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Standard Model Extension: an effective description of Lorentz Violating effects

Existing experimental constraints and challenges

The special role of deep inelastic e-p scattering (dual description in terms of 
parton-model and Operator Produce Expansion)

Expected upper bounds from HERA data (Zeus and H1) and from the planned 
electron-ion collider in the JLAB (JLEIC) and Brookhaven (eRHIC) configurations

Expected bounds from Drell-Yan at LHC
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Lorentz invariance is perhaps the most tested symmetry in nature

Consistent theories in which the Lorentz symmetry is explicitly broken are 
extremely difficult to construct

A much easier path (inspired by vacua found in superstring theories) is to 
spontaneously break Lorentz invariance with the introduction of constant 
background fields whose vacuum expectation values are not Lorentz invariant  
(i.e. have intrinsic directions)

Instead of considering explicit models (in which the expectation values of 
background fields are obtained explicitly from a potential) we focus on a general 
parametrization of all possible effects:  
the Standard Model Extension [hep-ph/9703464; Colladay, Kostelecky]

[hep-ph/9809521; Colladay, Kostelecky]
[hep-th/0312310; Kostelecky]
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Under an observer Lorentz transformation (by which we mean just a change of 
coordinates), the physics obviously must be invariant. In the new frame we see a 
Lagrangian which is identical in form to the original one and in which aμ→Λμν aν

Let’s choose a reference frame (a set of coordinates) and consider for instance 
 
 
where the SM Lagrangian density is a function of scalar (φ), spinor (ψ), vector(Vμ) 
fields and couplings (gi), and aμ are 4 new coupling constants.

ℒ = ℒSM(x, ϕ, ψ, Vμ, gi) + aμ ψ̄γμψ

Under a particle Lorentz transformation: xμ→Λμν xν, (φ,ψ,Vμ) transform as usual 
and (gi,aμ) are invariant. The presence of aμ implies that amplitudes between 
states connected by this transformation are not connected as in the SM

This implies that the principle of relativity is violated:  
the lifetime of a boosted muon measured in the original frame and the lifetime of a 
muon at rest in the original frame but measured in a boosted frame will differ



Enrico Lunghi /24

The Standard Model Extension (SME)
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Standard Quantization
Microcausality
Spin-Statistic Theorem
Observer Lorentz covariance
Hermiticity
Positivity of the Energy
Power counting renormalizability
Conservation of Energy-Momentum for constant 
Lorentz Violating vacuum expectations values

The fact that observer invariance is preserved implies

For simplicity we focus on renormalizable interactions: the resulting theory is 
known as minimal SME
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The QCD sector of the SME

The SU(3)×U(1) gauge, lepton and quark sectors are (ψ=u,d,e):

Dμ is the standard QCD & QED covariant derivative

LSM = �1

4
Fµ⌫F

µ⌫ � 1

4
Ga

µ⌫G
a,µ⌫ +  ̄(�µiDµ �m ) 

�LSME = �1

4
�µ⌫F F�Fµ⌫ � 1

4
�µ⌫G Ga

�G
a
µ⌫ +  ̄(�µiDµ �M) 

�µ = cµ⌫�⌫ + dµ⌫�⌫ + eµ + ifµ�5 +
1

2
g↵�µ�↵�

M = aµ�
µ + bµ�

5
�
µ +

1

2
H

µ⌫
�µ⌫

where

The various coefficients (e.g. cμν) have fixed values in some reference inertial frame. 
Their values in the lab frame are given by a standard Lorentz transformation. 

Under observer transformations the SME Lagrangian is a scalar: for example cμν 
and               are both tensors

Under particle transformations              is a tensor while cμν are 16 scalars

One can include non-renormalizable interactions. For instance:

δℒ(5) = −
1
2

a(5)μαβψ̄ iD(αiDβ)ψ + ⋯

ψ̄γμiDνψ
ψ̄γμiDνψ
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Existing Constraints

All coefficients for Lorentz-Violation 
are defined with respect to a Sun-
centered celestial-equatorial frame 
(which is the “most” inertial frame that 
is accessible [0801.0287; Kostelecky, Russell]
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Experiments that focus on the 
properties of stable particles 
(electrons, muons, protons, neutrons, 
photons) yield very strong constraints:

Coefficients in the quark sectors are almost completely unconstrained due to 
the difficulty of accessing quark level transitions directly.

↵�µ⌫
F <

⇥
10�14 � 10�32

⇤

cµ⌫electron <
⇥
10�17 � 10�21

⇤

cµ⌫proton <
⇥
10�20 � 10�28

⇤

cµ⌫neutron <
⇥
10�13 � 10�29

⇤

cµ⌫muon < 10�11

Note that extreme care has to be used in interpreting these bounds. 
Experiments can only place limits on “physical” combinations of coefficients. 

Bounds come from O(200) experiments
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The main problem is connecting coefficients in the quark sectors to observable 
hadronic properties
There are several avenues that one can pursue:

Low energy processes sensitive to short distance physics 
e.g.: meson-antimeson mixing [Kostelecky, Berger; Di Domenico, Van Kooten, van Tilburg]

Impact on hadron properties
Connecting the effective LV coefficients of proton, neutron and pion to the   
fundamental quark LV coefficients [Kamand, Altschul, Schindler]
Impact of the quark LV coefficients on various proton PDFs

High energy hadronic interactions where, using factorization, it is possible to 
(partially) bypass non-perturbative problems and directly relate observables 
to the underlying quark dynamics:

Deep Inelastic Scattering at HERA [Kostelecky, EL,  Vieira]

Reach of DIS at the Electron Ion Collider [EL, Sherrill]

LHC phenomenology, e.g. Drell-Yan [Kostelecky, EL, Sherrill,  Vieira]

Existing Constraints: the QCD sector
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The parton model picture emerges from an all-orders proof of factorization:  

Deep Inelastic Scattering: Standard Model (factorization)

hard scattering U(k)

long distance L(k,P)

The dominant region comes from almost on-shell momenta (                   )

It is convenient to use the γ*-proton center of momentum frame (Breit frame).

In light-cone coordinates:

{Pμ ≃ (n̄ ⋅ P) nμ = (Q,0,0⊥)
qμ ≃ (−Q, Q,0⊥)

⟹ kμ = ξPμ + δkμ ⟹ k + q ≃ (0,Q,0⊥)
on shell after taking the imaginary 
part of the propagator

k2 ∼ Λ2, m2
p

small
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In the Breit frame it can be shown that only one component of k enters the 
hard scattering (i.e. the other components are small and there are no 
singularities): starting from                       , the              limit is smooth.

The amplitude becomes a one dimensional convolution of universal parton 
distribution functions and hard scatterings.

The parton distribution functions admit a covariant expression:

f(n ⋅ k, Pμ) = ∫
dλ
2π

e−i(n⋅k)λ⟨P | ψ̄(λn)
n/
2

ψ(0) |P⟩

Reparameterization invariance (rescaling of n) and covariance imply that the PDF 
can only depend on the ratio                    :  ξ ≡ n ⋅ k /n ⋅ P f(n ⋅ k, Pμ) → f(ξ)

kμ = ξPμ + δkμ δkμ → 0

Deep Inelastic Scattering: Standard Model (factorization)



Enrico Lunghi /24 11

Deep Inelastic Scattering: SME (factorization)

In our case:

The quark dispersion relation is modified:

In the proof of factorization we need to take    such that  

ℒ =
1
2

q̄γμ(gμν + cμν)i
↔
D νq

kμ(ημν + cμν)(ηνλ + cνλ)kλ = k̃μk̃μ = 0

k k̃2 ∼ Λ2

Covariance forces the choice: k̃μ = ξPμ + δk̃μ

Taking the imaginary part of the internal propagator (                 ) 
forces 

k′�μ = k + q
k̃′�2 = (k̃ + q̃)2 ∼ Λ2

The proof of factorization is almost identical to the SM case after transforming 
to a modified Breit frame defined as the           center of mass frameP − q̃
The parton distribution functions become:

f(n ⋅ k̃, Pμ, cμν) = ∫
dλ
2π

e−i(n⋅k̃)λ⟨P | ψ̄(λñ)
n/
2

ψ(0) |P⟩

( n ⋅ k̃
n ⋅ P

,
cμνnμPν

n ⋅ P
,

cμνPμPν

Λ2 ) = (ξ, cμνnμn̄ν, cμνn̄μn̄μ (n ⋅ P)2

Λ2 )

{
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The DIS cross section is                     , where Lμν and Wμν are the leptonic and 
hadronic tensors (the latter is expressed in terms of W1 and W2)

In the SM: 

�µ = �µ + cµ⌫�⌫

The trace in the numerator is simply expanded keeping only linear terms in cμν

We need the imaginary part of the denominator:

Yields terms proportional to the 
derivative of the PDFs

d� ⇠ Lµ⌫Wµ⌫

In the SME:

Tμν ∼ ∫
1

0

fi(ξ)
ξ

Q2
i ξPα(ξPβ + qβ)

Tr[γαγμγβγν]
(ξP + q)2 + iε

+(μ ↔ ν, q ↔ − q)

Tμν ∼ ∫
1

0

fi(ξ, ⋯)
ξ

Q2
i ξPα(ξPβ + qβ)

Tr[ΓαΓμΓβΓν]
(ξP + q̃)2 + iε

+(μ ↔ ν, q ↔ − q)

where                          and Wμν = ImTμν

1
π

Im
1

(ξP + q̃)2 + iε
= δ(q̃2 + 2ξP ⋅ q̃) =

1
2P ⋅ q [δ(ξ − x) + δ′ �(ξ − x)cμνHμν]

Deep Inelastic Scattering: SME (factorization)
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e-P DIS admits a rigorous description using the OPE and dispersion relations

Using the optical theorem one can write (Jμ is the electromagnetic current): 

We need the product of currents at small      but the OPE is only valid at small

The OPE reads:

zμz2

The two regions (which correspond to                   and              ) are connected 

by dispersion relations (ITEP sum rules)

2P ⋅ q
−q2

=
1
x

> 1
2P ⋅ q
−q2

∼ 0

Deep Inelastic Scattering: Standard Model (OPE)

dσ ∼ |M(eP → eX) |2 ∼ Im[M(eP → eP)] ∼ Im⟨P |TJμ(z)Jν(0) |P⟩

TJμ(z)Jν(0) ∼ Cμνμ1⋯μnOμ1⋯μn

Cμνμ1⋯μn ∼
qμ1

Q2
⋯

qμn

Q2 ( qμqν

Q2
− gμν) + ⋯

Oμ1⋯μn
= q̄γμ1

iDμ2
⋯iDμn

q + symmetrizations − traces
⟨P |Oμ1⋯μn

|P⟩ = AnPμ1
⋯Pμn
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We seek the OPE for the product of two electromagnetic currents:

 ̄f (x)�
µ
f

i(i@̃/+ q̃/)

(i@̃ + q̃)2
�⌫
f f (0)

Expand: 1

(i@̃ + q̃)2
=

1

q̃2

1X

n=0

 
�2iq̃ · @̃

q̃2

!n

+O(@̃2
/q̃

2)

Operator basis: 

Deep Inelastic Scattering: SME (OPE)

q̃μ = (gμν + cμν)qν

γ̃μ = (gμν + cμν)γν

Ôμ1⋯μn
= q̄γμ1

iD̃μ2
⋯iD̃μn

q + symmetrizations − traces

Why symmetric? Why are traces suppressed?

In the SM this follows directly from the fact that the matrix elements of the 
operators are functions of the sole proton momentum:  
only matrix elements of symmetric operator are non-vanishing and traces are 
proportional to P2 = m2

p ≪ Q2
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The perturbative evaluation of the matrix elements of the SME operators 
between on-shell SME quark states with momentum k (           ) yields:

All of this strongly suggests:

The matrix elements      are the moments of the quarks PDFs and can depend 
on scalar quantities like 

Putting everything together reproduces exactly the factorization result

Deep Inelastic Scattering: SME (OPE)

⟨k | q̄γμ1i∂̃μ2⋯i∂̃μnq |k⟩ ∝ k̃μ1⋯k̃μn

cμνPμPν /Λ2

⟨P | Ôμ1⋯μn |P⟩ = 2AnPμ1⋯Pμn

k̃2 = 0
 ⇒ totally symmetric and traceless

For n=2: Ôμ1μ2 = q̄γαiD̃βq (gαμ1gβμ2 + gαμ2gβμ1 − 2gαβgμ1μ2)
= q̄γ̃αiDβq (gαμ1gβμ2 + gαμ2gβμ1 − 2gαβgμ1μ2 + antisymm in α, β)

= Tαβ  the SME energy-momentum tensor ⇒ ⟨P |Tαβ |P⟩ ∝ PαPβ

⟨P | Ôμ1μ2 |P⟩ = ⟨P |Tαβ |P⟩(gαμ1gβμ2 + gαμ2gβμ1 − 2gαβgμ1μ2 + antisymm in α, β)
∝ Pμ1Pμ2

An
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The tensor cμν as it appears in our equations is related 
to the corresponding tensor in the non-rotating inertial 
frame by a spatial rotation:

where χ is the colatitude of the collider (HERA, JLEIC, eRHIC), ω⨁=2π/
(23h56m) is the sidereal frequency, T⨁ is the local sidereal time, 𝜑 is the 
orientation of the beams at the colliding points (usually two per collider)

The      and       components of the       tensor are given by                    and  
             , where                                     is the tensor in the Sun-centered frame. 

The structure of the time dependent DIS cross section is:
�(T�) = �SM

h
1 + (cTT

f , cTZ
f , cZZ

f ) + (cTX
f , cTY

f , cY Z
f , cXZ

f )(cos!�T�, sin!�T�)

+ (cXY
f , cXX

f � cY Y
f )(cos 2!�T�, sin 2!�T�)

⇤

cijf c0if cKL
f RKiRLj

cTK
f RiK

cµ⌫f
cAB
f (A,B = T,X, Y, Z)

Sun-centered vs lab frames



Enrico Lunghi /24 17

χ=36.4o

𝜑ZEUS=20o NoE
𝜑H1=-20o NoE

Sun-centered vs lab frames

For instance, the LV part of total integrated cross section is schematically:  
σLV ~ # cTZ sin(𝜑) + # cZZ cos(2𝜑) where # is of order 1. This implies that 

𝜑~90o (eRHIC1) and 𝜑~45o(JLEIC1) loose sensitivity to cTZ and cZZ, 
respectively!

N

E

N

E

χ=49.1o

𝜑eRHIC1=-78.5o NoE
𝜑eRHIC2=-16.8o NoE

HERA JLEIC eRHIC

χ=52.9o 

𝜑JLEIC1=+47.6o NoE
𝜑JLEIC1=-35.0o NoE
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Expected constraints on LV couplings: DIS

For HERA, we consider 644 neutral current measurements performed by ZEUS 
and H1 [arXiv:1506.06042]

Parameters of the two proposed EIC designs and simulated data-set that we use

JLEIC eRHIC HERA

Location Jefferson Lab Brookhaven DESY

Luminosity 1034 cm-2 s-1 1033 cm-2 s-1 4×1031 cm-2 s-1

Ee (GeV) [3,12] [5,20] 27.5

Ep (GeV) [20,100] [50,250] 920

simulated 
[Ee,Ep]

Ee = 10 
Ep = (20,60,80,100)

Ee = (5,10,15,20)             
Ep = (50,100,250)

existing data 
sets

The expected bounds we present are calculated considering 10 years 
running (which correspond to 1 ab-1 for JLEIC and 100 fb-1 for eRHIC)
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Expected constraints on LV couplings from DIS

For HERA, we consider 644 neutral current measurements performed by ZEUS 
and H1 [arXiv:1506.06042]

For the two EIC configurations, we use Monte Carlo simulations corresponding to 
an integrated luminosity of 100 fb-1 [A. Accardi, Y. Furletova, E. Aschenauer, B. Page]

For each measurement (i.e. each x and Q2 bin):

We estimate how the uncertainty increases due to a sidereal binning (4 bins)

We calculate the binned integrals of the SME DIS reduced cross section

We generate a set of 103 possible experimental results assuming a normal 
distribution and the absence of LV effects. Systematic and luminosity 
uncertainties among the sidereal time bins are expected to be highly 
correlated. We consider both the extreme cases of 0% (aggressive) and 100% 
(conservative) correlation.

For each set we extract the frequentist 95% C.L. upper limit using a standard  
chi-squared.

The expected upper limit is the median of the upper limits over the set
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In the calculation of these expected constraints we have assumed very 
conservatively that the total uncertainties on the cross sections measured in the 
sidereal time bins are uncorrelated. 

The constraints on coefficients which induce sidereal time variation are sensitive 
only to uncorrelated uncertainties:

uncorrelated

100% correlated

bin1 bin2 bin3 bin4

We need to quantify the correlation of systematic uncertainties between the 
various sidereal time bins

Note that each sidereal 
time bin collects several 
months worth of data

Note that day/nights effects are diluted by the sidereal time binning if data are 
taken over a long enough period

Expected constraints on LV couplings from DIS
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Expected bounds in units of 10-5

For each coefficient and collider we show bounds corresponding to the two 
experiments. In square bracket we show the uncorrelated bounds.

Bounds in the down sector are an order of magnitude weaker (electric charge, 
PDFs)

Expected constraints on LV couplings from DIS

HERA HERA JLEIC JLEIC eRHIC eRHIC

Individual Global Individual Global Individual Global

|cTX
u | 13. [13.] 4.0 [4.4] 1.3 [9.3] 0.57 [4.3] 0.17 [22.] 0.096 [9.7]

13. [13.] 4.0 [4.4] 1.2 [8.5] 0.51 [3.9] 0.12 [15.] 0.067 [6.6]
|cTY

u | 13. [13.] 4.0 [4.3] 1.3 [9.1] 0.55 [4.3] 0.17 [22.] 0.096 [9.6]
13. [13.] 4.0 [4.3] 1.1 [8.4] 0.50 [3.9] 0.12 [15.] 0.067 [6.6]

|cXZ
u | 63. [66.] 20. [21.] 1.9 [13.] 0.79 [6.0] 0.23 [30.] 0.13 [12.]

63. [66.] 20. [21.] 2.1 [16.] 0.91 [7.0] 0.53 [70.] 0.30 [28.]
|cY Z

u | 65. [65.] 20. [21.] 1.8 [13.] 0.76 [6.1] 0.22 [30.] 0.13 [12.]
65. [65.] 20. [21.] 2.1 [16.] 0.90 [7.1] 0.53 [70.] 0.30 [28.]

|cXY
u | 31. [33.] 9.8 [10.] 6.9 [50.] 2.8 [23.] 0.61 [82.] 0.35 [32.]

31. [33.] 9.8 [10.] 3.2 [23.] 1.3 [10.] 0.26 [34.] 0.15 [13.]
|cXX

u � cY Y
u | 98. [100.] 31. [33.] 5.9 [43.] 2.4 [19.] 1.8 [240.] 1.0 [92.]

98. [100.] 31. [33.] 6.3 [45.] 2.6 [20.] 1.2 [170.] 0.72 [65.]
<latexit sha1_base64="6hbTUPBS3hrxb0RwtZORfLnZ4MM="></latexit>
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Expected constraints on LV couplings from DIS

HERA

JLEIC

eRHIC

The best bounds tend to come from small x, large y and moderate Q2

10-6

10-4

0.01

1

� ��
�
��
��
�
���
��

�� = 27.5 ���
�� = 920 ���
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� ��
�
��
��
�
���
��
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��[����]

0.001 0.010 0.100 1
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Drell-Yan: SME

Factorization for Drell-Yan in the SME is achieved following the same steps as in 
the DIS case. In particular,  the PDF’s are identical to those obtained for DIS.

The cross section is particularly simple:
d�

dQ2
=
4⇡↵2

9Q4

X

j=u,d,s,···
e2j

�
1� c00j + c33j

� Z 1

⌧

⌧dx

x

�
fj(x)fj̄(⌧/x) + fj(⌧/x)fj̄(x)

�

�
Z 1

⌧

⌧dx

x2

h⇣
x� ⌧

x

⌘
(c00j + c33j )

i �
fj(x)fj̄(⌧/x) + fj(⌧/x)fj̄(x)

�

+

Z 1

⌧

⌧dx

2x2

⇣
x� ⌧

x

⌘2
(c00j + c33j )

�⇣
fj(x)f

0
j̄(⌧/x) + f 0

j(⌧/x)fj̄(x)
⌘�

<latexit sha1_base64="5dNhvGBPNjwqgeYKn6FIhjThWFE="></latexit>

Using Drell-Yan data from CMS for Q2 < 60 GeV2, we obtain (in units of 10-5):

Individual Global

|cXZ
u | 7.3 [19] 6.1 [15]

|cY Z
u | 7.1 [19] 6.1 [15]

|cXY
u | 2.7 [7.0] 2.3 [5.7]

|cXX
u � cY Y

u | 15 [39] 12.9 [32]
<latexit sha1_base64="LImGY1yl3WkN5mywJRKwIXXrm38="></latexit>
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Conclusions

The Standard Model Extension is a generic extension of the SM that 
incorporates particle Lorentz Violation while preserving Lorentz covariance

Coefficients in the photon, electron, muon, proton and neutron sectors are 
strongly constrained.

The quark sector is much harder to constraint because of the nature of QCD

We focused on electron-proton Deep Inelastic Scattering and Drell-Yan for 
which high statistics measurements exist (and are possible in the future) and 
found that bounds in the 10-5,6 range are attainable using existing HERA/LHC 
and future EIC data.

Analysis of a subset of Zeus data is undergoing

Future studies include

Impact on PDFs (standard and polarization dependent)

Inclusion of weak effects (Z-pole observables, …)
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Symmetry Transformations: Parity

 26
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Observer transformation

Symmetry Transformations: Parity
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Observer transformation

Particle transformation

Symmetry Transformations: Parity
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Using χPT to connect LV in quarks and hadrons

The SME terms we are considering, can be written as: 
[Kamand, Altschul, Schindler; 1608.06503]

where                                and 

�LSME = iQ̄LC
µ⌫
L �µD⌫QL + iQ̄RC

µ⌫
R �µD⌫QR

cµ⌫q = (cµ⌫qL + cµ⌫qR)/2

Strong Isospin invariance (QL→L QL, QR→R QR) can be restored by assigning: 

pions: U = exp(i ∑φaτa /F)

nucleon doublet

where u2 = U,          and           are the trace and traceless parts of         and 
transform as 

1Cµ⌫
L,R

3Cµ⌫
L,R Cµ⌫

L,R

One can then use these spurions to add LV terms to the Chiral Lagrangian:
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Using χPT to connect LV in quarks and hadrons

Relevant two and four pion interactions (no three pion vertices):
[Kamand, Altschul, Schindler; 1608.06503]

The proton free Lagrangian becomes 

with

�LSME =  ̄p

⇥
(⌘µ⌫ + cµ⌫p )�⌫iDµ �mp

⇤
 p

The α(1,2) and β(1) coefficients are non-perturbative and expected to be O(1)
If this is accurate the bounds on these coefficients are of order O(10-25÷10-20)
There are questions related to the role of LV in the gluon sector: it is possible to 
move       (q=u or d) into a 𝜅αμαν. It is not clear how to assign spurion 
transformation properties to the latter.

cµ⌫q

Po
te

nt
ia

l 
pr

ob
le

m
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Physical coefficients

Not all coefficients introduced above are physical

Some coefficients can be eliminated via a field redefinitions like:

⇒ in this way aμ and the antisymmetric part of cμν can be eliminated 

Some parts of the coefficients are not LV.  For instance, even after removing its 
antisymmetric part we have: cμν = [cμν]traceless & symmetric + α ημν

Some coefficients can be eliminated via a choice of coordinates:

 31

L.I.L.V.

 (x) ! eif(x) (x)

 (x) ! [1 + v(x) · �] (x) with � = �↵, �5�
↵, �↵�

L = �1

4
Fµ⌫Fµ⌫ +

�
⌘µ⌫ + cµ⌫ +

1

2
↵µ↵⌫

�
 ̄�µiD⌫ 

L = �1

4

�
�µ⌫ + ⌘µ⌘�⌫

�
F�Fµ⌫ +

�
⌘µ⌫ + cµ⌫

�
 ̄�µiD⌫ 

xµ ! xµ � 1

2
↵µ

↵⌫x
⌫

We can choose one sector of the SME to define the scales of the four coordinates
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We will focus on Deep Inelastic electron-proton Scattering: we are affected by 
coefficients that appear in the electron (      ), photon (         ), quark (       ) and 
gluon (         ) sectors.

LV in the quark sector: our setup

cµ⌫e
↵�µ⌫
G

↵�µ⌫
F cµ⌫u,d

We adopt coordinates in which the photon does not show any spin-independent 
Lorentz violation (                      )

All coefficients in the electron sector are strongly constrained and do not contribute 
appreciably to electron-proton DIS
We set the gluon coefficients to zero and focus on the quarks

Assuming spontaneous Lorentz violation at scales of order MPlanck, we expect 
“natural” size for most coefficients to be given by the ratio of some low energy 
mass to MPlanck. Nevertheless the need to perform direct experimental searches 
should not be understated.

Note that the quark coefficients contribute via divergent loops to LV in the 
photon and electron sector.  This does not change our fundamental set up but 
might rise issues of fine tuning/naturalness in the electron sector. We leave a 
detailed investigation of this point to a forthcoming analysis.

F
↵
µ↵⌫ = 0
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In our case:

LV in the quark sector: general considerations

The quark dispersion relation is modified:

L = q̄


1

2
�µ(g

µ⌫ + cµ⌫)i
 !
D⌫ �m

�
q

Velocity (                 ) and momentum are not parallel anymore

Sums and averages over quark spins are affected

The cross section flux factor is also affected (must use velocities of colliding particles!)

In our case the relevant flux factor involves the electron and proton, both of which 
receive negligible Lorentz violating effects (given the kind of constraints that we will be 
able to achieve)

~v = ~rpE(~p)

We treat the traceless tensor cμν as a small perturbation resulting in a standard 
Feynman diagram expansion

0 = p̃µp̃µ �m2 = pµ(⌘
µ⌫ + cµ⌫)(⌘⌫� + c⌫�)p

� �m2

The modified dispersion relation (momentum and velocity are not parallel 
anymore) creates difficulties for a straightforward parton model implementation: 
one reason for focusing on DIS is the dual parton model and OPE approach
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Planned HERA analysis

We (Nathan Sherrill and I) proposed to re-analyze ZEUS data to place bounds 
on Lorentz Violating coefficients and have been allowed to join the collaboration

This entails binning all data in sidereal time and to perform independent 
measurements in each bin

The main obstacle is understanding the time-dependence of systematic 
uncertainties. E.g. at HERA we have a measurement of the average instantaneous 
luminosity but it is difficult to estimate the induced uncorrelated uncertainties in 
the various sidereal time bins

The main idea is to use the fact that different (x,Q) bins have very different 
dependence on LV coefficients. By considering the following double ratio 
(i indexes the sidereal time bin, the reference point has poor sensitivity on the LV 
coefficients):
✓
�i(x,Q)

�1(x,Q)

◆
/

✓
�i(x̄, Q̄)

�1(x̄, Q̄)

◆
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• i/1 ratios eliminates point-to-point 
systematic uncertainties

• Normalization to reference point eliminates 
luminosity uncertainties


