

# Search for light Higgs bosons with the CMS experiment

# Alexis Kalogeropoulos

**Princeton University** 

8-12 April 2019 DIS 2019 - Turin



**PRINCETON** UNIVERSITY



# **Extended Higgs sector**

- Simplest extensions of the SM : SM +S, 2HDM +s, composite etc
- 2HDM/MSSM : 5 physical Higgs bosons
- NMSSM : 7 physical Higgs bosons
- Composite : h + excited states





# Exotic Higgs decays - is it even possible ?

if new physics is allowed to modify the loop-induced couplings

HIG-17-023



this talk



## Exotic Higgs decays - is it even possible ?

# Exotic Higgs decays assuming $\mathcal{BR}$ (h $\rightarrow$ BSM) = 10%

|                          |                                    |                                   |                              |                                      |                             | arxiV:1312.4992                     |
|--------------------------|------------------------------------|-----------------------------------|------------------------------|--------------------------------------|-----------------------------|-------------------------------------|
| Production               | $\sigma_{7 {\rm ~TeV}} ~{ m (pb)}$ | $N_{ m ev}^{10\%},5~{ m fb}^{-1}$ | $\sigma_{8 {\rm ~TeV}}$ (pb) | $N_{\rm ev}^{10\%},20~{\rm fb}^{-1}$ | $\sigma_{14 { m TeV}}$ (pb) | $N_{ m ev}^{10\%},300~{ m fb}^{-1}$ |
| ggF                      | 15.13                              | 7,600                             | 19.27                        | 38,500                               | 49.85                       | $\underbrace{1.5\times10^{6}}$      |
| VBF                      | 1.22                               | 610                               | 1.58                         | 3,200                                | 4.18                        | $125,\!000$                         |
| $hW^{\pm}$               | 0.58                               | 290                               | 0.70                         | 1,400                                | 1.5                         | 45,000                              |
| $hW^{\pm}(\ell^{\pm} u)$ | $0.58 \cdot 0.21$                  | 62                                | $0.70 \cdot 0.21$            | 300                                  | $1.5 \cdot 0.21$            | 9,600                               |
| hZ                       | 0.34                               | 170                               | 0.42                         | 830                                  | 0.88                        | 26,500                              |
| $hZ(\ell^+\ell^-)$       | $0.34 \cdot 0.067$                 | 11                                | $0.42 \cdot 0.067$           | 56                                   | $0.88 \cdot 0.067$          | 1,800                               |
| $t\bar{t}h$              | 0.086                              | 43                                | 0.13                         | 260                                  | 0.61                        | 18,300                              |

# Still plenty of room for Exotic Higgs!



# **Channel Sensitivity**

Sensitivity depends on the channel, model and model parameters

In type-III 2HDM and for tan $\beta > 1$ ,  $a_1$  boson **decays to leptons are** enhanced, thus  $a \rightarrow 2\mu 2\tau$  becomes more sensitive than  $a_1 \rightarrow 2\mu 2b$ 

Type III,  $\tan \beta = 0.5$ 

Type III,  $\tan \beta = 5$ 







★ a<sub>1</sub> : [0.25, 3.55] GeV , γ<sub>D</sub> [0.25, 8.5] GeV , m<sub>(n1)</sub>=10 GeV, m<sub>(nD)</sub> =1 GeV
 ★ Main backgrounds :  $b\bar{b}$ , J/ψ, EWK → 4µ

 $b\bar{b}$  : estimated from data (1 di- $\mu$  pair + 1 "orphan"  $\mu$ )

 $J/\psi$  : mainly from SPS/DPS estimated from data and simulation





# $h \rightarrow a_1 a_1 \rightarrow 2\mu 2b$

HIG-18-011

- \* Considering ggF and VBF production for  $\mathscr{B}(h \to a_1 a_1) = 10 \%$
- Probing m(a1) [20, 62.5 ] GeV
- Requiring 2 isolated muons, 2 b-jets (Tight + Loose/Medium/Tight) and small MET
- Categorization is based on b-tag discriminators (TT, TM, TT)
- Contamination from ττbb and μμττ is negligible/very small





Best fit to the data for the Tight-Loose category

m<sub>a</sub> (GeV) Type-III 2HDM+S when μμττ is misidentified as μμβb

60



- Probing m(a<sub>1</sub>) [15, 62.5 ] GeV.
  - → for  $m(a_1) < 15$  GeV, no sensitivity due to the boost of the  $a_1$

HIG-17-029

- \* μμ + (eμ, eτ<sub>h</sub>, μτ<sub>h</sub>, τ<sub>h</sub>τ<sub>h</sub>) final states, favoured in 2HDM Type III
  - muons have excellent mass resolution
  - → not considering same-flavour (i.e. ee,  $\mu\mu$ ) due to high bkg rate
- Signal is extracted from di-muon mass
  - $\clubsuit$  Shape is different depending on the origin of the  $\mu$





♦ Backgrounds :  $ZZ \rightarrow 4\ell$  (irreducible), fake leptons/taus (reducible)

- reducible is decreased with b-jet veto
- Reducible comes from jets faking leptons (mostly Z+jets, WZ+jets)
  - $\blacktriangleright$  Shape: from data , ZZ enriched w. SS w. relaxed  $\tau_h$  isolation
  - → Yield: from data with 1 or 2 non-isolated  $\tau$  weighted with a mis-id probability

HIG-17-029

Improving previous results by a factor of two



# $\underbrace{10.1016/j.physletb.2018.08.057}_{\text{PRINCERSITY}} h \rightarrow a_1 a_1 \rightarrow 2\tau 2b \qquad \text{HIG-17-024}$

Three final states: eµ, eτ<sub>h</sub>, µτ<sub>h</sub> w. at least 1 b-tagged jet w. p<sub>T</sub> > 20 GeV
Main background is jets faking taus, and it is estimated from data
Signal is extracted from various di-τ(m<sup>vis</sup><sub>ττ</sub>) categories (12 in total)



 $\underbrace{\text{PRINCETON}}_{10.1016/j.physletb.2018.08.057} h \rightarrow a_1 a_1 \rightarrow 2\tau 2b$ 

\*Reduced sensitivity for  $m_{a1} < 30$  GeV due to low iso eff. of the di-τ system \*Stronger limits on intermediate (low) tanβ in 2HDM+S Type III (IV)



HIG-17-024





Given than  $m_{H(125)} \gg m_{a_1}$ 

### & H(125) is produced with small $p_T$

✤a₁ bosons highly boosted and "back-to-back"

 $\tau$ -leptons from the same  $a_1$  overlap

- thus, hard to reconstruct
- $\Rightarrow$  use simple objects i.e.  $\mu$  & tracks

τ decays

For each a<sub>1</sub> decay leg :

- →  $a_1 \rightarrow \tau_\mu + \tau_e/\mu/had, 1$ -prong
- ➡ Each µ is required to have exactly 1 nearby charged track
  - form 2 (μ-trk) pair systems
  - $\odot$  each track w. pT > 2.5 GeV and OS wrt  $\mu$

Same-Sign  $\mu$  with  $\Delta R > 2$  $\Rightarrow$  Suppress t**t**, DY, Wjet HIG-18-006





#### HIG-18-006

12

 $m_2$  [GeV] ✤ Probed mass range a<sub>1</sub> [4, 15] GeV 12 10 Signal extracted from the 2D μ-trk system (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 8 ✤ Background is 99% multi-jets 6 Estimated from sideband region (1,5) (2,5) (3,5) (4,5) (5,5) 41 (1,4) (2,4) (3,4) (4,4) (1,3) (2,3) (3,3) 2 35.9 fb<sup>-1</sup> (13 TeV) (1,2) (2,2) 1/N × dN/dm [GeV<sup>-1</sup>] (1,1) CMS 0<sup>L</sup> 2 10 4 6 8 Preliminary m₁[GeV] observed 35.9 fb<sup>-1</sup> (13 TeV) bkg(+unc.) 0.6 95% C.L. limit on  $\sigma$  x BR /  $\sigma_{SM}$  $m_{a_i} = 4 \text{ GeV}$ Observed CMS  $m_{a_i} = 7 \text{ GeV}$ Expected m<sub>a.</sub> = 10 GeV Preliminary 0.5 10-1 m<sub>a.</sub> = 15 GeV ±1σ Expected ±2σ Expected excluded by the 0.4 coupling analysis 10<sup>-2</sup> 0.3 0.2 obs/bkg 1.5 0.1 1.0 0.5 0.0 5 10 0 2 6 8 10 12 15 4  $m_{\mu,trk}$  [GeV] ma, [GeV] 15



## Summary

- Models employing exotic light Higgs decays are still viable
- CMS has in place a rich program covering almost full m<sub>a</sub> range
   m(a<sub>1</sub>) < 15 GeV favours decays to 4µ/4τ (a→ ττ, bb)</li>
- Best limits at high masses in general i.e. in type III with large tan β (enhanced couplings to leptons)







 $\Gamma_{H(125)}{}^{(SM)}$  ~ 4.1 MeV or  $\Gamma_{H}/m_{h}$  ~ 3.3 X 10^{-5}

- ► That means that even small non-standard couplings to H→BSM can give a sizeable effect ie a non-zero  $\mathcal{BR}$  (H →BSM)
- Several BSM models allow for such additional decay modes (Higgs portal, 2HDM, 2HDM+S,NMSSM...)

**Example** : if a new scalar **s** is coupled :

$$\Delta \mathcal{L} = \frac{\zeta}{2} s^2 |H|^2$$

(common building block in extended Higgs



for  $\zeta \sim 0.01$ ,  $\mathcal{BR}$  (H $\rightarrow$  BSM) is  $\mathcal{O}(10\%)$  for  $m_s < m_H/2$ 



### Minimal Supersymmetric Standard Model

Minimal extension of the SM, introduction 2 Higgs doublets Hu, Hd



Still, MSSM faces some phenomenological flaws, to which Next-to-MSSM can solve 19



$$MSSM$$

$$\underset{(130GeV)^2 < m_Z^2}{\underbrace{m_h^2 \approx m_Z^2 \cos^2 2\beta}_{(4\pi)^2} + \underbrace{\frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[ \ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} \left( 1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right]}$$





NMSSM has one additional singlet

|          |               | MSSM      | NMSSM     |
|----------|---------------|-----------|-----------|
| 5        | $\rightarrow$ | 2 CP even | 3 CP even |
| <b>)</b> |               | 1 CP odd  | 2 CP odd  |

MSSM  $H_{1} = S_{1,d}H_{d} + S_{1,u}H_{u} + S_{1,s}S$   $H_{2} = S_{2,d}H_{d} + S_{2,u}H_{u} + S_{2,s}S$   $H_{3} = S_{3,d}H_{d} + S_{3,u}H_{u} + S_{3,s}S$ 

$$W_{NMSSM} = \lambda \hat{S} \hat{H}_u \cdot \hat{H}_d + \frac{\kappa}{3} \hat{S}^3 + \dots$$
**MSSM**

# Pros of NM

- ✓ Increase light Higgs mass
- ✓ Modified couplings to up-/down-type fermions (if  $R_{\gamma\gamma} \neq 1$ )
- ✓ Solves  $\mu$ -Problem (Kim, Nilles Phys. Lett. B 138, 150 (1984))

#### Cons

**× More** free parameters:

couplings λ, κ trilinear couplings  $A_{\kappa}$ ,  $A_{\lambda}$ mixing parameter  $\mu_{eff} = \lambda < S >$ 

(in addition to  $m_0$ ,  $m_{1/2}$ ,  $A_0$ ,  $tan\beta$ )



Couplings of the neutral scalar and pseudoscalar mass eigenstates in the four types of 2HDM

|       | Couplings         | Ι                          | II                      | III (Lepton specific)  | IV (Flipped)            |
|-------|-------------------|----------------------------|-------------------------|------------------------|-------------------------|
|       | $g_{hVV}$         | $\sin(eta-lpha)$           | $\sin(eta-lpha)$        | $\sin(eta-lpha)$       | $\sin(eta-lpha)$        |
| h     | $g_{htar{t}}$     | $\cos \alpha / \sin \beta$ | $\cos lpha / \sin eta$  | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$  |
|       | $g_{hbar{b}}$     | $\cos lpha / \sin eta$     | $-\sin lpha / \cos eta$ | $\cos lpha / \sin eta$ | $-\sin lpha / \cos eta$ |
|       | $g_{h	auar{	au}}$ | $\cos lpha / \sin eta$     | $-\sinlpha/\coseta$     | $-\sinlpha/\coseta$    | $\cos lpha / \sin eta$  |
|       | $g_{H^0VV}$       | $\cos(\beta - \alpha)$     | $\cos(eta-lpha)$        | $\cos(eta-lpha)$       | $\cos(\beta - \alpha)$  |
| $H^0$ | $g_{H^0tar{t}}$   | $\sin lpha / \sin eta$     | $\sin lpha / \sin eta$  | $\sin lpha / \sin eta$ | $\sin lpha / \sin eta$  |
|       | $g_{H^0 b ar b}$  | $\sin lpha / \sin eta$     | $\cos lpha / \cos eta$  | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$  |
|       | $g_{H^0	auar	au}$ | $\sin lpha / \sin eta$     | $\cos lpha / \cos eta$  | $\coslpha/\coseta$     | $\sin lpha / \sin eta$  |
| A     | $g_{AVV}$         | 0                          | 0                       | 0                      | 0                       |
|       | $g_{Atar{t}}$     | $\coteta$                  | $\coteta$               | $\coteta$              | $\coteta$               |
|       | $g_{Abar{b}}$     | $-\coteta$                 | aneta                   | $-\coteta$             | aneta                   |
|       | $g_{A	auar{	au}}$ | $-\coteta$                 | aneta                   | aneta                  | $-\coteta$              |

|                  | Type-1   | Type-2   | Type-3 (lepton-specific) | Type-4 (flipped) |
|------------------|----------|----------|--------------------------|------------------|
| Up-type quarks   | $\Phi_2$ | $\Phi_2$ | $\Phi_2$                 | $\Phi_2$         |
| Down-type quarks | $\Phi_2$ | $\Phi_1$ | $\Phi_2$                 | $\Phi_1$         |
| Charged leptons  | $\Phi_2$ | $\Phi_1$ | $\Phi_1$                 | $\Phi_2$         |