Top and electroweak physics at LHeC

D. Britzger, S. Schwanenberger, et al., for the LHeC/FCC-eh EW+top group

DIS19, Torino, Italy 10.04.2019

Future proposed ep-colliders: LHeC & FCC-eh

Electron ring

- Energy recovery linac: E_e = 60 GeV
- Polarisation up to $P_e \sim 80\%$
- Similar concept for LHeC & FCC-eh

Center-of-mass energies

- LHeC: √s ~ 1.3 TeV
- FCC-eh: √s ~ 3.5 TeV
- Up to 1 ab-1 integrated luminosity

LHeC kinematic reach

x-Q² plane

- Rich physics program at all scales
- Top and EW physics at higher scales: not accessible at HERA

Unpolarised ep cross section

NC & CC DIS cross section vs. Q²

Huge liminosity of up to 3ab⁻¹ further increases physics potential

Polarized lepton beams at LHeC

LHeC/FCCeh running scenario

e- +80%, -80% (1ab-1)

e+ unpolarised lepton beam (0.3аb-1)

CC proportional to P_e

Introduction - top quark production in ep

CC DIS top quark production

NC (yp) top quark production

LHeC: $\sigma_{tot} \sim 1.9 pb$

LHeC: $\sigma_{tot} \sim 0.05$ pb

Introduction – top quark production in ep

		tor	pair		single top				
		NC		CC	N	CC			
		DIS	ур	W-exch.	DIS	ур	W-exch.		
		P 7,7 e-	t t	_	b W	my b my	e^{-} \overline{t} \overline{t}		
30GeV	7TeV	0. 0040pb	0.0091pb		4 . 653fb	12. 54fb	0 . 7599pb		
40GeV	7 TeV	0. 0090pb	0. 0205pb		9. 193fb	24. 16fb	1. 1850pb		
50GeV	7 TeV	0. 0165pb	0.0354pb		14. 85fb	38. 27fb	1. 62 70 pb		
60GeV	7TeV	0. 0253pb	0.0531pb		21. 37fb	54. 31fb	2. 0835pb		
60GeV	50TeV	0. 6268pb	1. 1660pb		40. 29fb	942. 8fb	16. 701pb		

Hao Sun, 2018

- future ep collider is ideal to study EWK interactions of the top quark
- O(100k) top quark events are expected with 1ab-1
- Low backgrounds: S/B(CC, leptonic) ~ 1.2; S/B(CC, hadronic) ~ 11

Dutta, Goyal, Kumar, Mellado, Eur. Phys. J. C75 (2015) no.12, 577

|V_{th}| in CC single-top production

Limits on anomalous Wtb couplings

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Fully hadronic channel
- cut-based analysis with backgrounds using Delphes

Estimated precision on V_{th}

- V_{tb}: up to 1% precision (with L=100 fb⁻¹)
- anomalous Wtb couplings at 95%CL in fully hadronic events

See: S. Dutta, et al. Eur. Phys. J. C75 (2015) 577; S. Dutta et al. in prep.

$|V_{tb}|$ in CC single-top production

Limits on anomalous Wtb couplings

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Fully hadronic channel

•

Estimated precision on V_{tb}

V_{tb}: up to 1% precision (with L=100 fb⁻¹)

LHeC

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

$|V_{td}|$ and $|V_{ts}|$ in CC single-top production

Measurement of $|V_{td}|$

$$\begin{split} & \text{Signal.1:} & \text{ pe}^- \rightarrow \nu_e \bar{t} \rightarrow \nu_e W^- \bar{b} \rightarrow \nu_e \ell^- \nu_\ell \bar{b}, \\ & \text{Signal.2:} & \text{ pe}^- \rightarrow \nu_e W^- b \rightarrow \nu_e \ell^- \nu_\ell b, \end{split}$$

 $\mbox{Signal.3}: \ \ pe^- \rightarrow \nu_e \overline{t} \rightarrow \nu_e W^- j \rightarrow \nu_e \ell^- \nu_\ell j, \label{eq:signal.3}$

Signal.4 : $pe^- \rightarrow \nu_e W^- j \rightarrow \nu_e \ell^- \nu_\ell j$.

Measurement of $|V_{ts}|$

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

simplified analysis, using 4 signal channels

Hao Sun, to be publ.

Search for anomalous FCNC

Top quark flavor changing neutral currents (FCNC) I. Cakir, Yilmaz, Denizli, Senol, Karadeniz, O. Cakir, Adv. High Energy Phys. 2017, 1572053 (2017)

→ Extremely suppressed in SM

Enhancement through BSM contributions

→ effective Lagrangian

$$L = -g_e \sum_{q=u,c} Q_q \frac{\lambda_q}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_q + h_q \gamma_5) q A_{\mu\nu} + h.c.$$

b-tagging $v = \frac{e}{130 < M_{Wb} < 190 \text{ GeV}}$ $v = \frac{e}{130 < M_{Wb} < 190 \text{ GeV}}$ $v = \frac{e}{130 < M_{Wb} < 190 \text{ GeV}}$ $v = \frac{e}{130 < M_{Wb} < 190 \text{ GeV}}$ $v = \frac{e}{130 < M_{Wb} < 190 \text{ GeV}}$ $v = \frac{e}{130 < M_{Wb} < 190 \text{ GeV}}$

Study tqy and tqZ effective FCNC

 Full event simulation including DELPHES detector simulation and background contributions is performed

Search for anomalous FCNC

LHeC put on present landscape

LHeC expected limits vs. int. Lumi

Sun, Luo, Li, Eur. Phys. J. C (2018) 78

Electroweak physics

Exploit simulated NC and CC DIS data

Equivalent to PDF prospects

source of uncertainty	error on the source or cross section
scattered electron energy scale $\Delta E'_e/E'_e$	0.1 %
scattered electron polar angle	$0.1\mathrm{mrad}$
hadronic energy scale $\Delta E_h/E_h$	0.5%
calorimeter noise (only $y < 0.01$)	13%
radiative corrections	0.5%
photoproduction background (only $y > 0.5$)	1 %
global efficiency error	0.7%

Neutral currents

$$\begin{split} \tilde{F}_{2}^{\pm} &= F_{2} - (g_{V}^{e} \pm P_{e}g_{A}^{e})\varkappa_{Z}F_{2}^{\gamma Z} + \left[(g_{V}^{e}g_{V}^{e} + g_{A}^{e}g_{A}^{e}) \pm 2P_{e}g_{V}^{e}g_{A}^{e} \right]\varkappa_{Z}^{2}F_{2}^{Z} \;, \\ \tilde{F}_{3}^{\pm} &= - (g_{A}^{e} \pm P_{e}g_{V}^{e})\varkappa_{Z}F_{3}^{\gamma Z} + \left[2g_{V}^{e}g_{A}^{e} \pm P_{e}(g_{V}^{e}g_{V}^{e} + g_{A}^{e}g_{A}^{e}) \right]\varkappa_{Z}^{2}F_{3}^{Z} \;, \\ \left[F_{2}, F_{2}^{\gamma Z}, F_{2}^{Z} \right] &= x \sum_{q} \left[Q_{q}^{2}, 2Q_{q}g_{V}^{q}, g_{V}^{q}g_{V}^{q} + g_{A}^{q}g_{A}^{q} \right] \{q + \bar{q}\} \\ x \left[F_{3}^{\gamma Z}, F_{3}^{Z} \right] &= x \sum_{q} \left[2Q_{q}g_{A}^{q}, 2g_{V}^{q}g_{A}^{q} \right] \{q - \bar{q}\} \;. \end{split}$$

Charged currents

$$\frac{d^2\sigma^{\text{CC}}(e^{\pm}p)}{dxdQ^2} = (1 \pm P_e) \frac{G_F^2}{4\pi x} \left[\frac{m_W^2}{m_W^2 + Q^2} \right]^2 \left(Y_+ W_2^{\pm}(x, Q^2) \mp Y_- x W_3^{\pm}(x, Q^2) - y^2 W_L^{\pm}(x, Q^2) \right)$$

Neutral current scattering

Charged current scattering

Mass parameters

Mass parameter determination

Perform fits of PDFs+m_w

Simultaneous W and Z-boson mass

with and w/o contraint by G_F

W-mass: Δm_W ~ 10MeV

Simultaneous determination of m_w and m_z results in very thin ellipse due to high precision of G_F $G_F=1.1663787(6) \times 10^{-5} \text{ GeV}^2$

Weak neutral current couplings: light-quarks

Weak neutral-current coupling

 Perform fit of PDFs+electroweak parameters

Couplings given by EW theory

$$g_A^q = \sqrt{\rho_{\mathrm{NC},q}} I_{\mathrm{L},q}^3$$
, $g_V^q = \sqrt{\rho_{\mathrm{NC},q}} \left(I_{\mathrm{L},q}^3 - 2 Q_q \kappa_{\mathrm{NC},q} \sin^2 \theta_W \right)$ At tree level: $\rho, \kappa=1$

Couplings for 'u-type' and 'd-type' quarks

- Here: fit of PDFs+ $g_A^u+g_V^u+g_A^d+g_V^d$
 - → conservative estimate

ρ and κ parameters

Beyond tree-level approximation

$$g_A^q = \sqrt{\rho_{\text{NC},q}} I_{\text{L},q}^3,$$

$$g_V^q = \sqrt{\rho_{\text{NC},q}} \left(I_{\text{L},q}^3 - 2Q_q \kappa_{\text{NC},q} \sin^2 \theta_W \right)$$

Couplings are scale-dependent

Study non-standard form factors

$$\rho_{\rm NC} \to \rho'_{\rm NC} \rho_{\rm NC} ,$$
 $\kappa_{\rm NC} \to \kappa'_{\rm NC} \kappa_{\rm NC} ,$

 Sensitivity similar to LEP+SLD combination, albeit comlementary sensitivity (light quarks)

Weak mixing angle $sin^2\theta_w$

Effective weak mixing angle

(charged leptons) in MSbar scheme

Scale dependence of κ' parameter

• Here: OS scheme, f=fermions

Weak mixing angle ($\sin^2\theta_w^{lept.}$) measureable over wide kinematic range with O(0.1%) precision at LHeC

EW physics - charged currents

Unique test of virtual corrections in charged current interactions

- Precision better than 1% achievable at LHeC
- Wide kinematic range, and high precision
- non-SM physics will introduce systematic deviation ρ'_{CC}

$$W_{2}^{-} = x \left((\rho_{\text{CC},eq} \rho'_{\text{CC},eq})^{2} U + (\rho_{\text{CC},e\bar{q}} \rho'_{\text{CC},e\bar{q}})^{2} \overline{D} \right)$$

$$xW_{3}^{-} = x \left((\rho_{\text{CC},eq} \rho'_{\text{CC},eq})^{2} U - (\rho_{\text{CC},e\bar{q}} \rho'_{\text{CC},e\bar{q}})^{2} \overline{D} \right)$$

$$W_{2}^{+} = x \left((\rho_{\text{CC},eq} \rho'_{\text{CC},eq})^{2} \overline{U} + \rho_{\text{CC},e\bar{q}} \rho'_{\text{CC},e\bar{q}})^{2} D \right)$$

$$xW_{3}^{+} = x \left((\rho_{\text{CC},e\bar{q}} \rho'_{\text{CC},e\bar{q}})^{2} D - \rho_{\text{CC},eq} \rho'_{\text{CC},eq})^{2} \overline{U} \right)$$

W-mass at (HL)-LHC

W-mass measurement @LHC

Precision limited by PDFs (Δm_{wPDF}~9.2MeV)

Eur. Phys. J. C 78 (2018) 110; PDG (2017)

Combined categories											χ^2/dof of Comb.
m_{T} - $p_{\mathrm{T}}^{\ell},W^{\pm},e$ - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Future W-mass measurements in pp

 Major reduction of PDF uncertainty only feasible with LHeC PDFs (Δm_WPDF~2MeV)

Effective weak mixing angle

Effective weak mixing angle at Z-pole

Precision test of EW theory

- Data from HL-LHC can reduce PDF uncertainty by 10-25%
- Data from LHeC have potential to reduce PDF uncertainties by an additional factor of 5

EW higher-orders in DIS for PDF fits

Assess impact of higher-order EW effects in LHeC-PDF fits

Preliminary

• Repeat LHeC PDF determination with three EW schemes: on-shell (m_w, m_z) , modified-on-shell (m_z, G_F) , on-shell w/ 1-loop corrections

LHeC PDFs

- Valence quarks known up to percent precision
- LHeC: increase in χ² by O(490 to 750 units) for 611 data points [FCCeh: >6000 units, 619pts]

Higher-order EW effects in inclusive DIS must be accounted for in PDF fits

Single W and Z production

Weak boson production @ 'LHeC'

Significant cross sections: O(million) events

	$E_e=55~\mathrm{GeV},E_p=8~\mathrm{TeV}$					
process	σ [pb]					
eW ⁺ X	9.6					
eW-X	7.8					
$\nu W^- X$	1.5					
$\nu W^- p$	0.66					
νZX	0.52					

- Measurement of WWy and WWZ vertices
- With L~1ab-1: limits on aTGC ~ O(±0.01)

U. Baur et al, Nucl.Phys. B375 (1992) 3 U. Baur et al., Conf. Proc. C90-10-04 (1990) 956 (ECFA Workshop, Aachen)

Summary

The proposed LHeC & FCC-eh project

- LHeC: 60 GeV electron times 7TeV proton (√s=1.3TeV), synchronous with HL-LHC
- FCC-eh: 60 GeV electron times 50TeV proton (√s=3.5TeV), synchronous with FCC-hh

Top physics at LHeC/FCC-eh

- future ep collider has a rich analysis programme for top quark physics
- single top quark factory: |Vtb| (~1%), top quark couplings to electroweak bosons (Wtb, tty, ttZ, ttH, ...), top quark properties: polarisation, charge, PDFs of tops, ... many stringent searches for new physics: anomalous couplings, FCNC, CP violation in top-Yukawa, ...

Electroweak physics at LHeC/FCC-eh

- Fundamental EW parameters: competitive with (HL-)LHC
- Electroweak precision observables: competitive/complementary to LEP
- Precision EWK physics at HL-LHC needs LHeC-PDFs

Recent developments

- Subm. paper to the European strategy (Dec. 2018)
- Update on CDR will be written in autumn 2019

