

Higgs Boson Decays to Two Leptons with ATLAS

Quentin Buat (CERN) — On behalf of the ATLAS collaboration

DIS 2019 — Torino, Italy

1

Introduction

- Leptonic Yukawa sector •
 - H-e coupling is a ٠
 - ٠ collider...
- But we can explore the heavier • generations!
 - $H \rightarrow \tau \tau$ •

H→μμ •

Outline

- $H \rightarrow \tau \tau$ measurements
- $H \rightarrow \mu\mu$ search
- Searching beyond the SM Higgs with 2 leptons

$H \rightarrow \tau \tau$ Visible Final State BR (%) Fully-leptonic 13 ee, µµ, eµ Semi-leptonic 45 $e \tau_h$, $\mu \tau_h$ Fully-hadronic 42 ThTh gluon fusion 000000000 g *H* $\sigma = 48.61 \text{ pb}$ t 0000000 vector boson fusion (VBF) a H $\sigma = 3.77 \text{ pb}$ **LHCHiggsXSWG**

$H \rightarrow \tau \tau$ analysis strategy

- $L = 36 \text{ fb}^{-1}, \sqrt{s} = 13 \text{ TeV}$
- Exploit all the tau decay channels
 - 2 to 4 undetected neutrinos in the event
- Analysis designed to target VBF and boosted ggF
 - Boosted: $p_T(H) > 100 \text{ GeV}$
 - VBF: 2 high-p_T jets with large pseudo-rapidity gap

$H \rightarrow \tau \tau$ analysis strategy

- Missing Mass Calculator (MMC)
 - Estimate the direction of the invisible component
 - Use constraints on the tau lepton mass
 - Enhance the separation power over more classic calculations (collinear mass or visible mass)
- Signal extracted with a binned likelihood fit on MMC in 13 signal regions and 6 control regions

•

•

•

Results

- 4.4 (4.1) σ observed (expected) significance
- 6.4 (5.4)σ when combining with Run1 result
- Fit inclusive cross-section and simultaneous fit of $\sigma(VBF)$ and $\sigma(gg \rightarrow H)$:
 - Very good agreement with SM expectation

	σ/σ _{SM}	Uncert
Inclusive	1.09	±0.35
VBF	1.18	±0.51
ggH	1.02	±0.62

<u>1811.08856</u> ATLAS-CONF-2019-005

Combining channels

- Significant contribution to the VBF production cross-section
- Weak contribution to the ggH production cross-section in comparison to the bosonic decay channels

Simplified Template Cross-Section (STXS) results

- Framework to measure cross-sections
 - Per production modes
 - In different phase-spaces (p_T(H), p_T(V), extra jet in VBF)
- $gg \rightarrow H$ $qq \rightarrow Hqq$ $qq \rightarrow Hqq, p_T^j \ge 200 \text{ GeV}$ $qq \rightarrow Hqq, VH \text{ topo}$ $qq \rightarrow Hqq, VBF \text{ topo } + \text{Rest}$ $gg \rightarrow H, 1-\text{ jet}, p_T^H \le 200 \text{ GeV}$ $gg \rightarrow H, \ge 1 \text{ jet}, p_T^H \ge 200 \text{ GeV}$ $gg \rightarrow H, \ge 2 \text{ jet}, p_T^H \le 200 \text{ GeV}$ $(e^{-1}) = (e^{-1}) + ($
- Reduces model-dependency
- Enhances sensitivity to BSM effects
- Works best if experimental categorisation matches theory split

ttH + tH

 $gg/qq \rightarrow Hll$, $150 \le p_T^V \le 250 \text{ GeV}$

 $gg/qq \rightarrow Hll, p_T^V \ge 250 \text{ GeV}$

Simplified Template Cross-Section (STXS) results

ATLAS-CONF-2019-005

STXS combination

- ATLAS full combination of all SM Higgs analyses channels
 - Very good agreement with SM expectations in all bins
 - See Soshi Tsuno's talk later in this session for a full review
- $H \rightarrow \tau \tau$ main contribution:
 - qq→Hqq, p_T(jet) > 200 GeV

Current limitations on the $H \rightarrow \tau \tau$ couplings measurement

- ★ Theoretical uncert. in signal
 - ggH+2jets in the VBF signal regions
- Limited background statistics
 - Z+jets events with ≥2 highp⊤ jets
- ✤ Jets and Missing-ET
 - VBF phase-space definition
 - Mass estimator line-shape

Source of uncertainty	Impact $\Delta \sigma / \sigma_{H \to \tau \tau}$ [%]		
	Observed	Expected	
\bigstar Theoretical uncert. in signal	+13.4 / -8.7	+12.0 / -7.8	
\blacklozenge Background statistics	+10.8 / -9.9	+10.1 / -9.7	
• Jets and $E_{\rm T}^{\rm miss}$	+11.2 / -9.1	+10.4 / -8.4	
Background normalization	+6.3/ -4.4	+6.3/ -4.4	
Misidentified τ	+4.5 / -4.2	+3.4 / -3.2	
Theoretical uncert. in background	+4.6 / -3.6	+5.0 / -4.0	
Hadronic τ decays	+4.4 / -2.9	+5.5 / -4.0	
Flavor tagging	+3.4 / -3.4	+3.0/ -2.3	
Luminosity	+3.3/ -2.4	+3.1 / -2.2	
Electrons and muons	+1.2 / -0.9	+1.1 / -0.8	
Total systematic uncert.	+23 / -20	+22 / -19	
Data statistics	± 16	± 15	
Total	+28 $/-25$	+27 $/-24$	

Exploit the full dataset to mitigate these limitations!

Hff CP properties in the ττ channel

- Prospective study for HL-LHC
- Strategy: access the CP mixing angle by measuring the angle between the decay planes
- · 'Golden' channel
 - $\begin{array}{ccc} \cdot & H \! \rightarrow \! \tau^{\scriptscriptstyle +} \tau^{\scriptscriptstyle -} \! \rightarrow \rho^{\scriptscriptstyle +} \rho^{\scriptscriptstyle -} \, 2 \nu_\tau \\ & \rightarrow \! \pi^{\scriptscriptstyle +} \pi^0 \; \pi^{\scriptscriptstyle -} \pi^0 \; \, 2 \nu_\tau \end{array}$
 - Reconstruct the decay plane of the visible tau and the charged pion

ATL-PHYS-PUB-2018-006 EPJC76(2016)5

Hff CP properties in the ττ channel

- Projection: ±20° precision on the CP mixing-angle measurement
 - Consider only statistical uncertainties
 - Precision on π⁰ resolution can have a large impact

 Δ NLL

EPJC76(2016)658

H→ττ: VBF CP

- Select events with high VBF purity
- Use optimal observable to differentiate CP hypothesis
- Describe all CP-violating effects through a single parameter: d~
- d~ in [-0.11, 0.05] at 68% CL

- $H \rightarrow \tau \tau$ measurements
- $H \rightarrow \mu\mu$ search
- Searching beyond the SM Higgs with 2 leptons

ATLAS-CONF-2018-026

$H \rightarrow \mu\mu$: strategy

- BR(H \rightarrow µµ) = 0.2 x 10³
- Two isolated muons satisfying $110 < m_{\mu\mu}$ [GeV] < 160
- Background parameterised with a functional form
- Signal extraction using a binned likelihood fit
- Excellent mass resolution!
- but... tiny signal buried under overwhelming Drell-Yan production

$H \rightarrow \mu\mu$: results

- Event categorisation
 - Multivariate classifier targeting VBF production mode
 - Achieved a $S/\sqrt{B} = 0.88$
- Observed limit: 2.1 x SM expectation
- Signal strength: 0.1±1.0
- Uncertainties dominated by data statistics
- ATLAS + CMS combination of H→µµ may reach the standard model sensitivity by the end of Run2!

	Expected significance	Observed significance
Central low $p_{\rm T}^{\mu\mu}$	0.10	-0.49
Non-central low $p_{\rm T}^{\mu\mu}$	0.03	0.44
Central medium $p_{\rm T}^{\mu\mu}$	0.31	1.55
Non-central medium $p_{\rm T}^{\mu\mu}$	0.30	-1.16
Central high $p_{\rm T}^{\mu\mu}$	0.38	0.48
Non-central high $p_{\rm T}^{\mu\mu}$	0.43	0.15
VBF Loose	0.24	-0.88
VBF Tight	0.42	-0.26
Combined	0.88	0.04

- $H \rightarrow \tau \tau$ measurements
- $H \rightarrow \mu\mu$ search
- Searching beyond the SM Higgs with 2 leptons

<u>JHEP09(2018)139</u> <u>JHEP01(2018)055</u>

Extended Higgs sector?

- Coupling to the tau lepton plays a key role in many SM extension of the Higgs sector
 - · Large BR at high tan β in hMSSM
- ATLAS searches:
 - $H^{\pm} \rightarrow \tau^{\pm} v$
 - Α/Η→ττ
- No excesses found:
 - Limits set in the hMSSM scenario (among others)

bΦ→μμ

- Model-independent search for a highmass scalar state decaying to two muons
- 2HDM: high mass scalar Φ coupling to muons stronger than to tau leptons
- Look <u>simultaneously</u> into a b-tag and b-veto region
- Simultaneous fit of both regions with 2 different Higgs-like signal hypothesis
 - ggΦ→µµ
 - bbΦ→µµ

bΦ→μμ

- No significant excess observed
- Limits:
 - On each signal hypothesis
 - On the ratio the production mode versus mass
- All the results from <u>arXiv:1901.08144</u> will be put on HepData for reinterpretation

Conclusions

•

Higgs couplings to the tau lepton has been firmly established

- Inclusive cross-section measured with ~30% accuracy
- Full Run2 dataset analysis will pave the road to the ultimate precision of the HL(LHC) program

Sensitivity to SM $H \rightarrow \mu\mu$ is around the corner

Measuring CP properties in the leptonic decays will be very challenging

• Extensive search program for extended Higgs sectors with leptons

• So far no hint of deviations, analysis of the final Run2 dataset underway

References

Analysis	Figures and Tables	arXiv/cds	Journal	
Η→ττ	<u>HIGG-2017-07</u>	<u>1811.08856</u>	Accepted by PRD	
H→ττ Decay CP HL-LHC prospects	ATL-PHYS-PUB-2019-008	<u>cds</u>	n/a	
VBF H→ττ CP	<u>HIGG-2015-06</u>	<u>1602.04516</u>	EPJC76(2016)658	
Tau Decay Mode Reconstruction	nstruction <u>PERF-2014-06</u> <u>15</u>		EPJC76(2016)5	
Higgs Couplings Combination	ATLAS-CONF-2019-005	<u>cds</u>	n/a	
H→µµ	ATLAS-CONF-2018-026	<u>cds</u>	n/a	
H→µµ HL-LHC prospects	ATL-PHYS-PUB-2018-006	<u>cds</u>	n/a	
Neutral $H \rightarrow \tau \tau$ high mass search	<u>HIGG-2016-12</u>	<u>1709.07242</u>	JHEP01(2018)055	
H±→τ±ν	<u>HIGG-2016-11</u>	<u>1807.07915</u>	JHEP09(2018)139	
(b)Φ→μμ high mass search	<u>HIGG-2017-10</u>	<u>1901.08144</u>	Submitted to JHEP	

Additional material

Event Categorisation

- Categorisation strategy:
 - VBF/boost: jet-multiplicity, m_{jj}, p_T(H)
 - Boost phase space further divided with cuts on $p_T(H)$ and $\Delta R(\tau, \tau)$
 - VBF phase space further divided with cuts on m_{jj} , $p_T(H)$ and $\Delta R(\tau, \tau)$
- Dedicated regions to control normalisation of Top and Z→II+jets

$Z \rightarrow \tau \tau + jets modelling$

SHERPA

- Up to 2 partons NLO QCD
- Up to 4 partons LO
- $Z \rightarrow \tau \tau$ +jets is free floating in Boost and VBF phase space:
 - Simulation to model migration between the signal regions and the shape of the mass estimation
- Validate SHERPA in Z→II + jets events
 - Good modelling in the phase space of the analysis
 - m_{jj} mismodelling above 1 TeV has a negligible impact on the measurement
- Key variables for the event categorisation: $p_T(Z)$ and m_{jj}

Background validation

- Fakes are estimated using data-driven techniques (revert tau identification or charge product criteria)
- Top and Z→II + jets are estimated using MC simulation
 - Normalisation is constrained by dedicated control regions
 - MC simulation modelling is checked in control regions

$H \rightarrow \tau \tau$ Fit Setup

H→µµ HLLHC prospects

	`					
Category	S	VBF	В	FWHM	σ_{G}	$S/\sqrt{S+B}$
				[GeV]	[GeV]	
VBF-like	386	197	19430	4.37	1.88	2.75
low $p_{\rm T}$, central	921	11	350500	3.21	1.37	1.55
med $p_{\rm T}$, central	2210	84	300500	3.08	1.32	4.01
hi $p_{\rm T}$, central	1810	242	211800	3.50	1.56	3.91
low $p_{\rm T}$, non central	2460	28	1740500	4.11	1.79	1.86
med $p_{\rm T}$, non central	5860	230	1483600	4.24	1.80	4.80
hi $p_{\rm T}$, non central	4380	588	829000	4.70	1.92	4.80
Total	18020	1380	4935500	3.93	1.69	9.53

Hff CP properties in the $\tau\tau$ channel

- Very challenging analysis
 - Selection of pure $\pi^+\pi^0$ - $\pi^+\pi^0$ events
 - Reconstruction of the individual pions 4 momentums

reconstructed $\pi^+\pi^0$ bin