mathbf{2 . 3 6}$ | $\mathbf{3 . 9 4}$ | $\mathbf{3 . 2 3}$ |



$$
\frac{\delta \mu}{\mu}=\frac{1}{\sqrt{N}} \cdot f \quad \text { with } \quad f=\sqrt{\frac{1+1 /(S / B)}{A c c \bullet \varepsilon}}
$$

$\rightarrow$ Sum of first 6 branching fractions that could be measured

LHeC : $0.9964+-0.02$
FCC-eh: 0.9964 +- 0.01

