Production of quarkonia and heavy flavor states in ATLAS and CMS

Paolo IENGO
(CERN)
On behalf on the ATLAS and CMS Collaborations
Outline

- Introduction
 - Data sets and general features on Heavy Flavor Physics with ATLAS and CMS
- Quarkonia production
 - $J/\psi, \psi(2S), \Upsilon$ at 5.02 and 8 TeV in pp, pPb, PbPb collisions
 - Associated production of J/ψ and $\Upsilon(1S)$ pairs
- Open Beauty
 - $B^0 \rightarrow K^+\pi^-\mu^+\mu^-$ angular analysis
 - $B^+ \rightarrow K^+\mu^+\mu^-$ angular analysis
 - Search for $X^{\pm}(5568) \rightarrow B^0_s\pi^{\pm}$ resonance
 - B_c^+ ground and excited states
- Observation of $Z \rightarrow J/\psi \mu^+\mu^-$ decay

Selected recent results among the many published by the two Collaborations.
Quarkonia and HF at ATLAS & CMS

- Based on low p_T muon trigger and track reconstruction in the Inner Detector
- Wide rapidity and p_T regions
- Wide \sqrt{s} range: 5.02, 7, 8, 13 TeV
- pp, pA; AA collisions

$\Delta p_T/p_T \sim O(1-5\%)$ for low-momentum tracks
Quarkonia and HF at ATLAS & CMS

- Heavy Flavor production characterized by
 - $M(\mu^+\mu^-)$
 - $\tau(\mu^+\mu^-)$
 - Prompt vs Non-Prompt (B decays in flight) production

![Graphs and plots showing data and fits for quarkonia and heavy flavor production at ATLAS and CMS.]
Quarkonia production

- Heavy quarkonium bound states
 - pp collisions: comparison with QCD models, different from prompt and non-prompt production
 - AA collisions: study the deconfined quark-gluon plasma (QGP)
 - pA collision: disentangling the effects from cold nuclear matter (CNM) interactions

Reference

Cold Nuclear Matter

Quark-Gluon Plasma

- Observables
 - Differential cross-section
 - Nuclear Modification Factor in pA
 - Nuclear Modification Factor in AA

\[
R_{p\text{Pb}} = \frac{1}{208} \frac{\sigma_{O(nS)}^{p+\text{Pb}}}{\sigma_{pp}^{O(nS)}}
\]

\[O(nS) = J/\psi, \, \psi(2S), \text{ and } \Upsilon(nS) \ (n = 1, 2, 3)\]

\[
R_{AA} = \frac{N_{AA}}{< T_{AA} > \times \sigma_{pp}}
\]

\(< T_{AA} >: \text{mean nuclear thickness function}\)

ATLAS: 28 nb\(^{-1}\) at 5.02 TeV pPb and 25 pb\(^{-1}\) at 5.02 TeV pp
CMS: ~2.5 fb\(^{-1}\) at 7 TeV pp

10.04.19

P. IENGO - Quarkonia & HF with ATLAS & CMS
Prompt J/ψ and ψ(2S) in pp

- Good description of the data by NLO NRQCD (prompt) calculations in the full p_T range (same at 7 and 8 TeV)
Good description of the data by FONLL (non-prompt) calculations in the full p_T range.
Good description of the data by NLO NRQCD for $p_T>20$ GeV; discrepancies for $p_T<15$ GeV
J/ψ, Ψ(2S) production in pPb 5.02 TeV

- **Prompt and non-prompt J/ψ**
 - ATLAS
 - $p+\text{Pb}$ $\sqrt{s_{\text{NN}}}=5.02$ TeV, $L=28$ nb$^{-1}$
 - $-2.0 < y^* < 1.5$
 - Prompt J/ψ
 - Non-prompt J/ψ

- **Prompt and non-prompt Ψ(2S)**
 - ATLAS
 - $p+\text{Pb}$ $\sqrt{s_{\text{NN}}}=5.02$ TeV, $L=28$ nb$^{-1}$
 - $-2.0 < y^* < 1.5$
 - Prompt Ψ(2S)
 - Non-prompt Ψ(2S)

- **pPb:** improved measurements consistent with previous results
Y production in pPb at 5.02 TeV

- Difficult to separate Y(2S) and Y(3S) at forward and backward y^* intervals in pPb collisions → combined

Comparison with CMS: good agreement

Comparison with ALICE: central vs forward
Nuclear Modification Factors: J/ψ and Υ

Prompt J/ψ: $R_{pPb} \sim 1$ in the full kinematic range → CNM effects are small for prompt and non-prompt J/ψ production

Non-prompt J/ψ

Υ(1S): Production suppressed at low p_T (<15 GeV) and increases with p_T → CNM effects are relevant for Υ(1S)

No significant dependency on rapidity observed
Nuclear Modification Factors

- Comparison between R_{pPb} and R_{PbPb} for prompt and non-prompt J/ψ
 - Very strong suppression of charmonia production in PbPb collisions
 - Similar for prompt and non-prompt J/ψ production

- R_{AA} vs N_{jets} in PbPb collisions
(Prompt J/ψ)

- Many other interesting measurements and results in PbPb collisions not included here, see e.g.
 - Measurement of suppression and azimuthal anisotropy of muon from heavy-flavor decays in Pb+Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV with the ATLAS detector (Phys. Rev. C 98 (2018) 044905)
Quarkonia associated production

- Associated production of two objects in the same pp collision

- Single Parton Scattering (SPS)
 - Two quarkonia produced in a single interaction between partons

- Double Parton Scattering (SPS)
 - Simultaneous, independent and uncorrelated interactions of two pairs of partons, each interaction producing a quarkonium
 - Cross-section sensitive to spatial distribution of gluons in the proton

\[f_{DPS} = \text{fraction of DPS events} \]
\[\sigma_{\text{eff}} \sim (2-20) \text{ mb assumed to be independent of the scattering process and } \sqrt{s}; \text{ related to the spatial separation between partons inside the proton} \]

Large uncertainties on DPS due to possible higher-order SPS contributions, feed-down and limited knowledge of the proton’s transverse profile
Di-J/ψ production at 8 TeV

- Two prompt J/ψ → μμ decays from the same pp collision
 - Invariant mass fit
 - Pseudo-proper decay time fits → prompt-prompt
 - Vertex d_{z} fit → two J/ψ from the same vertex (pileup-removal)
- Data driven SPS contribution
- Analysis in two regions according to sub-leading J/ψ$_2$ rapidity

\[|y^{*}_{J/\psi_{2}}| < 1.05 \quad 1.05 < |y^{*}_{J/\psi_{2}}| < 2.1 \]

\[N_{J/\psi_{2}/J/\psi} = 3310 \pm 330 \quad N_{J/\psi_{2}/J/\psi} = 3140 \pm 370 \]

Cross—section in fiducial region

\[
s_{\text{Fid}}(pp \rightarrow J/\psi J/\psi + X) = \begin{cases}
15.6 \pm 1.3 \text{ (stat)} \pm 1.2 \text{ (syst)} \pm 0.2 \text{ (BF)} \pm 0.3 \text{ (lumi)} \text{ pb, for } |y| < 1.05, \\
13.5 \pm 1.3 \text{ (stat)} \pm 1.1 \text{ (syst)} \pm 0.2 \text{ (BF)} \pm 0.3 \text{ (lumi)} \text{ pb, for } 1.05 \leq |y| < 2.1
\end{cases}
\]

Extrapolating to the full acceptance (assuming unpolarized J/ψ):

\[
s(pp \rightarrow J/\psi J/\psi + X) = \begin{cases}
82.2 \pm 8.3 \text{ (stat)} \pm 6.3 \text{ (syst)} \pm 0.9 \text{ (BF)} \pm 1.6 \text{ (lumi)} \text{ pb, for } |y| < 1.05, \\
78.3 \pm 9.2 \text{ (stat)} \pm 6.6 \text{ (syst)} \pm 0.9 \text{ (BF)} \pm 1.5 \text{ (lumi)} \text{ pb, for } 1.05 \leq |y| < 2.1
\end{cases}
\]

ATLAS: 11.4 fb$^{-1}$ at 8 TeV pp
Di-J/ψ production at 8 TeV

- DPS vs SPS undistinguishable on event-by-event base
- Different overall kinematics → angular correlation: Δy and Δφ (bin event re-weighting)

General agreement with NLO* SPS (with feed-down correction factor) + LO DPS (normalised to measurements)

\[f_{\text{DPS}} = (9.2 \pm 2.1 \text{ (stat)} \pm 0.5 \text{ (syst)})\% \]

Effective cross-section of DPS

\[\sigma_{\text{eff}} = 6.3 \pm 1.6 \text{ (stat)} \pm 1.0 \text{ (syst)} \pm 0.1 \text{ (BF)} \pm 0.1 \text{ (lumi) mb} \]
Y(1S) pair production at 8 TeV

- Y(1S)Y(1S) → 4μ decay
- Kinematic fit to oppositely charged muon pair and then on the four muons with common vertex

\[p_T(\mu) > 2.5 \text{GeV} \]
\[|\eta(\mu)| < 2.4 \]
\[|y_X| < 2.0 \]

Fiducial region

\[N_{\text{signa}}(Y(1S)Y(1S)) = 38 \pm 7 \]

Very limited statistic!

\[\sigma_{\text{fid}} = 68.8 \pm 12.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 2.8 \text{ (B)} \text{ pb} \]

Assuming both mesons decaying isotropically (polarisation effects: up to ~40% variation)

CMS: 20.7 fb\(^{-1}\) at 8 TeV pp

\[\sigma_{\text{eff}} \approx 2.2 - 6.6 \text{ mb} \]
Quarkonia associated production

- Summary of experimental results (including older ATLAS results on J/ψ associated production with vector bosons)

- σ_{eff} generally lower from prompt di-J/ψ and di-Υ wrt other final states
Quarkonia associated production

- Summary of experimental results (including older ATLAS results on J/ψ associated production with vector bosons)

- σ_{eff} generally lower from prompt di-J/ψ and di-Υ wrt other final states

- Quarkonium final states dominantly produced from gluon-gluon interactions; jet-related channels by quark-antiquark and quark-gluon parton interactions

- Average transverse distance between gluons in the proton smaller than between quarks, or between quarks and gluons?
Heavy Flavor: Open Beauty
B^0 \rightarrow K^{*0}\mu^+\mu^- angular analysis

- B^0 \rightarrow K^{*0}\mu^+\mu^- \rightarrow K^{\mp}\mu^+\mu^- is a FCNC process
- The process can be fully described by the three angles (\theta_L, \theta_K, \phi) and the dimuon invariant mass squared q^2
- New physics entering the loop can be detected by looking at the angular distributions of the decay
Angular differential decay rate expressed with S coefficients that may be represented by helicity or transversity amplitudes:

\[
\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left\{ \frac{3(1 - F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K \right. + \left. \frac{1 - F_L}{4} \sin^2\theta_K \cos 2\theta_L \right. \\
- F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi \\
+ S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi \\
+ S_6 \sin^2\theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi \\
+ S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right\}.
\] (1)

\[A_{FB} = \frac{3S_6}{4}\]

Forward-backward Asymmetry
\[F_L = \text{fraction of longitudinally polarised K}^*\]
\[F_S = \text{s-wave fraction}\]

- Generally written in terms of P and P' observables as they are less sensitive to theoretical uncertainties at LO
- LHCb measured a >3\sigma discrepancy with model on P'\(_5\)

ATLAS and CMS analysis uses ~20 fb\(^{-1}\) of 8 TeV pp data taken in 2012
ATLAS extracts P\(_1\) and P'\(_1\) (i=4,5,6,8); CMS extracts P\(_1\) and P'\(_5\)
B^0 \rightarrow K^{*0} \mu^+ \mu^- angular analysis

- **ATLAS**: fit signal and background
 - Four different fits, 3 free parameters each
 - FL, S3 common to each fit
 - S4, S5, S7, S8 fitted parameters

- Signal PDF folded to reduce the number of free parameters and improve fit convergence

- **ATLAS**: fit signal and background
 - P1, P1' extracted from fit parameters
 - S-wave component (non-resonant K\pi) neglected and included as systematics
 - 340 events in 3 q^2 bins

Statistically limited

JHEP 10 (2018) 047

10.04.19

P. IENGO - Quarkonia & HF with ATLAS & CMS
B^0 \rightarrow K^{*0}\mu^+\mu^- angular analysis

- CMS: fit signal, mistag signal and bkg
 - Fs, As, F_L fixed from previous measurements
 - P1, P5' fitted parameters
- Signal PDF folded to reduce the number of free parameters and improve fit convergence

Statistically limited
B⁰ → K*⁰μ⁺μ⁻ angular analysis

- **Theory:**
 - DHMV/JC: QCD factorization, hadronic uncertainties from calculations
 - HEP t/CFFMP SV t: hadronic charm contributions fitted from LHCb data

- ATLAS generally in good agreement with SM, except a ~2.5σ deviation from DHMV for P₄', P₅' in one bin
 - LHCb sees a >3σ discrepancy on P₅'}
B^0 \rightarrow K^{*0}\mu^+\mu^-\text{ angular analysis}

- **Theory:**
 - DHMV/JC: QCD factorization, hadronic uncertainties from calculations
 - HEP t/CFFMPSV t: hadronic charm contributions fitted from LHCb data

- ATLAS generally in good agreement with SM, except a ~2.5\sigma deviation from DHMV for P_4', P_5' in one bin
 - LHCb sees a >3\sigma discrepancy on P_5'

- CMS data compatible with SM predictions in the whole range and favoring DHMV at low q^2
B$^+ \rightarrow K^+\mu^+\mu^-$ angular analysis

- Decay rate depends on angle between the directions of μ^- and K^+ in the di-muon rest frame θ_L

$$\frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta_L} = \frac{3}{4}(1 - F_H)(1 - \cos^2 \theta_L) + \frac{1}{2} F_H + A_{FB} \cos \theta_L$$

$A_{FB} = $ Forward-backward Asymmetry
$F_H =$ contribution from the pseudoscalar, scalar, and tensor amplitudes to the decay width

- Angular analysis in 7 q^2 bins (1< q^2<22 GeV2)
- 2D unbinned max-likelihood fit: $m(K\mu\mu)$ and $\cos \theta_L$
- $N(B \rightarrow K\mu\mu) = 2286 \pm 73$

Results compatible with SM prediction and consistent with previous measurements

Search for $X^{\pm} \rightarrow B_0^s \pi^{\pm}$ resonance

- D0 published evidence of a (tetraquark) state $X(5568)$ in the $B_s \pi^{\pm}$ spectrum via $B_s^0 \rightarrow J/\psi \, \phi$, $J/\psi \rightarrow \mu^+\mu^-$, $\phi \rightarrow K^+K^-$
- Also seen in semi-leptonic decays: $X^{\pm}(5568) \rightarrow B_0^s \pi^{\pm}$ where $B_0^s \rightarrow \mu^\pm D_\pm^s X$, $D_\pm^s \rightarrow \phi \pi^{\pm}$
- Not seen by LHCb, nor CDF
- ATLAS and CMS have enough statistic to observe a signal or set precise limits on production cross-section

ATLAS uses 4.9 fb$^{-1}$ at 7 TeV + 19.5 fb$^{-1}$ at 8 TeV data $\Rightarrow N(B_0^s) = 52750 \pm 280$
CMS uses 19.7 fb$^{-1}$ at 8 TeV data $\Rightarrow N(B_0^s) = 49277 \pm 278$
Search for $X^\pm \rightarrow B_{s}^{0}\pi^{\pm}$ resonance

- $B_{s}^{0}\pi^{\pm}$ candidates selected by requiring a charged track, with $p_{T}>500$ MeV + track quality cuts, from the same PV as the B_{s}^{0}
- Analysis repeated for $p_{T}(B_{s}^{0})>10$ GeV and for $p_{T}(B_{s}^{0})>15$ GeV
- Invariant mass of the $B_{s}^{0}\pi^{\pm}$ candidates (re)defined as (improving mass resolution):

$$M^{A}(B_{s}^{0}\pi^{\pm}) = M(J/\psi K^{+}K^{-}\pi^{\pm}) - M(J/\psi K^{+}K^{-}) + m_{B_{s}^{0}}$$

Number of X^\pm candidates from unbinned max-likelihood fit

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$p_{T}(B_{s}^{0}) > 10$ GeV</th>
<th>$p_{T}(B_{s}^{0}) > 15$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS</td>
<td>60±140</td>
<td>30±150</td>
</tr>
<tr>
<td>CMS</td>
<td>-85±160</td>
<td>-103±122</td>
</tr>
</tbody>
</table>

No signal evidence
Both experiments can set upper limits
Search for $X^{\pm} \rightarrow B_0^{*+} \pi^{\pm}$ resonance

- Upper limits set to ρX, the cross-section ratio of $X(5568)$ to B_0^s

$$\rho_X \equiv \frac{\sigma(pp \rightarrow X + \text{anything}) \mathcal{B}(X \rightarrow B_0^{*+} \pi^\pm)}{\sigma(pp \rightarrow B_0^s + \text{anything})} = \frac{N_X}{\epsilon_{rel} N_{B_0^s}}$$

- Asymptotic CLs method

$\rho_X < 1.5\%$ at 95\% CL for $p_T(B_0^s) > 10$ GeV

$\rho_X < 1.6\%$ at 95\% CL for $p_T(B_0^s) > 15$ GeV

$\rho_X < 1.1\%$ at 95\% CL for $p_T(B_0^s) > 10$ GeV

$\rho_X < 1.0\%$ at 95\% CL for $p_T(B_0^s) > 15$ GeV
- Weakly decaying particle consisting of two heavy quarks
- Spectrum and properties of B_c^+ family are predicted by non-relativistic potential models, perturbative QCD and lattice calculations
- Measurements of the ground and excited states → test of these predictions

- In 2016 ATLAS published the first observation of state $B_c^+(2S)$ state at a mass:
 \[M = 6842 \pm 4 \text{(stat)} \pm 5 \text{(syst)} \text{ MeV} \]
 - Consistent with the prediction
 - 5.2σ including 7 and 8 TeV data
 - Not resolving the two $B_c^+(2S)$ and $B_c^{*+}(2S)$ states
- New evidence from LHCb
- New results from CMS
 - Observation of two excited B_c^+ states
 - Measurement of $B_c^+(2S)$ mass

B_c^+ excited states

- Observation of signals consistent with **B_c^+(2S)** and **B_c^*(2S)** in the decay channel

 \[B_c^+(2S) \rightarrow B_c^+ \pi^+ \pi^- \rightarrow J/\psi \pi^+ \pi^+ \pi^- \]

 \[B_c^{(*)+}(2S) \rightarrow B_c^+ \pi^+ \pi^- \rightarrow B_c^+(\gamma) \pi^+ \pi^- \rightarrow J/\psi \pi^+(\gamma) \pi^+ \pi^- \]

 - **B_c^+** reconstruction: di-muon constrained to J/\psi mass + high purity charged track as \(\pi \)

 - **B_c^+(2S) and B_c^{*+}(2S)** reconstruction: kinematic fit of **B_c^+** with 2 oppositely charged particles from the same vertex

- Low energetic \(\gamma \) from **B_c^* \rightarrow B_c^+ \gamma** difficult to detect

 \(\rightarrow B_c^{*+}(2S)\) peak in the **B_c^+\pi^+\pi^-** mass spectrum seen at a mass lower than \(M(B_c^+(2S)) \rightarrow \)** double peak structure

- Good separation of the two states

- \(N(B_c^+(2S))=67\pm10; \)

 \(N(B_c^{*+}(2S))=51\pm10; \)

 \(\Delta M=29.1\pm1.5 \) MeV

First measurement of

\[M(B_c^+(2S)) = 6871.0\pm1.2(\text{stat})\pm0.8(\text{syst})\pm0.8(B_c^+) \) MeV
Observation of $Z \rightarrow J/\psi \ell^+\ell^-$ decay

- Valuable measurement for calculation of the fragmentation function for a virtual photon to split into a J/ψ
- Background for $H \rightarrow \text{quarkonia}$ decays accessible in future
- Analysis in e and μ channels ($\ell\ell = ee$ or $\mu\mu$)

Fiducial region

$$40 < m_{\ell^+\ell^-} < 80 \text{ GeV}$$
$$|\eta| < 2.5, \quad |\eta(\text{muons})| < 2.4$$
$$p_T(\ell_1, \ell_2, \mu, \mu) > (30, 15, 3.5, 3.5) \text{ GeV}$$

Signal: $p_T^{J/\psi} > 8.5 \text{ GeV}$

Reference channel: $4 < m(\mu^+\mu^-) < 80 \text{ GeV}$

Ratio of exclusive $Z \rightarrow J/\psi \ell^+\ell^-$ decay to inclusive $Z \rightarrow 4\mu$ (partial cancellation of systematics)

$$\mathcal{R}_{J/\psi \ell^+\ell^-} = \frac{\mathcal{B}(Z \rightarrow J/\psi \ell^+\ell^-)}{\mathcal{B}(Z \rightarrow \mu^+\mu^-\mu^+\mu^-)}$$

CMS: 35.9 fb$^{-1}$ at 13 TeV data

Observation of $Z \rightarrow J/\psi l^+l^-$ decay

Yields from fits:
N($Z \rightarrow \psi \mu\mu$) = 13.0±3.9
N($Z \rightarrow \psi ee$) = 11.2±3.4

\[\mathcal{R}_{J/\psi \ell^+\ell^-} = 0.67 \pm 0.18 \text{ (stat)} \pm 0.05 \text{ (syst)} \]

Assumption of unpolarised J/\psi (full polarisation change the result by <25%)

\[\mathcal{B}(Z \rightarrow J/\psi \ell^+\ell^-) \approx 8 \times 10^{-7} \]

Consistent with predictions (6.7±0.7×10^{-7} and 7.7×10^{-7})

Summary

- ATLAS and CMS have a rich physics program for studies of heavy flavor physics

- Selection of recent results on:
 - Quarkonia production
 - Good general agreement with predictions
 - Measurement of Nuclear Modification Factors in pPb and PbPb collisions → CNM effects relevant for Y in low p_T region
 - \(\sigma_{\text{eff}} \) generally lower from prompt di-J/\(\psi \) and di-Y wrt other final states
 - \(B^0 \rightarrow K^+\pi\mu^+\mu^- \) angular analysis:
 - CMS compatible with expectations; ATLAS has tension of \(\sim 2.5\sigma \) in \(q^2 \) bins for \(P'_4 \) and \(P'_5 \)
 - \(B^+ \rightarrow K^+\mu^+\mu^- \) angular analysis
 - Compatible with SM predictions
 - Search for \(X^\pm(5568) \rightarrow B^0_s\pi^\pm \) resonance
 - No evidence; strong limits set on cross-section
 - \(B_{c}^+ \) ground and excited states
 - First measurement of \(M(B_{c}^+(2S)) = 6871.0 \pm 1.2(\text{stat}) \pm 0.8(\text{syst}) \pm 0.8(\text{B}_{c}^+) \) MeV
 - Observation of \(Z \rightarrow J/\psi \ l^+l^- \) decay

Many more studies ongoing; more results to come in the next months
Additional Material
Data set

- LHC runs
 - Run1 (2009-2012)
 - Run2 (2015-2018)
- Excellent data taking performance
 - ~160 fb$^{-1}$ data at pp collisions collected by each experiments at 13 TeV
 - 7 and 8 TeV data in Run1
 - pPb and PbPb runs

General purpose experiment with very good potential for Heavy Flavor physics
Non-prompt J/ψ and $\psi(2S)$ in pp

- Good description of the data by FONLL (non-prompt) calculations in the full p_T range
Good description of the data by FONLL calculations in the full pT range
ATLAS

<table>
<thead>
<tr>
<th>Collision type</th>
<th>Sources</th>
<th>Ground-state yield [%]</th>
<th>Excited-state yield [%]</th>
<th>Ratio [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p+Pb collisions</td>
<td>Luminosity</td>
<td>2.7</td>
<td>2.7</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Acceptance</td>
<td>1–4</td>
<td>1–4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Muon reco.</td>
<td>1–2</td>
<td>1–2</td>
<td>< 1</td>
</tr>
<tr>
<td></td>
<td>Muon trigger</td>
<td>4–5</td>
<td>4–5</td>
<td>< 1</td>
</tr>
<tr>
<td></td>
<td>Charmonium fit</td>
<td>2–5</td>
<td>4–10</td>
<td>7–15</td>
</tr>
<tr>
<td></td>
<td>Bottomonium fit</td>
<td>2–15</td>
<td>2–15</td>
<td>5–12</td>
</tr>
</tbody>
</table>

pp collisions	Luminosity	5.4	5.4	–
	Acceptance	1–4	1–4	–
	Muon reco.	1–5	1–5	< 1
	Muon trigger	5–7	5–7	< 1
	Charmonium fit	2–7	4–10	7–11
	Bottomonium fit	1–15	2–15	5–12

CMS

- **Lumi**: 2.3%
- **Acceptance**: 3.0%
- **Muon eff (J/ψ, ψ(2S))**: 2.5%
- **Muon eff (Y(nS))**: 1.8%
- **Muon trigger**: 3%
- **Fit model**: 2.0%
Nuclear Modification Factors

- Comparison with ALICE (J/psi) and ALICE and LHCb (Y): pPb collisions
 - Very strong suppression of charmonia production in PbPb collisions
 - Similar for prompt and non-prompt J/ψ production
 - Suggests a common dependence on y^*

- Comparison between R_{pPb} and R_{PbPb} for prompt and non-prompt J/ψ
 - Small increase of R_{AA} with p_T in prompt J/ψ production
 - R_{AA} for non-prompt J/ψ production ~constant

- R_{AA} vs N_{jets} in PbPb collisions
 - Suppression decreases going from central to peripheral collisions
Di-J/ψ production at 8 TeV

- Two prompt J/ψ → μμ decays from the same pp collision
 - Invariant mass fit
 - Pseudo-proper decay time fits → prompt-prompt
 - Vertex d_z fit → two J/ψ from the same vertex (pileup-removal)
- Data driven SPS contribution
- Analysis in two regions according to sub-leading J/ψ$_2$ rapidity

ATLAS: 11.4 fb$^{-1}$ at 8 TeV pp

\[N_{J/\psi J/\psi} = (3310 \pm 330) \]

\[1.05 < |y^{*}_{J/\psi_2}| < 2.1 \]

\[|y^{*}_{J/\psi_2}| < 1.05 \]

\[N_{J/\psi J/\psi} = (3140 \pm 370) \]
Di-\(J/\psi\) production at 8 TeV

- DPS vs SPS undistinguishable on event-by-event base
- Different overall kinematics \(\rightarrow\) angular correlation \((\Delta y \text{ and } \Delta \phi)\)
- Events re-weighted according to \(\Delta y-\Delta \phi\) bin
Di-\(J/\psi\) production at 8 TeV

- Theory plots for inclusive acceptance, not for fiducial one (scale factor \(~6\))
Di-J/ψ production at 8 TeV

- Systematics

| Source | $|y(J/ψ)| < 1.05$ | $1.05 ≤ |y(J/ψ)| < 2.1$ |
|-------------------------------|-------------|-------------|
| Trigger | ±7.5 | ±8.3 |
| Muon reconstruction | ±1.1 | ±1.3 |
| Kinematic acceptance | ±0.4 | ±1.1 |
| Mass model | ±0.1 | ±0.1 |
| Mass bias | ±0.2 | ±0.2 |
| Prompt–prompt model | ±0.2 | ±0.01 |
| Differential f_{pp} corr. | ±0.6 | ±0.3 |
| Pile-up | ±0.03 | ±0.4 |
| Total | ±7.7 | ±8.5 |

<table>
<thead>
<tr>
<th>Source</th>
<th>Relative uncertainty [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>±0.7</td>
</tr>
<tr>
<td>Muon reconstruction</td>
<td>±0.1</td>
</tr>
<tr>
<td>Mass model</td>
<td>±0.01</td>
</tr>
<tr>
<td>Mass bias</td>
<td>±0.02</td>
</tr>
<tr>
<td>Prompt–prompt model</td>
<td>±0.1</td>
</tr>
<tr>
<td>Differential f_{pp} corr.</td>
<td>±0.1</td>
</tr>
<tr>
<td>Pile-up</td>
<td>±0.8</td>
</tr>
<tr>
<td>DPS model</td>
<td>±5.6</td>
</tr>
<tr>
<td>Total</td>
<td>±5.7</td>
</tr>
</tbody>
</table>
Di-J/ψ production at 8 TeV

- **Spin-alignment**

| Scenario | $|y(J/\psi_2)| \leq 1.05$ | $1.05 \leq |y(J/\psi_2)| < 2.1$ |
|---------------------------|-----------------|-----------------|
| Longitudinal | -47% | -45% |
| Transverse positive | +68% | +82% |
| Transverse negative | +39% | +28% |
| Transverse zero | +51% | +47% |

| Scenario | $|y(J/\psi_2)| \leq 1.05$ | $1.05 \leq |y(J/\psi_2)| < 2.1$ |
|---------------------------|-----------------|-----------------|
| Longitudinal | -47% | -45% |
| Transverse positive | +79% | +65% |
| Transverse negative | +35% | +35% |
| Transverse zero | +54% | +48% |
Y(1S) pair production at 8 TeV

- Systematics

<table>
<thead>
<tr>
<th>Component</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonance shape</td>
<td>7.9</td>
</tr>
<tr>
<td>Simulation</td>
<td>4.9</td>
</tr>
<tr>
<td>Efficiency</td>
<td>3.7</td>
</tr>
<tr>
<td>Acceptance</td>
<td>2.8</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>2.6</td>
</tr>
<tr>
<td>Total</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Effects of polarisation

<table>
<thead>
<tr>
<th>λ_{θ_1}</th>
<th>λ_{θ_2}</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+0.5</td>
</tr>
<tr>
<td>+1</td>
<td>+0.5</td>
<td>+0.5</td>
</tr>
<tr>
<td>+0.5</td>
<td>+0.5</td>
<td>+0.5</td>
</tr>
<tr>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-0.5</td>
</tr>
<tr>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-0.5</td>
</tr>
<tr>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-0.5</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change (%)</th>
<th>+36</th>
<th>+26</th>
<th>+18</th>
<th>-2</th>
<th>-3</th>
<th>-9</th>
<th>-9</th>
<th>-19</th>
<th>-29</th>
<th>-38</th>
</tr>
</thead>
</table>
B⁰ \rightarrow K^{*0}\mu^+\mu^- angular analysis

- B⁰ \rightarrow K^{*0}\mu^+\mu^- \rightarrow K^+\pi^-\mu^+\mu^- is a FCNC process
- The process can be fully described by the three angles (\theta_L, \theta_K, \phi) and the dimuon invariant mass squared q^2
- New physics entering the loop can be detected by looking at the angular distributions of the decay
- Angular differential decay rate expressed with S coefficients that may be represented by helicity or transversity amplitudes:

\[
\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K \cos\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_L \right.
- F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin 2\theta_L \cos 2\phi
+ S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi
+ S_6 \sin^2\theta_K \cos\theta_L + S_7 \sin 2\theta_K \sin\theta_L \sin\phi
\left. + S_8 \sin 2\theta_K \sin 2\theta_L \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right].
\]

A_{FB} = 3S_6/4
Forward-backward Asymmetry
F_L = fraction of longitudinally polarised K*
F_S = s-wave fraction

- Generally written in terms of P and P' observables as they are less sensitive to theoretical uncertainties at LO
- LHCb measured a >3\sigma discrepancy with model on P'_5

ATLAS and CMS analysis uses \sim20 fb\(^{-1}\) of 8 TeV pp data taken in 2012
ATLAS extracts P_1 and P'_i (i=4,5,6,8); CMS extracts P_1 and P'_5
B^0 \rightarrow K^{*0}\mu^+\mu^- \text{ angular analysis}

- **Systematics**

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>$F_L(10^{-3})$</th>
<th>$A_{FB}(10^{-3})$</th>
<th>$d\mathcal{B}/dq^2$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation mismodeling</td>
<td>1–17</td>
<td>0–37</td>
<td>1.0–5.5</td>
</tr>
<tr>
<td>Fit bias</td>
<td>0–34</td>
<td>2–42</td>
<td>—</td>
</tr>
<tr>
<td>MC statistical uncertainty</td>
<td>3–10</td>
<td>5–18</td>
<td>0.5–2.0</td>
</tr>
<tr>
<td>Efficiency</td>
<td>34</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>$K\pi$ mistagging</td>
<td>1–4</td>
<td>0–7</td>
<td>0.1–4.1</td>
</tr>
<tr>
<td>Background distribution</td>
<td>20–36</td>
<td>12–31</td>
<td>0.0–1.2</td>
</tr>
<tr>
<td>Mass distribution</td>
<td>3</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td>Feed-through background</td>
<td>0–27</td>
<td>0–5</td>
<td>0.0–4.0</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>6–24</td>
<td>0–5</td>
<td>0.2–2.1</td>
</tr>
<tr>
<td>Normalization to $B^0 \rightarrow J/\psi K^{*0}$</td>
<td>—</td>
<td>—</td>
<td>4.6</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>41–65</td>
<td>18–74</td>
<td>6.4–8.6</td>
</tr>
</tbody>
</table>

- **Diff. cross-section**
The D0 Collaboration obtains a significance above five standard deviations for the X(5568) state only when an upper limit on $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ between B^0_s and π^\pm imposed ($\Delta R < 0.3$).
Observation of signals consistent with $B_c^+(2S)$ and $B_c^{*+}(2S)$ in the decay channel:

$B_c^+(2S) \rightarrow B_c^{+}\pi^+\pi^- \rightarrow J/\psi \pi^+\pi^+\pi^-$

$B_c^{(*)+}(2S) \rightarrow B_c^{*+}\pi^+\pi^- \rightarrow B_c^{+}(\gamma) \pi^+\pi^-$

$\rightarrow J/\psi \pi^+(\gamma) \pi^+\pi^-$

B_c^+ reconstruction: di-muon constrained to J/ψ mass + high purity charged track as π

Selection cuts on B_c^+ reconstructed candidates:

- $p_T(B_c^+)>15$ GeV
- $|y^*(B_c^+)|<2.4$
- $l(B_c^+)>100$ μm
- Vertex χ^2 prob. $>10\%$

CMS: 143 fb$^{-1}$ at 13 TeV data

B_c^+ signal yield:

$N(B_c^+) = 7629 \pm 226$

$M(B_c^+) = 6271.1 \pm 0.5$ MeV

B$_c^+$ excited states

- B$_c^+(2S)$ and B$_c^{*+}(2S)$ reconstruction: kinematic fit of B$_c^+$ with 2 oppositely charged particles from the same vertex
- Low energetic γ from B$^*_c \rightarrow B_c^+\gamma$ difficult to detect \rightarrow B$_c^{*+}(2S)$ peak in the B$_c^+\pi^+\pi^-$ mass spectrum seen at a mass lower than M(B$_c^+(2S)) \rightarrow$ double peak structure

Selection cuts on B$_c^+$ reconstructed candidates

- $p_T(\pi_1) > 0.8$ GeV
- $p_T(\pi_2) > 0.6$ GeV
- $|y^*(B_c^{*+}\pi^+\pi^-)| < 2.4$
- Vertex χ^2 prob. $> 10\%$

Mass variable defined as (higher resolution):

$$M(B_c^+\pi^+\pi^-) - M(B_c^+) + m_{B_c^+}$$

- Good separation of the two states
- N(B$_c^+(2S)) = 67 \pm 10$;
- N(B$_c^{*+}(2S)) = 51 \pm 10$;
- $\Delta M = 29.1 \pm 1.5$ MeV

First measurement of

M(B$_c^+(2S)) = 6871.0 \pm 1.2$(stat)$\pm 0.8$(syst)$\pm 0.8$(B$_c^+$) MeV