Detectors for the LHeC and FCC-eh

Paul Newman (University of Birmingham)

Baseline Design (Electron "Linac")

LHeC CDR, July 2012 [arXiv:1206.2913]

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures

- LHeC ep lumi \rightarrow 10³⁴ cm⁻² s⁻¹
- \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total
- e-nucleon Lumi estimates ~ 10^{31} (3. 10^{32}) cm⁻² s⁻¹ for eD (ePb)
- Similar schemes in collision with protons of 7 TeV (LHeC),
 13 TeV (HE-LHeC) and 50 TeV (FCC-eh)

Physics Targets throughout Kinematic Plane

- StandaloneHiggs programme
- Revolutionary proton PDF precision enhances LHC new physics sensitivity
- Elucidates low x
 dynamics in ep & eA
- 4 orders of mag. in kinematic range of nuclear structure
- No polarised targets

Detector Design: Philosophy

- Detector technologies evolve fast; current designs can only be indicative / based on current knowledge ... will change

- Conditions are relatively 'easy'... fluences <~ 10⁵ 1 MeV n cm⁻² equiv (tiny fractions of HL-LHC) ... pile-up ~ 0.1 (cf 200 at HL-LHC)

- Current `baseline' remains
- 2012 CDR (with ongoing work in several areas)
 - → Leans heavily on LHC (esp. ATLAS) technologies (but they are over-spec'ed for radiation hardness)
 - → Was costed at CHF106M core cost
- Most challenging technology aspects are interaction region (synchrotron) and ER linac

Interaction Region & Magnets

-x=100mm

- Dual dipole magnets (0.15 0.3 T) throughout detector region (|z| < 14m) bend electrons into head-on collisions
- Eliptical beampipe (6m x 3mm Be) accommodates synchrotron fan
- 3.5 T Superconducting NbTi/Cu solenoid in 4.6K liquid helium cryo.

+x=22mm

Re-evaluating → reduce synchrotron?

LHeC Detector Acceptance Requirements

Access to $Q^2=1$ GeV² in ep mode for all $x > 5 \times 10^{-7}$ requires scattered electron acceptance to 179°

 ${\rm Q}^2\,/\,{\rm GeV}^2$

Similarly, need 1° acceptance in outgoing proton direction to contain hadrons at high x (essential for good kinematic reconstruction)

Acceptance Requirements, Final States

- Elastic J/Ψ Photoproduction

- Higgs Production

Detector Design from the CDR (2012)

- Size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- 1° tracking acceptance in both forward & backward directions
- Forward & backward beam-line instrumentation integrated

Detector for ep at a Future Circular Collider

- Detector scales in size by up to ln(50/7)~ 2

e∓ ____

- Double solenoid + Dipole
- Even longer track region to retain 1° performance

Tracking Performance

From CDR \rightarrow Central track $\Delta p_t/p_t^2 \rightarrow 6 \times 10^{-4} \text{ GeV}^{-1}$ Impact parameter resolution: \rightarrow 10 μ m

BeamPipe (3.5mm) & Active Materia

light quark rejection) \rightarrow Extend from 40 \rightarrow 60cm (H \rightarrow bb, cc)?

Barrel EM Calorimeter

- $-2.3 < \eta < 2.8$
- CDR accordion geometry baseline design
- 2.2mm lead + 3.8mm LAr layers
- Total depth ~ 20 X₀
- GEANT4 simulation of response to electrons at normal incidence

[cf ATLAS: $10\%/\sqrt{E} + 0.35\%$]

- Extended version (HE-LHeC) with 30 X₀ designed
- Current re-evaluation of entire calorimeter in light of resolutions required for H→WW, bb, Top etc ...

Beamline Instrumentation

Beamline Instrumentation

Luminosity / Photon Tagging

- Use Bethe-Heitler (as HERA), measurement based on photon
- Photons might be detected
 at z = -120 m after D1
 proton bending dipole
- With sufficient apperturethrough Q1-Q3 magnets,95% geometrical acceptance

- Signal via Cerenkov from synchrotron

absorber coolant? → 1% lumi measurement? → Synchrorton OK?

Low Angle Electron Tagging

- Reinforce luminosity measurement
- Tag γ p for measurements and as background to DIS

- Acceptances ~ 20-25% at 3 different locations studied
- 62m is most promising due to available space and synchrotron radiation conditions

Methods for Diffraction

... old slide from diffraction at HERA

Partially still true for LHeC (but proton tagging technology 16 got better and kinematics make rapidity gap methods harder)

Rapidity Gap Selection with LHeC Kinematics

- $-\eta_{max}$ v ξ (= x_{IP}) correlation determined entirely by proton beam energy ... [LHeC proton kinematics same as LHC]
- LHeC cut around η_{max} ~ 3 selects events with x_{IP} <~ 10^{-3} (cf x_{IP} <~ 10^{-2} at HERA), but misses lots of diffractive physics at largest dissociation masses, M_X

LHeC Forward Proton Spectrometer

- Proton spectrometer is a copy of FP420 (proposal for low ξ Roman pots at ATLAS / CMS currently being revisited)
- Requires access to beam though cold part of LHC
- Acceptances under study with HL-LHC optics

Leading Neutrons

- Crucial in eA, to determine whether nucleus remains intact e.g. to distinguish coherent from incoherent diffraction
- Crucial in ed, to distinguish scattering from proton or neutron
- Possible "straight on" space at z ~ 100m
- For technology, learn from LHC

distance from IP / m

- CDR 2012

Summary

- Since then 1) Possibility of 10^{34} cm⁻² s⁻¹ \rightarrow new environment
 - 2) LHC Higgs discovery → new physics focus
 - 3) Longer term perspective of HE-LHeC / FCC-eh
- Current ongoing work: optimize w.r.t. precision physics, H, t ... re-evaluation of tracking & calorimetry, interaction region
- Next goal ...

1) Update CDR (physics, technical) → "The LHeC at High Luminosity" converging at workshop in October 2019

LHeC Context

Proposed energy frontier high luminosity ep / eA facility \rightarrow TeV scale physics at 10^{34} cm⁻²s⁻¹

LHeC: 60 GeV electrons x LHC protons & ions

- \rightarrow 10³⁴ cm⁻² s⁻¹
- → Simultaneous running with ATLAS / CMS in HL-LHC period

FCC-ep: 60 GeV electrons x 50 TeV protons from FCC

CDR 2012: "Fake news?" ... lots changed

LHeC Timeline

Not defined ... but makes best sense in parallel with HL-LHC ... schedule extends to 2040; LS4, LS5 are possibilities

Where could the LHeC be built?

- Default design is 1/3 at Point 2 (currently ALICE)
- Point 8 (currently LHCb) has also been considered

AFP Detectors inside Pots

Tracking: four slim-edge 3D pixel sensor planes per station (ATLAS IBL)

- Pixel sizes 50x250 μm
- 14° tilt improves x resolution (hence ξ)
 - $\rightarrow \delta x = 6 \mu m$, $\delta y = 30 \mu m$
- Trigger capability

Timing: 4x4 quartz bars at Cerenkov angle to beam. Light detected in PMTs → expected resolution 25ps

But we can't just put them everywhere!

- Locations of pots restricted by beam elements
- Scattered proton trajectories blocked by collimators etc
 Sensitive detectors can't approach arbitrarily close to beam

Acceptance Depends on Location and Orientation of Pot and on beam optics

- In ATLAS case, complementarity between ATLAS ALFA (vertical approach) and AFP (horizontal approach)
- AFP acceptance for inelastic diffraction with $\xi > \sim 0.02$
- Current situation is result of prolonged study, also with machine group, and optimisation / compromise on beam optics.

Secondary Vertex Tagging

HFL Tagging

Uta Klein & Daniel Hampson

- Realistic and conservative HFL tagging within Delphes realised, and dependence on vertex resolution (nominal 10 μm) and anti-kt jet radius studied
- → Light jet rejection very conservative, i.e. factor 10 worse than ATLAS
- → used in full LHeC analysis and for FCC-eh extrapolations

CDR Muon System

Baseline: Provides tagging, but not momentum measurement (under review in view of Higgs physics programme)

: Angular coverage \rightarrow 1° vital eg for elastic J/ Ψ

: Technologies used in LHC GPDs and their upgrades (more than) adequate

[2 or 3 Superlayers] Muon Detector dipole dipole Backward Calorimeter Inserts Electromagnetic Calorimeter Hadronic Calorimeter

[Drift tubes / Cathode strip chambers → precision Resistive plate / Thin Gap chambers → trigger + 2nd coord]

Other Calorimeters in the CDR

Current design based on (experience with) ATLAS (and H1), re-using existing technologies

- Barrel HAD calorimeter, outside coil
 - → 4mm Steel + 3mm Scintilating Tile
 - \rightarrow 7-9 λ , $\sigma_E/E \sim 30\%/\int E + 9\%$ [~ ATLAS]

- Forward end-cap silicon + tungsten, to cope with highest energies & multiplicities, radiation tolerant EM \rightarrow 30X₀, Had \rightarrow 9 λ
- Backward end-cap Pb+Si for EM (25 X_0) Cu+Si for HAD (7 λ)

Leading Neutrons: Solutions from LHC ... needs to be compact and radiation-hard

- ALICE, ATLAS, CMS all use tungsten absorber + quartz fibres (Cerenkov).
- LHCf uses tungsten + plastic scintillator in special runs
- Improve hadronic response with dual quartz / scintillator?
- Longitudinal segmentation essential to distinguish neutrons from photons.