Contact Interactions @ HERA

General Contact Interactions

е

q

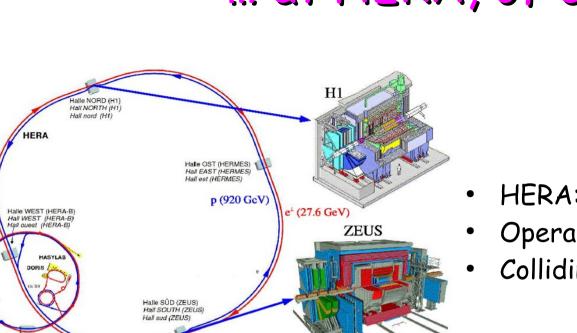
$$\mathcal{L}_{\mathrm{CI}} = \sum_{\substack{i,j=L,R\\q=u,d,s,c,b,t}} \eta_{ij}^{eq} (\bar{e}_i \gamma^{\mu} e_i) (\bar{q}_j \gamma_{\mu} q_j)$$

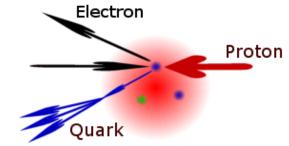
$$\eta_{ij}^{eu} = \eta_{ij}^{ed} = \eta_{ij}^{es} = \eta_{ij}^{ec} = \eta_{ij}^{eb} = \eta_{ij}^{et}$$

$$\eta_{ij}^{eq} = \eta \epsilon_{ij} = \pm \frac{4\pi}{\Lambda^2} \epsilon_{ij}$$

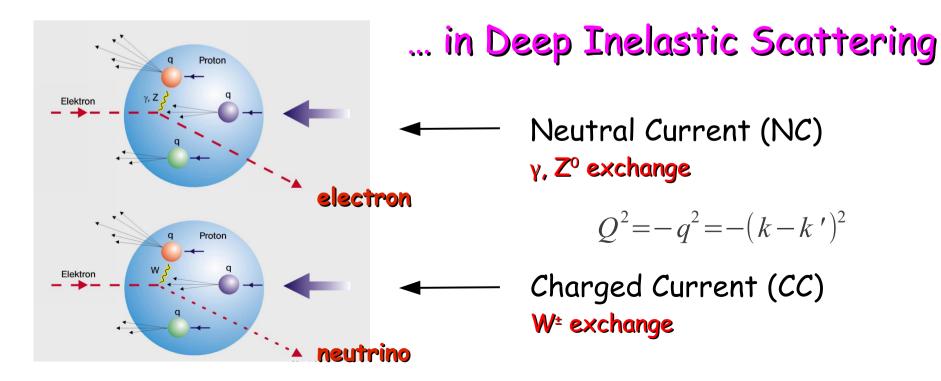
... or heavy Leptoqurks

With effective LQ coupling: $\eta_{LQ} = \left(\frac{\lambda_{LQ}}{M_{LQ}}\right)^2$ With CI coupling:


$$\eta_{ij}^{eq} = a_{ij}^{eq} \cdot \eta_{\mathrm{LQ}} = a_{ij}^{eq} \left(\frac{\lambda_{\mathrm{LQ}}}{M_{\mathrm{LQ}}}\right)^2$$

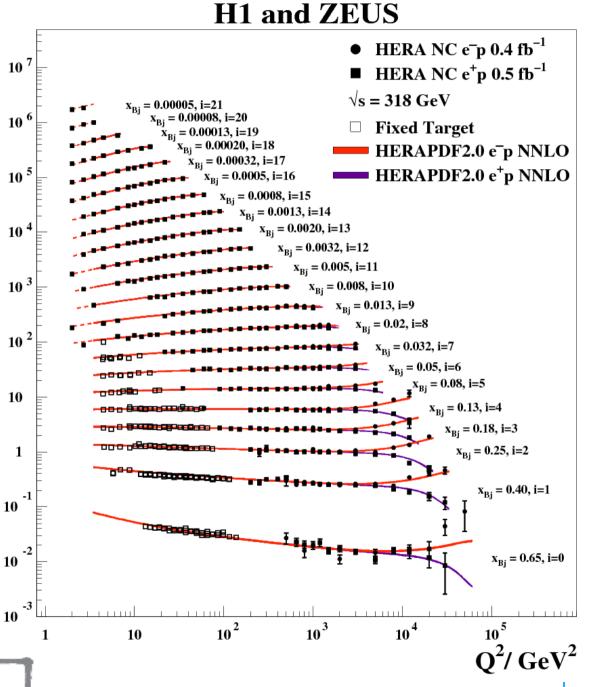

Where can we find abundant electrons and quarks to study this? ...

 $\frac{g^2}{\Lambda^2}$ q

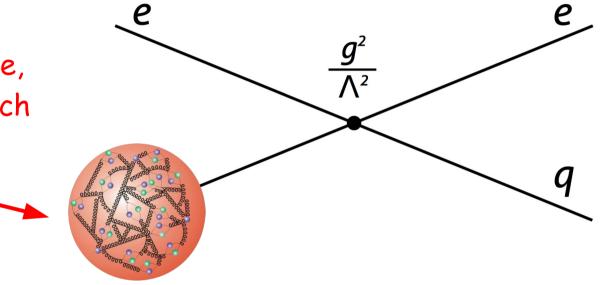

е

... at HERA, of course!

- HERA: ep collider in Hamburg
- Operation: 1992-2007
- Colliding experiments: H1 and ZEUS


HERA combined inclusive cross sections

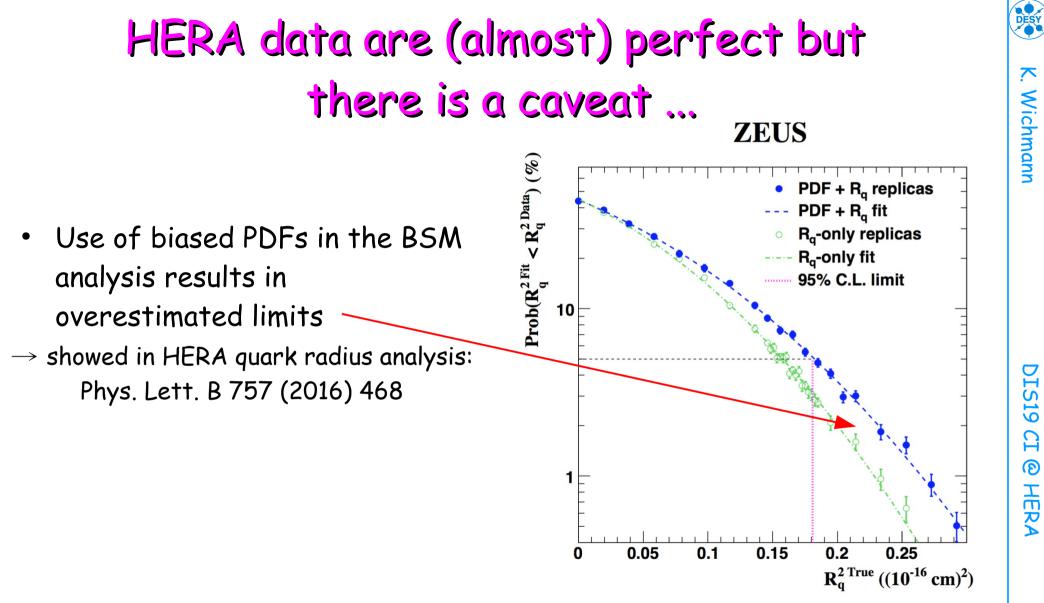
. NC



- HERA combined DIS data
- 2927 data points combined to 1307
- impressive improvement of precision due to:
 - increased statistics
 - better understanding of systematics
 - cross-calibration of the data from two experiments

Eur. Phys. J. C75 (2015), 12, 580

HERA data are (almost) perfect but there is a caveat ...

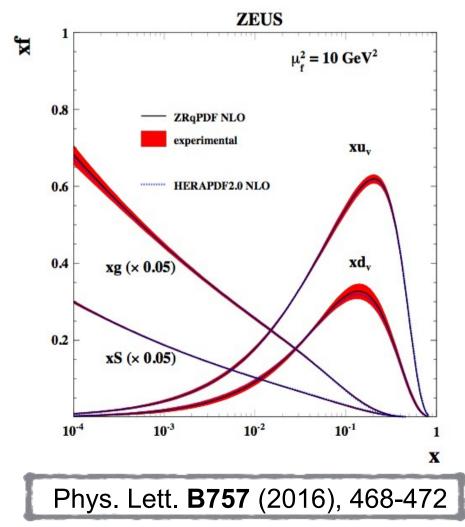

... quarks don't come for free, they are bound in proton which is a complicated object

- To study any reactions with interacting proton, we need parton densities
- BSM signal in data could affect PDF fit and result in biased PDFs

DIS19

CI @

HERA



- All high-precision PDF fits include HERA DIS data \rightarrow unavoidable problem

proper way \rightarrow simultaneous global QCD fit of HERA data with possible BSM contribution

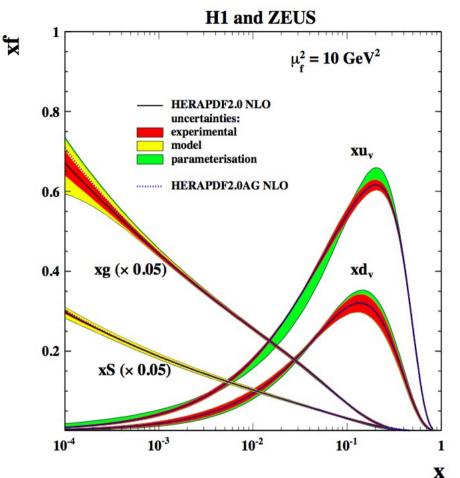
Simultaneous QCD + CI fit

- Fit together parton distribution functions and CI contributions
 - comparison of measured inclusive cross sections with NLO predictions $d^2 = SM+CI$
 - follows HERAPDF2.0 determination using xFitter
 - NLO QCD predictions at given x and Q² scaled

 $\begin{aligned} & \underline{Parameterised \ at \ starting \ scale} \\ & xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ & xu_v(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1 + E_{u_v} x^2\right) \\ & xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ & x\bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \left(1 + D_{\bar{U}} x\right) \\ & x\bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{aligned}$

 $-R_{\rm CI}$

- fixed or calculated by the sum-rulesset equal
- •Evolve with DGLAP at NLO
- •Obtained PDF: ZCIPDF
 - have good agreement with HERAPDF2.0


x Fitter

 $d^2\sigma \ {
m SM}$

 $dx dQ^2$

dx dQ

PDF uncertainties

- Parametrisation uncertainties
 largest deviation
- Model uncertainties
 ariations added in quadrature

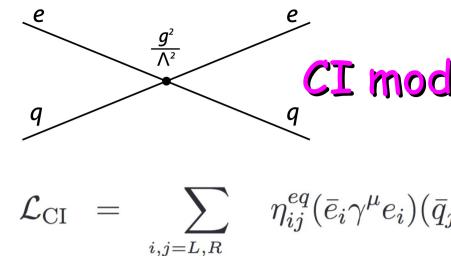
 For ZCIPDF experimental and model uncertainties estimated

Experimental uncertainties:

- Hessian method
- Conventional $\Delta \chi^2$ = 1 => 68% CL

Variation	Standard Value	Lower Limit	Upper Limit			
$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0			
$Q_{\rm min}^2$ [GeV ²] HiQ2	10.0	7.5	12.5			
$M_c(\text{NLO})$ [GeV]	1.47	1.41	1.53			
M_c (NNLO) [GeV]	1.43	1.37	1.49			
M_b [GeV]	4.5	4.25	4.75			
f_s	0.4	0.3	0.5			
μ_{f_0} [GeV]	1.9	1.6	2.2			
Adding D and E parameters to each PDF						

DESY


Wichmann

x Fitter

arXiv:1902.03048, accepted by PRD

DIS19 G ୭ HERA

q q q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	tudie	ed in	this	s and	alysis
$\mathcal{L}_{\mathrm{CI}} = \sum \eta_{ij}^{eq} (\bar{e}_i \gamma^{\mu} e_i) (\bar{q}_j \gamma_{\mu} q_j)$	Model LL	ϵ_{LL} +1	ϵ_{LR}	ϵ_{RL}	ϵ_{RR}
$\mathcal{L}_{\text{CI}} = \sum_{\substack{i,j=L,R\\q=u,d,s,c,b,t}} \eta_{ij} \left(c_i \neq c_i \right) \left(q_j \neq \mu q_j \right)$			+1		+1
eu es ec eb et	LR RL			+1	
$\eta_{ij}^{eu} = \eta_{ij}^{ed} = \eta_{ij}^{es} = \eta_{ij}^{ec} = \eta_{ij}^{eb} = \eta_{ij}^{et}$	VV	+1	+1	+1	+1

+1

+1

+1

+1

+1

AA

VA

X1

X2

X3

X4

X5

X6

 $\left(\frac{\lambda_{\rm LQ}}{M_{\rm LQ}}\right)$

 $\mathbf{2}$

$$\eta_{ij}^{eq} = \eta \epsilon_{ij} = \pm \frac{4\pi}{\Lambda^2} \epsilon_{ij}$$

... or heavy Leptoqurks

With effective LQ coupling η_{LQ}

With CI coupling:

$$\eta_{ij}^{eq} = a_{ij}^{eq} \cdot \eta_{\mathrm{LQ}} = a_{ij}^{eq} \left(\frac{\lambda_{\mathrm{L}}}{M_{\mathrm{I}}}\right)$$

Free parameter in PDF fit

-1

-1

-1

+1

+1

-1

+1

+1

+1

+1

+1

-1

+1

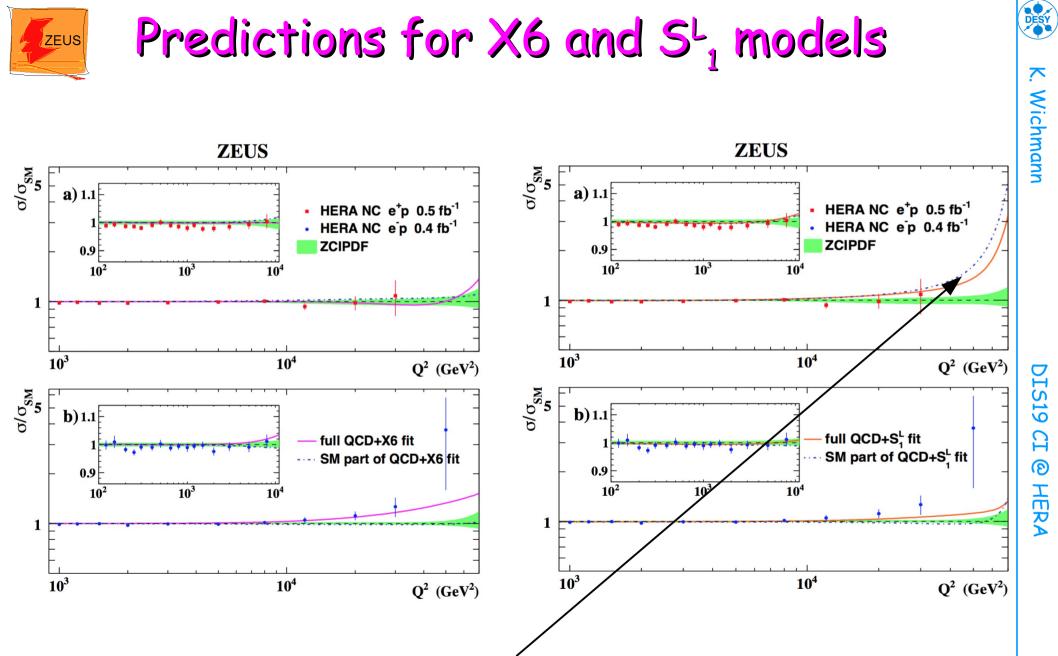
+1

-1

Results of simultaneous QCD + CI fit

- For some model improvement in data description after adding CI terms
 - Modeling uncertainties can play important role

Co	oupling structure	Coupling fit results (TeV^{-2})				$\Delta \chi^2$
Model	$[\epsilon_{_{LL}},\epsilon_{_{LR}},\epsilon_{_{RL}},\epsilon_{_{RR}}]$	$\eta^{ ext{Data}}$	$\delta_{ m exp}$	$\delta_{ m mod}$	$\delta_{ m tot}$	$\Delta \chi$
$\mathbf{L}\mathbf{L}$	[+1, 0, 0, 0]	0.305	0.206	$^{+0.017}_{-0.037}$	$^{+0.207}_{-0.209}$	-2.06
RR	$[\hspace{0.1cm} 0 \hspace{0.1cm}, \hspace{0.1cm} 0, \hspace{0.1cm} 0, \hspace{0.1cm} +1]$	0.338	0.210	$^{+0.019}_{-0.038}$	$^{\rm +0.210}_{\rm -0.213}$	-2.30
LR	$[\hspace{0.1in} 0 \hspace{0.1in}, \hspace{0.1in} +1, \hspace{0.1in} 0, \hspace{0.1in} 0]$	-0.084	0.247	$^{+0.212}_{-0.060}$	$^{+0.325}_{-0.254}$	-0.12
RL	$[\ 0, 0, \ +1, 0]$	-0.040	0.241	$^{+0.198}_{-0.057}$	$^{+0.312}_{-0.248}$	-0.03
VV	$[+1, \ +1, \ +1, \ +1]$	0.041	0.061	$^{+0.024}_{-0.009}$	$^{+0.066}_{-0.062}$	-0.45
AA	$[+1,\ -1,\ -1,\ +1]$	0.326	0.161	$^{+0.250}_{-0.175}$	$^{+0.297}_{-0.238}$	-4.67
VA	[11 1 1 1]	-0.594	0.225	$^{+0.028}_{-0.120}$	$^{+0.227}_{-0.255}$	-1.21
VA	[+1, -1, +1, -1]	0.676	0.200	$^{+0.078}_{-0.019}$	$^{+0.215}_{-0.201}$	-3.25
X1	$[+1, \ -1, \ \ 0, \ \ 0]$	0.682	0.267	$^{+0.339}_{-0.243}$	$^{+0.432}_{-0.361}$	-5.52
X2	[+1, 0, +1, 0]	0.089	0.121	$^{+0.046}_{-0.017}$	$^{+0.129}_{-0.122}$	-0.52
X3	[+1, 0, 0, +1]	0.158	0.108	$^{+0.009}_{-0.019}$	$^{+0.109}_{-0.110}$	-2.09
X4	$[\ 0,\ +1,\ +1,\ \ 0]$	-0.029	0.116	$^{+0.098}_{-0.026}$	$^{+0.151}_{-0.119}$	-0.06
X5	$[\ 0,\ +1, 0,\ +1]$	0.079	0.123	$^{+0.052}_{-0.018}$	$^{+0.133}_{-0.124}$	-0.41
X6	$[\hspace{0.1in} 0 \hspace{0.1in}, \hspace{0.1in} 0, \hspace{0.1in} +1, \hspace{0.1in} -1]$	-0.786	0.274	$^{+0.192}_{-0.295}$	$^{+0.334}_{-0.402}$	-6.01

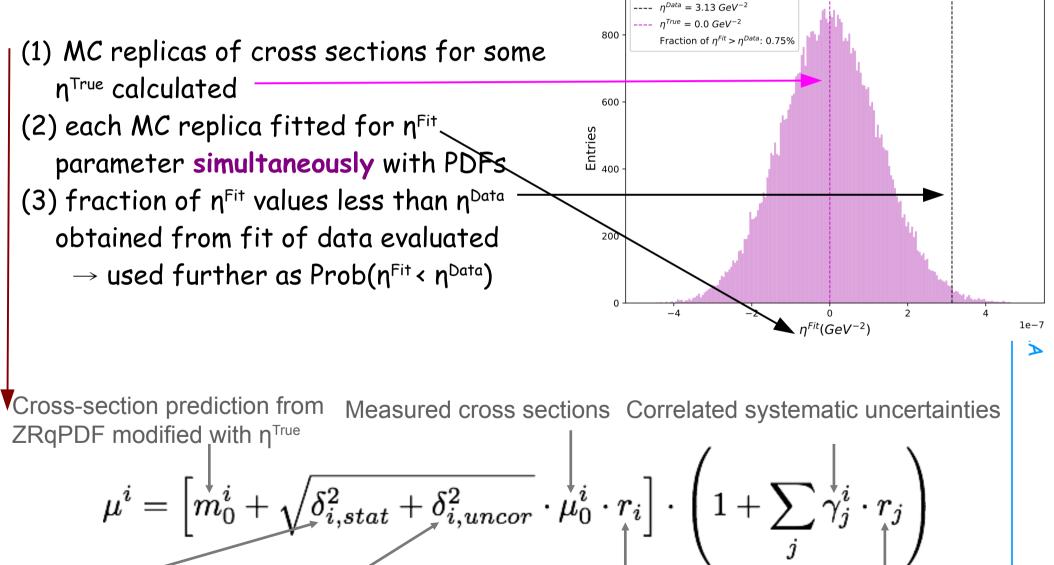

HERA $e^\pm p$ 1994–2007 data

ZEUS

		1				
Model	Coupling Structure	Couplir	Δz^2			
Model Coupling Structure		$\eta_{ m LQ}^{ m Data}$	$\delta_{ m exp}$	$\delta_{ m mod}$	$\delta_{ m tot}$	$\Delta\chi^2$
S_0^L	$a^{eu}_{\scriptscriptstyle LL}=+rac{1}{2}$	-0.258	0.196	$^{+0.034}_{-0.036}$	$^{+0.199}_{-0.199}$	-1.56
S_0^R	$a^{eu}_{_{RR}}=+rac{1}{2}$	0.533	0.331	$^{+0.034}_{-0.061}$	$^{+0.332}_{-0.336}$	-2.53
\tilde{S}_0^R	$a^{ed}_{_{RR}}=+rac{1}{2}$	-2.561	1.115	$^{+0.323}_{-0.221}$	$^{+1.161}_{-1.137}$	-3.98
$S_{1/2}^{L}$	$a^{eu}_{_{LR}}=-rac{1}{2}$	0.054	0.341	$^{+0.075}_{-0.280}$	$^{+0.349}_{-0.441}$	-0.02
$S^{R}_{1/2}$	$a^{ed}_{_{RL}}=a^{eu}_{_{RL}}=-rac{1}{2}$	0.112	0.491	$^{+0.118}_{-0.412}$	$^{+0.505}_{-0.641}$	-0.05
$\tilde{S}_{1/2}^L$	$a_{LB}^{ed} = -\frac{1}{2}$	0.464	1.371	+0.925 -0.264	$^{+1.654}_{-1.396}$	-0.10
S_1^L	$a^{ed}_{_{LL}}=+1,\;a^{eu}_{_{LL}}=+rac{1}{2}$	0.974	0.203	$^{+0.043}_{-0.337}$	$^{+0.207}_{-0.393}$	-11.10
V_0^L	$a_{\scriptscriptstyle LL}^{ed}=-1$	-0.325	0.116	$^{+0.030}_{-0.101}$	$^{+0.120}_{-0.154}$	-6.17
V^R_0	$a^{ed}_{_{RR}} = -1$	1.280	0.558	$^{+0.111}_{-0.163}$	$^{+0.568}_{-0.581}$	-3.98
\tilde{V}^R_0	$a^{eu}_{_{RR}} = -1$	-0.267	0.165	$^{+0.030}_{-0.017}$	$^{+0.168}_{-0.166}$	-2.53
$V_{1/2}^{L}$	$a^{ed}_{\scriptscriptstyle LR} = +1$	-0.232	0.685	$^{+0.132}_{-0.460}$	$^{+0.698}_{-0.825}$	-0.10
$V^R_{1/2}$	$a^{ed}_{_{RL}}=a^{eu}_{_{RL}}=+1$	-0.056	0.246	$^{+0.206}_{-0.059}$	$^{+0.320}_{-0.253}$	-0.05
$\tilde{V}^L_{1/2}$	$a_{\scriptscriptstyle LR}^{eu}=+1$	-0.027	0.171	$^{+0.139}_{-0.038}$	$^{+0.220}_{-0.175}$	-0.02
V_1^L	$a^{ed}_{_{LL}}=-1,\;a^{eu}_{_{LL}}=-2$	0.029	0.077	$^{+0.015}_{-0.013}$	$^{+0.079}_{-0.079}$	-0.14

S^L₁ improvement persists after taking into account model uncertainties

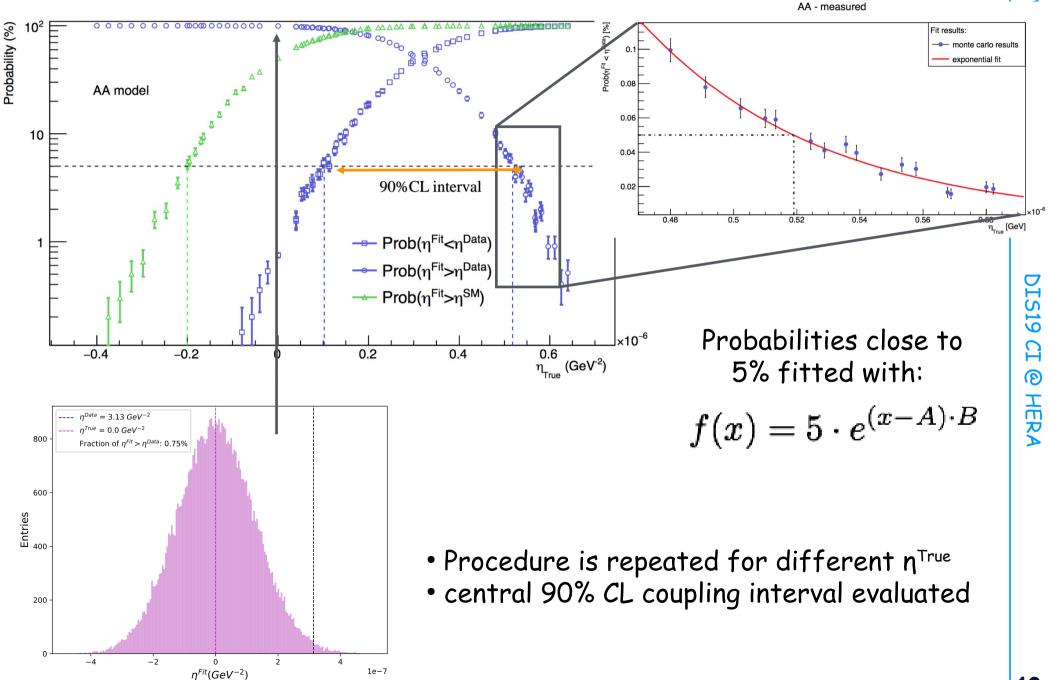
HERA $e^{\pm}p$ 1994–2007 data



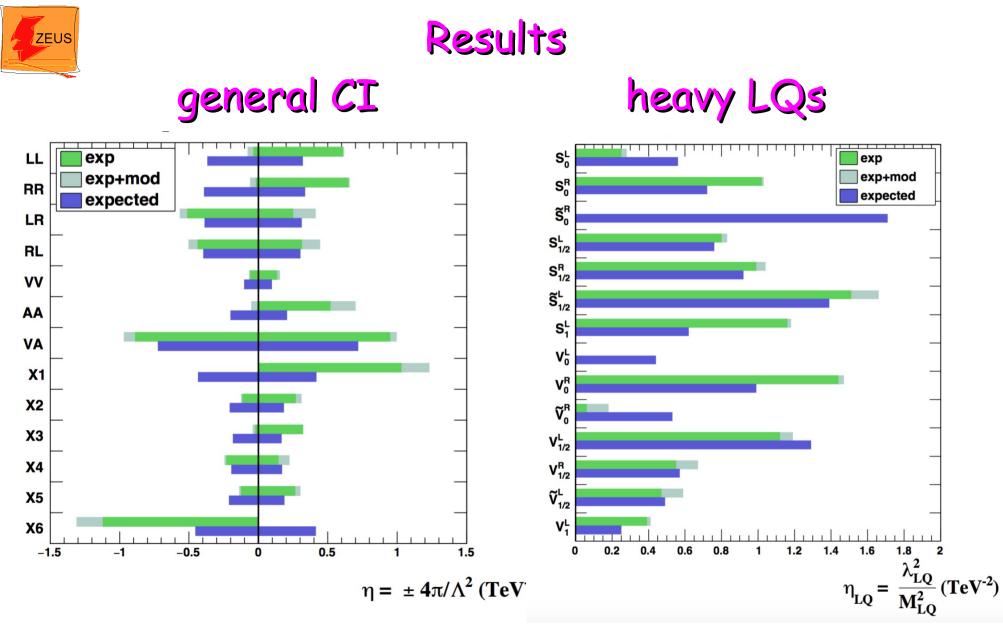
For S^L₁ description of the proton PDFs significantly affected when heavy-LQ contribution added

DESY

Setting limits using MC replicas


 Limits derived in frequentis approach using Monte Carlo replicas technique

Relative stat. and uncorrelated syst. uncertainties Rando


Random numbers from normal distribution

Analysis strategy

DESY

 $\overline{\mathbf{x}}$

• For Yukawa coupling $\Lambda_{LQ} = 1$ corresponding lower limits on LQ mass vary between 0.66 TeV for the $\tilde{S}^{L}_{1/2}$ and 16 TeV for \tilde{V}^{R}_{0}

• With modeling uncertainties are included: 0.60 TeV - 5.6 TeV

DESY

 $\mathbf{\overline{\mathbf{N}}}$

Wichmann

DIS19

A

3

HERA

Comparison to LHC limits

		95% C.L. limits (TeV)					
Coupling structure		HERA		ATLAS		CMS	
Model	$[\epsilon_{\scriptscriptstyle LL},\!\epsilon_{\scriptscriptstyle LR},\!\epsilon_{\scriptscriptstyle RL},\epsilon_{\scriptscriptstyle RR}]$	Λ^{-}	Λ^+	Λ^{-}	Λ^+	Λ^{-}	Λ^+
LL	$[+1, \ 0, \ 0, \ 0 \]$	12.8	4.5	24	37	13.5	18.3
RR	[0, 0, 0, +1]	14.7	4.4	26	33		
LR	[0,+1,0,0]	4.7	5.5	26	33		
RL	$[\hspace{0.1in} 0, \hspace{0.1in} 0, +1, \hspace{0.1in} 0 \hspace{0.1in}]$	5.0	5.3	26	33		

- Only four CI models considered at LHC data
- For these models, the statistical sensitivity of the LHC much higher
 - \rightarrow systematic uncertainties from proton PDFs can be underestimated, as possible bias in parameterisation not taken into account

Conclusions

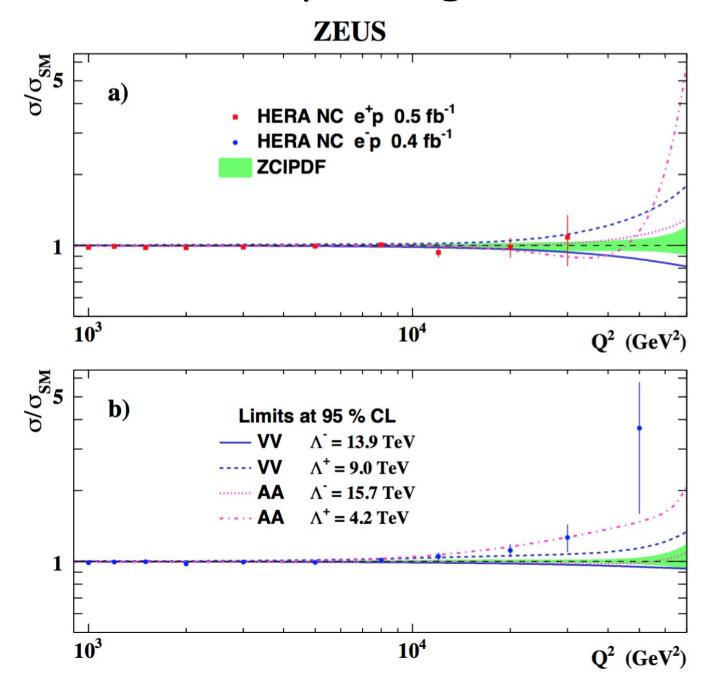
×. <

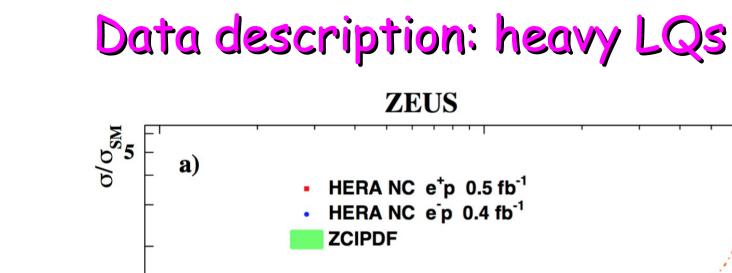
DIS19 CI @ HERA

- General CI and heavy LQs studied using frequentist approach and MC replicas in simultaneous QCD+CI global fit of PDFs
- In some models deviations from SM found on level of 2-4 σ
- These deviations are unlikely to result
 from statistical fluctuations alone
 → might be explicable by combination
 of modeling uncertainties in fitting

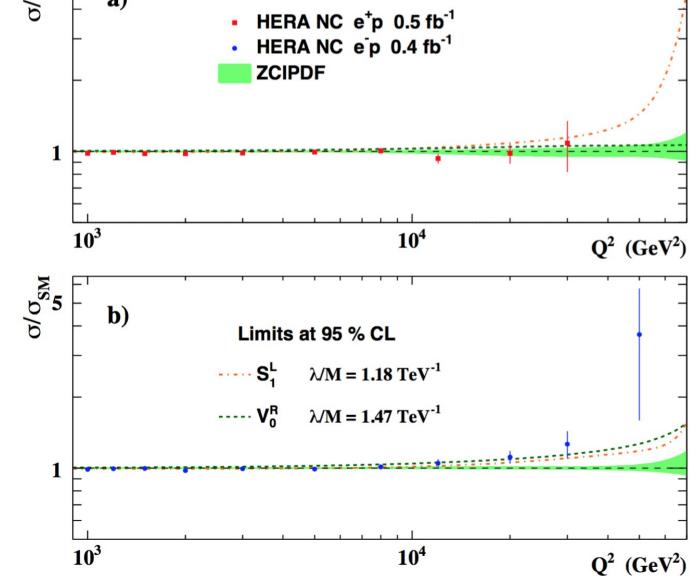
procedure and statistical fluctuations

Model Coupling Structure	$\eta_{\mathrm{LQ}}^{\mathrm{Data}}$ (TeV^{-2})	p_{SM}	Differences from SM up to ~2.7 σ
$S_1^L a_{LL}^{ed} = +1, \ a_{LL}^{eu} = +\frac{1}{2}$	()	(/ 0)	- Difference from SM ~ 4σ


Model	$\eta^{ m Data}$ $(m TeV^{-2})$	$p_{ m SM}$ $(\%)$
AA	0.326	0.6
X1	0.682	0.4
X6	-0.786	0.3


DESY

Back up slides



Data description: general CI

ZEUS

DESY

K. Wichmann