A heavy metal path to new physics
Based on arXiv:1810.09400

Jan Hajer

Centre for Cosmology, Particle Physics and Phenomenology — Université catholique de Louvain
in collaboration with M. Drewes, A. Giammanco, M. Lucente, O. Mattelaer
thanks goes to M. Borsato, G. Bruno, E. Chapon, A. De Roeck, G. Krintiras, S. Lowette, J. Jowett, J. Prisciandaro

XXVII International Workshop on Deep Inelastic Scattering and Related Subjects
Motivation

- So far the LHC has not found any new physics beyond the SM
- Initial focus lies on heavy new physics
- During the high luminosity run the focus will shift towards searches of weakly coupled particles
Motivation

- So far the LHC has not found any new physics beyond the SM
- Initial focus lies on heavy new physics
- During the high luminosity run the focus will shift towards searches of weakly coupled particles
- We propose to utilize also the heavy ion runs for this goal

PbPb Nov 2018
One of the main goals of the heavy ion runs is a better understanding of nuclear matter, especially the quark gluon plasma (QGP)

Phase diagram of nuclear matter

Simulation of a heavy ion event

The QGP is indicated in red.
Jet quenching

- two jets of very different energies
- one jet lost more energy as it traversed the droplet of QGP

CMS event display

- azimuthal distribution of charged tracks (green) and energy in the ECAL (red) HCAL (blue)
- large azimuthal anisotropies

“It is remarkable that the strongly coupled character (left) and the liquid nature (right) of the QGP formed in these collisions can be seen so clearly in individual events.” This is in strong contrast to pp searches at the LHC.
Properties of the heavy ions runs

Advantage
- No pile-up; single primary vertex
- Large nucleon multiplicity
e.g. $A(\text{Pb}) = 208$, $Z(\text{Pb}) = 82$
- Number of parton level interactions per collision scales with A
e.g. $\frac{\sigma_{\text{PbPb}}}{\sigma_{pp}} \propto A^2 = 43 \times 10^3$

Drawbacks
- There are a huge number of tracks near the interaction point which makes the search for prompt new physics extremely challenging
- The collision energy per nucleon is smaller. e.g. $\sqrt{s_{NN}} = 5.02 \text{TeV}$ for Pb which is problematic for heavy new physics
- The instantaneous luminosity is lower for larger A
- The LHC has allocated much less time to heavy ions runs than to protons runs
The reason for the low luminosities are secondary beams

For heavy ions there are additional contributions to the crosssection

Bound-Free Pair Production (BFPP):

\[
208\text{Pb}^{82+} + 208\text{Pb}^{82+} \rightarrow 208\text{Pb}^{82+} + 208\text{Pb}^{81+} + e^+
\]

[Meier et al. 2001]

Electromagnetic Dissociation (EMD):

\[
208\text{Pb}^{82+} + 208\text{Pb}^{82+} \rightarrow 208\text{Pb}^{82+} + 207\text{Pb}^{82+} + n
\]

[Pshenichnov et al. 2001]

Leads to

- Larger cross section results in faster beam decay
- Secondary beams consisting of ions with different charge/mass ratio

Can accidentally quench the magnets
Lighter ions

- pp and PbPb are only two extreme cases
- Remember the runs using pPb 2013, 2016
- There is interest in using intermediate ions
- XeXe has been collided in 2017
- There are ideas to experiment with other intermediate ions

XeXe (2017)
<table>
<thead>
<tr>
<th></th>
<th>M [GeV]</th>
<th>$\sqrt{s_{NN}}$ [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>0.931</td>
<td>14.0</td>
</tr>
<tr>
<td>^{16}O</td>
<td>14.9</td>
<td>7.00</td>
</tr>
<tr>
<td>^{40}Ar</td>
<td>37.3</td>
<td>6.30</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>37.3</td>
<td>7.00</td>
</tr>
<tr>
<td>^{78}Kr</td>
<td>72.7</td>
<td>6.46</td>
</tr>
<tr>
<td>^{84}Kr</td>
<td>78.2</td>
<td>6.00</td>
</tr>
<tr>
<td>^{129}Xe</td>
<td>120</td>
<td>5.86</td>
</tr>
<tr>
<td>^{208}Pb</td>
<td>194</td>
<td>5.52</td>
</tr>
</tbody>
</table>

Scaling of the secondary beam production:

\[
\sigma_{\text{EMD}} \propto A - Z \frac{Z^3}{A^{2/3}}, \quad \sigma_{\text{BFPP}} \propto Z^{7/2}.
\]
Crosssections

\begin{table}
\centering
\begin{tabular}{ccccccc}
\hline
 & \(M\) & \(\sqrt{s_{NN}}\) & \(\sigma_{\text{EMD}}\) & \(\sigma_{\text{BFPP}}\) & \(\sigma_{\text{had}}\) & \(\sigma_{\text{tot}}\) \\
\hline
\(\frac{1}{1}\)H & 0.931 & 14.0 & 0 & 0 & 0.071 & 0.071 \\
\(\frac{16}{8}\)O & 14.9 & 7.00 & 0.074 & 2.4 \times 10^{-5} & 1.4 & 1.47 \\
\(\frac{40}{18}\)Ar & 37.3 & 6.30 & 1.2 & 0.0069 & 2.6 & 3.81 \\
\(\frac{40}{20}\)Ca & 37.3 & 7.00 & 1.6 & 0.014 & 2.6 & 4.21 \\
\(\frac{78}{36}\)Kr & 72.7 & 6.46 & 12 & 0.88 & 4.1 & 17.0 \\
\(\frac{84}{36}\)Kr & 78.2 & 6.00 & 13 & 0.88 & 4.3 & 18.2 \\
\(\frac{129}{54}\)Xe & 120 & 5.86 & 52 & 15 & 5.7 & 72.7 \\
\(\frac{208}{82}\)Pb & 194 & 5.52 & 220 & 280 & 7.8 & 508 \\
\hline
\end{tabular}
\end{table}

Scaling of the secondary beam production

\[\sigma_{\text{EMD}} \propto \frac{(A - Z)Z^3}{A^{2/3}}, \quad \sigma_{\text{BFPP}} \propto Z^7. \]
Crosssections

Scaling of the secondary beam production

\[\sigma_{\text{EMD}} \propto \frac{(A - Z)Z^3}{A^{2/3}}, \quad \sigma_{\text{BFPP}} \propto Z^7. \]
The luminosity at one interaction point (IP) is
\[L = \frac{f_{\text{rev}} n_b}{4\pi \beta^* \epsilon} N_b^2 \propto N_b^2 \]
where \(N_b \) are the number of ions per bunch.

The initial bunch intensity

for arbitrary ions is fitted to the information of the lead run
\[N_b \left(\frac{A}{Z} N \right) = N_b \left(\frac{208}{82} \text{Pb} \right) \left(\frac{Z}{82} \right)^{-p} \]
where \(p = 1 \) is a conservative assumption while \(p = 1.9 \) is an optimistic assumption.

The loss of number of ions per bunch \(N_b \) over time is given by
\[\frac{dN_b}{dt} = -\frac{N_b^2}{N_0 \tau_b}, \]
where \(\tau_b = \frac{n_b}{\sigma_{\text{tot}} n_{\text{IP}} L_0} \).

For a given turnaround time \(t_{\text{ta}} \) between the physics runs

the integrated luminosity is maximised by
\[t_{\text{opt}} = \tau_b \sqrt{\theta_{\text{ta}}} \]
with
\[\theta_{\text{ta}} = \frac{t_{\text{ta}}}{\tau_b} \]

The average luminosity using the optimal run time is
\[L_{\text{ave}}(t_{\text{opt}}) = \frac{L_0}{\left(1 + \sqrt{\theta_{\text{ta}}} \right)^2} \]
Crosssection gain vs. luminosity loss

Under Optimistic assumption of $p = 1.9$ and $t_{ta} = 2.5\, \text{h}$

and neglecting operational efficiencies

\[
A^2\sigma_W \quad [\mu\text{b}]
\]

<table>
<thead>
<tr>
<th>Atom</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>0.056</td>
</tr>
<tr>
<td>^{16}O</td>
<td>7.17</td>
</tr>
<tr>
<td>^{40}Ar</td>
<td>40.3</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>44.8</td>
</tr>
<tr>
<td>^{78}Kr</td>
<td>157</td>
</tr>
<tr>
<td>^{84}Kr</td>
<td>169</td>
</tr>
<tr>
<td>^{129}Xe</td>
<td>390</td>
</tr>
<tr>
<td>^{208}Pb</td>
<td>955</td>
</tr>
</tbody>
</table>

The gain in crosssection is overcompensated by the loss in luminosity. However, low luminosity allows for very low triggers. Lighter mediators are accessible.
Crosssection gain vs. luminosity loss

Under Optimistic assumption of $p = 1.9$ and $t_{ta} = 2.5 \text{ h}$ and neglecting operational efficiencies

<table>
<thead>
<tr>
<th></th>
<th>$A^2\sigma_W$</th>
<th>L_0</th>
<th>τ_b</th>
<th>L_{ave}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$[\mu b]$</td>
<td>$[1/\mu b \text{ s}]$</td>
<td>$[\text{h}]$</td>
<td>$[1/\mu b \text{ s}]$</td>
</tr>
<tr>
<td>$\frac{1}{1}\text{H}$</td>
<td>0.056</td>
<td>21.0×10^3</td>
<td>75.0</td>
<td>15.0×10^3</td>
</tr>
<tr>
<td>$^{16}_{8}\text{O}$</td>
<td>7.17</td>
<td>94.3</td>
<td>6.16</td>
<td>35.2</td>
</tr>
<tr>
<td>$^{40}_{18}\text{Ar}$</td>
<td>40.3</td>
<td>4.33</td>
<td>11.2</td>
<td>2.00</td>
</tr>
<tr>
<td>$^{40}_{20}\text{Ca}$</td>
<td>44.8</td>
<td>2.90</td>
<td>12.4</td>
<td>1.38</td>
</tr>
<tr>
<td>$^{78}_{36}\text{Kr}$</td>
<td>157</td>
<td>0.311</td>
<td>9.40</td>
<td>0.135</td>
</tr>
<tr>
<td>$^{84}_{36}\text{Kr}$</td>
<td>169</td>
<td>0.311</td>
<td>8.77</td>
<td>0.132</td>
</tr>
<tr>
<td>$^{129}_{54}\text{Xe}$</td>
<td>390</td>
<td>0.0665</td>
<td>4.73</td>
<td>0.0223</td>
</tr>
<tr>
<td>$^{208}_{82}\text{Pb}$</td>
<td>955</td>
<td>0.0136</td>
<td>1.50</td>
<td>2.59×10^{-3}</td>
</tr>
</tbody>
</table>
Crosssection gain vs. luminosity loss

Under Optimistic assumption of $p = 1.9$ and $t_{ta} = 2.5\, \text{h}$

and neglecting operational efficiencies

<table>
<thead>
<tr>
<th></th>
<th>$A^2\sigma_W$</th>
<th>L_0</th>
<th>τ_b</th>
<th>L_{ave}</th>
<th>$N/N(p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>0.056</td>
<td>21.0×103</td>
<td>75.0</td>
<td>15.0×103</td>
<td>1</td>
</tr>
<tr>
<td>^{16}O</td>
<td>7.17</td>
<td>94.3</td>
<td>6.16</td>
<td>35.2</td>
<td>0.30</td>
</tr>
<tr>
<td>^{40}Ar</td>
<td>40.3</td>
<td>4.33</td>
<td>11.2</td>
<td>2.00</td>
<td>0.0957</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>44.8</td>
<td>2.90</td>
<td>12.4</td>
<td>1.38</td>
<td>0.0735</td>
</tr>
<tr>
<td>^{78}Kr</td>
<td>157</td>
<td>0.311</td>
<td>9.40</td>
<td>0.135</td>
<td>0.0253</td>
</tr>
<tr>
<td>^{84}Kr</td>
<td>169</td>
<td>0.311</td>
<td>8.77</td>
<td>0.132</td>
<td>0.0266</td>
</tr>
<tr>
<td>^{129}Xe</td>
<td>390</td>
<td>0.0665</td>
<td>4.73</td>
<td>0.0223</td>
<td>0.0103</td>
</tr>
<tr>
<td>^{208}Pb</td>
<td>955</td>
<td>0.0136</td>
<td>1.50</td>
<td>2.59×10$^{-3}$</td>
<td>0.0029</td>
</tr>
</tbody>
</table>

- The gain in crosssection is overcompensated by the loss in luminosity.
- However, low luminosity allows for very low triggers
- Lighter mediators are accessible
Are there models of new physics testable in heavy ion runs?
Heavy Neutral Leptons (HNLs) in the νMSM

[Asaka and Shaposhnikov 2005]

As an example of models with displace vertices we are using HNL.

The SM is extended with 3 sterile neutrinos ν_{Ri}

$$\Delta \mathcal{L} = -y_{ai} \bar{\ell}_a \epsilon \phi^* \nu_{Ri} - \frac{1}{2} \overline{\nu_{Ri}} M_i \nu_R + \text{h.c.}$$

where M_M is the Majorana mass matrix.

After electroweak symmetry breaking the seesaw mechanism leads to

- 3 heavy mass eigenstates $N_i \simeq (\nu_R + \theta^T \nu^c_L)_i + \text{c.c.}$, where $\theta = vyM^{-1}_M$

 The mass can be of order of the electroweak scale
- 3 light neutrinos $\nu_i \simeq V^\dagger_{\nu}(\nu_L - \theta \nu^2_R)_i + \text{c.c.}$ with a mass matrix $m_\nu = -\theta M_M \theta^T$

Phenomenological consequences

- The parameter suffice to explain neutrino oscillation data.
- One of the neutrino decouples and can play the role of dark matter.
- Another heavy neutrino can be a long lived state observable at the LHC.
Masses of a few GeV lead to observable macroscopic displacement.

In the relevant mass range the crosssection is $\sigma \propto U_a^{-2}$.
HNL at the LHC

W-boson mediator
- Simulation using MadGraph5_aMC@NLO

 [Alwall et al. 2011; Degrande et al. 2016]
- Trigger on first μ with $p_T > 25$ GeV
- Search for displaced μ with $d > 5$ mm
- Usual strategy to search for displaced HNLs in pp collisions

B-meson mediator
- Lower trigger possible:

 e.g. $p_T > 3$ GeV
- Already probed at LHCb
- Considered by CMS using parked data.

Process

- **W-boson mediator** diagram
- **B-meson mediator** diagram
Analytic estimate

Number of observable events

The decay rate can be estimated to be

$$\Gamma_N \simeq 11.9 \times \frac{G_F^2}{96\pi^3} U^2 M^5,$$

The number of events that can be seen in a detector can be estimated as

$$N_d \sim L_{\text{int}} \sigma_\nu U^2 \left(e^{-l_0/\lambda_N} - e^{-l_1/\lambda_N} \right) f_{\text{cut}},$$

- l_1 is the length of the effective detector volume
- l_0 the minimal displacement that is required by the trigger
- $\lambda_N = \frac{\beta \gamma}{\Gamma_N}$ decay length of the heavy neutrino
- f_{cut} all efficiencies

\[\text{B-mesons} \]

$$N_d = \frac{L_{\text{int}} \sigma_B^{[A,Z]}}{9} \left[1 - \left(\frac{M_i}{m_B} \right)^2 \right]^2$$
\[\times U^2 \left(e^{-l_0/\lambda_N} - e^{-l_1/\lambda_N} \right) f_{\text{cut}} \]
We have extended MadGraph5_aMC@NLO to be able to simulate heavy ion collisions. All event numbers for equal running time of one month $L_{\text{int}} = 5.79 \times 10^4$, 7.72 and 10^{-2} pb$^{-1}$.

Simulation for W-boson mediator

- Con: Event rate is not competitive
- Pro: BSM physics is measurable in a new environment

Estimate for B-meson mediator

- Significantly lowered triggers for heavy ions.
- Intermediate ions have an advantage over pp and PbPb
Conclusion

- Heavy ion collisions allow to search for hidden new physics
- Intermediate ions can be very interesting for searches of new physics
- Lower trigger requirements could be the key advantage of heavy ion collisions over proton collisions.
- Searches for displaced new physics circumvent the busy inner tracker
- HNL are a simple example of this idea, but other models are just as well testable

