

Higgs boson production in association with a ttbar pair at the ATLAS experiment

Ana Elena Dumitriu (IFIN-HH, CPPM), On behalf of the ATLAS Collaboration

Introduction and Motivation

Discovery of the Higgs (125 GeV) by ATLAS and CMS collaboration

 great success of particle physics, especially Standard Model (SM)

All measurements compatible with SM predictions.

- Top quark Yukawa coupling:
 - Fundamental parameter of the SM, ttH production cross-section controlled by the top Yukawa coupling.
 - Production and decay signatures sensitive to new physics

Indirect probe (through loop diagrams)

Direct probe (tree-level diagrams)

Leptons

Down-type quarks

Up-type quarks

3rd gen.

$$H \to \tau \tau$$

 $H \to b\bar{b}$

 $t \bar{t} H$

The "fatest" particle

- ► Indirect measurements of y_t via ggF and $H \rightarrow yy$ loop
 - particles entering loops
- ttH → direct probe for top-Higgs Yukawa coupling y_t²
 - check of SM
- Probe up-type quarks for the first time

Higgs boson production and decay

Increase in the Higgs boson production rate from Run I to Run II due to higher cm energy

- WW → high BR, low mass resolution
- bb, ττ → probe Higgs coupling to fermions, high BR but low signal senitivity
- ZZ , $\gamma\gamma$ \rightarrow precise differential measurements due to high mass resolution channel mass

Analyses included in this talk

- Results with Full Run II 2015-2018: 138 fb-1
 - $H(\gamma\gamma)$: ATLAS-CONF-2019-004
- Results with 2015-2017: 80 fb-1
 - ttH: PLB 784 (2018) 173
 - $H(\gamma\gamma)$:ATLAS-CONF-2019-005, ATLAS-CONF-2018-028
 - $H(ZZ \rightarrow 4I)$: ATLAS-CONF-2019-005, ATLAS-CONF-2018-018
- Results with 2015-2016: 36 fb-1
 - ttH(ML): PRD 97 (2018) 072003
 - ttH(bb): PRD 97 (2018) 072016

 μ = observed cross section times the branching ratio ($\sigma \times$ BR), divided by the predicted SM cross section times the SM branching ratio ($\sigma_{\rm SM} \times$ BR_{SM}).

.New

ttH(yy):Introduction

- The "Lep" region \rightarrow targeting tt decays in which at least one of the W bosons decays to a $\mu/e, \ge 1$ isolated lepton $+ \ge 1$ jet with $p_T > 25$ GeV, b-hadron tagged.
- The "Had" region \rightarrow targets hadronic top decays: ≥ 1 jet with $p_{\tau} > 25$ GeV, b-hadron tagged $+ \geq 2$ additional jets with $p_{\tau} > 25$ GeV and no reconstructed leptons.

- Boosted decision tree (BDT) dedicated to "Lep" / "Had", trained with the XGBoost to create regions of high ttH signal purity.
 - Inputs include: photon kinematics $(p_T/m_{yy}, \eta, \phi)$, E_T^{miss} , E for up to 4(2) leading jets(lep) in p_T
 - Backgrounds: γγ, tt+γγ (data in control regions), other Higgs prod (from simulation)

ttH(yy): Results

- Simultaneous unbinned fit of $m_{\gamma\gamma}$ (105-160 GeV) in all 7 categories
 - ttH signal: double-sided crystal ball
 - Continuum background: smooth functions (power-law or exponential)

ttH(yy): Results

Dominant uncertainties:

Statistically dominated!

Uncertainty source	$\Delta \sigma_{\rm low}/\sigma$ [%]	$\Delta\sigma_{ m high}/\sigma$ [%]
Theory uncertainties	6.6	9.7
Underlying Event and Parton Shower (UEPS)	5.0	7.2
Modeling of Heavy Flavor Jets in non-ttH Processes	4.0	3.4
Higher-Order QCD Terms (QCD)	3.3	4.7
Parton Distribution Function and α_S Scale (PDF+ α_S)	0.3	0.5
Non- $t\bar{t}H$ Cross Section and Branching Ratio to $\gamma\gamma$ (BR)	0.4	0.3
Experimental uncertainties	7.8	9.1
→ Photon Energy Resolution (PER)	5.5	6.2
Photon Energy Scale (PES)	2.8	2.7
\longrightarrow Jet/ $E_{\mathrm{T}}^{\mathrm{miss}}$	2.3	2.7
Photon Efficiency	1.9	2.7
Background Modeling	2.1	2.0
Flavor Tagging	0.9	1.1
Leptons	0.4	0.6
Pileup	1.0	1.5
Luminosity and Trigger	1.6	2.3
Higgs Boson Mass	1.6	1.5

$$\mu_{t\bar{t}H} = 1.38^{+0.41}_{-0.36} = 1.38^{+0.33}_{-0.31} \text{ (stat.)} ^{+0.13}_{-0.11} \text{ (exp.)} ^{+0.22}_{-0.14} \text{ (theo.)}.$$

$$\sigma_{t\bar{t}H} \times B_{\gamma\gamma} = 1.59^{+0.43}_{-0.39} \text{ fb} = 1.59^{+0.38}_{-0.36} \text{ (stat.)} ^{+0.15}_{-0.12} \text{ (exp.)} ^{+0.15}_{-0.11} \text{ (theo.)} \text{ fb.} \qquad t\bar{t}H(\to \gamma\gamma) = 1.15^{+0.09}_{-0.12} \text{ fb.}$$

• The combined observed significance is 4.9σ (4.2σ expected)

ttH(ZZ* → 4l) Introduction

- ≥4 isolated leptons (=e, μ), common vertex, 2 pairs of Same Flavour Opposite Sign leptons, 115 GeV < m₄₁ < 130 GeV
- Increase the expected ttH significance:
 - "Had" → hadronic top-quark decays, ≥3 additional jets + zero additional isolated leptons + BDT($E_T^{miss}, p_T^{jj}, N_{jets}, N_{b-jets}, H_T, \mathcal{M}_{sig}$)
 - "Lep" \rightarrow semileptonic top-quark decays, ≥1 additional jet, ≥1 additional isolated lepton.

Main backgrounds:

- ttV + non-ttH (ggF + tH for the Had and tH for the Lep region), estimated from simulation.

ttH(ZZ* → 4I) Results

No event is observed in ttH, expect 1.1 events (0.6 ttH)

Production bin	Cross section $(\sigma \cdot \mathcal{B})$ [pb]		$(\sigma \cdot \mathcal{B})/(\sigma \cdot \mathcal{B})_{\text{SM}}$	
	SM expected	Observed	Observed	
Inclusive production, $ y_H < 2.5$				
	1.33 ± 0.09	$1.57 \pm 0.16 \pm 0.07 \pm 0.04$	$1.18 \pm 0.12 \pm 0.05 \pm 0.03$	
Stage-0 production bins, $ y_H < 2.5$				
ggF	1.17 ± 0.08	$1.22 \pm 0.17 \pm 0.07 \pm 0.04$	$1.04 \pm 0.14 \pm 0.06 \pm 0.03$	
VBF	0.0917 ± 0.0028	$0.25 \pm 0.08 \pm 0.02 \pm 0.01$	$2.8 \pm 0.9 \pm 0.2 \pm 0.2$	
VH	$0.0524^{+0.0026}_{-0.0047}$	$0.05 \pm 0.05 \pm 0.01 \pm 0.01$	$0.9 \pm 1.0 \pm 0.1 \pm 0.1$	
ttH	$0.0154^{+0.0011}_{-0.0016}$	< 0.07	< 4.04	

Experimental uncertainties [%] Theory uncertainties [%] Reducible ZZ^* Lum. e, μ, Jets, flavour Signal Measurement pile-up backgr. backgr. PDF QCD scale Parton Shower Composition tagging Stage-0 production bin cross sections ggF 0.7 2.9 3.9 1.3 2.3 0.4 2.1 **VBF** 1.7 1.5 10.5 0.5 2.3 2.3 9.5 5.1 VH2.0 1.7 7.8 1.8 5.6 2.1 14.9 3.1 ttH2.5 1.9 3.9 1.5 1.9 0.3 8.8 9.6

- Main systematic uncertainties
 - QCD scale
 - ttH PS
 - Jets, flavour tagging

ttH(bb): Introduction

- Targets the H → bb̄ decay mode.
- The selected events contain either one or two electrons/muons from the top-quark decays
 - categorized according to the number of jets and how likely these are to contain b-hadrons.

Analysis strategy: splitting events into categories according to Njet and Nbjet, CR enhanced in single background components; reco BDT, classification BDT, fit.

ttH(bb) Results

$$\mu = 0.84 \pm 0.29 \text{ (stat.)} ^{+0.57}_{-0.54} \text{ (syst.)} = 0.84^{+0.64}_{-0.61}$$

	•		
	Uncertainty source	$\Delta \mu$	
>	$t\bar{t} + \ge 1b$ modeling	+0.46	-0.46
	Background-model statistical uncertainty	+0.29	-0.31
	b-tagging efficiency and mis-tag rates	+0.16	-0.16
	Jet energy scale and resolution	+0.14	-0.14
	$t\bar{t}H$ modeling	+0.22	-0.05
	$t\bar{t} + \ge 1c$ modeling	+0.09	-0.11
	JVT, pileup modeling	+0.03	-0.05
	Other background modeling	+0.08	-0.08
	$t\bar{t}$ + light modeling	+0.06	-0.03
	Luminosity	+0.03	-0.02
	Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
	Total systematic uncertainty	+0.57	-0.54
	$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10
	$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
	Intrinsic statistical uncertainty	+0.21	-0.20
	Total statistical uncertainty	+0.29	-0.29
:	Total uncertainty	+0.64	-0.61

- Significance w.r.t bkg only hypothesis: 1.4 (1.6) obs.(exp.)
- Signal strength > 2 excluded at the 95% CL.
- The modeling of this background relied heavily on MC predictions.
 - Improvements expected

ttH multi-lepton: Intro

- Seven final states, categorized by the number and flavor of charged-lepton candidates
- Irreducible backgrounds (ttW, ttZ, ...):
 - estimated from MC and validated in data
- Reducible backgrounds (non-prompt e/ μ and fake τ_{had}):
 - data-driven techniques
- Multivariate techniques applied in most channels.

 Signal is extracted with a binned profile likelihood fit across all categories including main background CR.

New Non-prompt lepton BDT & Charge misassignment veto BDT

ttH multi-lepton: Results

- Significance w.r.t bkg only hypothesis for multilepton: 4.1 (2.8) obs.(exp.)
- Stats~sys

Uncertainty source	$\Delta \mu$	
ttH modeling (cross section)	+0.20	-0.09
Jet energy scale and resolution	+0.18	-0.15
Nonprompt light-lepton estimates	+0.15	-0.13
Jet flavor tagging and τ_{had} identification	+0.11	-0.09
$t\bar{t}W$ modeling	+0.10	-0.09
$t\bar{t}Z$ modeling	+0.08	-0.07
Other background modeling	+0.08	-0.07
Luminosity	+0.08	-0.06
ttH modeling (acceptance)	+0.08	-0.04
Fake τ_{had} estimates	+0.07	-0.0
Other experimental uncertainties	+0.05	-0.04
Simulation sample size	+0.04	-0.04
Charge misassignment	+0.01	-0.0
Total systematic uncertainty	+0.39	-0.30

Excess in high S/B bins, consistent with ttH signal

ttH observation I

 Observation of Higgs boson production in association with a top quark with the ATLAS detector!

- 6.3σ significance (5.1σ expected)

Not updated to full Run II

Analysis	Integrated luminosity [fb ⁻¹]	$t\bar{t}H$ cross section [fb]	Obs. sign.	Exp. sign.
$H \rightarrow \gamma \gamma$	79.8	710 $^{+210}_{-190}$ (stat.) $^{+120}_{-90}$ (syst.)	4.1σ	3.7σ
$H \rightarrow \text{multilepton}$	36.1	790 \pm 150 (stat.) $^{+150}_{-140}$ (syst.)	4.1σ	2.8σ
$H o b ar{b}$	36.1	$400~^{+150}_{-140}~({ m stat.})\pm270~({ m syst.})$	1.4σ	1.6σ
$H \to ZZ^* \to 4\ell$	79.8	<900 (68% CL)	0σ	1.2σ
Combined (13 TeV)	36.1-79.8	$670 \pm 90 \text{ (stat.) } ^{+110}_{-100} \text{ (syst.)}$	5.8σ	4.9σ
Combined (7, 8, 13 TeV)	4.5, 20.3, 36.1-79.8	-	6.3σ	5.1σ

Excess in high S/B bins, consistent with ttH signal

ttH observation II

PhysRevLett.120.231801

- Measurements consistent with SM prediction!
 - Combination is assuming SM branching ratios
- CMS also reported the observation of tīH production with a significance of 5.2 standard deviations.

Conclusions

- ATLAS Collaboration observed the ttH process:
 - Run II + Run I: 6.3σ (5.1σ exp.)
 - Run II: 5.8σ (4.9 σ exp.)
 - Not all analyses updated to full Run II luminosity!
- Cross section measurements: in agreement with SM prediction.
- Measurement for 13 TeV:
 - $-\sigma_{ttH}/\sigma_{SM} = 1.32 \pm \frac{0.28}{0.26} (\pm 0.18, \pm \frac{0.21}{0.19})$
 - $\sigma_{ttH} = 670 \pm 90(stat.)^{+110}_{-100}(syst.)fb$
 - SM prediction: $579^{+35}_{-50}fb$
- CMS Collaboration: observation of ttH production.

A data event from the ttH, H→γγ

Backup Slides

ttH(bb): Introduction

- Targets the H → bb̄ decay mode.
 - Explore the properties of the Higgs boson (p_T , η): going differential.
 - Probe the CP structure of the ttH interaction: BSM analysis.
- The selected events contain either one or two electrons/muons from the topquark decays
 - categorized according to the number of jets and how likely these are to contain b-hadrons.
- Multivariate techniques used to discriminate between s&b (dominated by tt+jets).

SR and CR the dilepton (left) and single-lepton (right) resolved channel $x \to the$ values of the b-tagging discriminant for the first two jets, $y \to the$ for the third and fourth jets. 19 The jets are ordered according to their value of the b-tagging discriminant in descending order.

Fractional contributions of the various bkgd/total bkgd prediction

ttH(bb): S/B events

Comparison of predicted and observed event yields

H → bb decay:

- 89% of the ttH signal events in the SR of the dilepton channel
- 96% in the signal regions of the resolved single-lepton channel
- 86% in the boosted signal region

Comparison between data and prediction for the Higgs-boson candidate mass from the reconstruction BDT trained without variables involving the Higgs-boson candidate

ttH(bb) Results

$$\mu = 0.84 \pm 0.29 \text{ (stat.)} ^{+0.57}_{-0.54} \text{ (syst.)} = 0.84^{+0.64}_{-0.61}$$

- Significance w.r.t bkg only hypothesis: 1.4 (1.6) obs.(exp.)
- Signal strength > 2 excluded at the 95% CL.
- The modeling of this background relied heavily on MC predictions.
 - Related systematics have the highest impact on the ttH(bb) measurement.
 - Improving the tt modeling is a major focus for the new analysis round.

prefit impact on μ : $\theta = \hat{\theta} + \Delta \theta$ $\theta = \hat{\theta} - \Delta \theta$ 0 -0.15 -0.1 -0.05 0.05 postfit impact on µ: ATLAS $\theta = \hat{\theta} + \Delta \hat{\theta}$ $\theta = \hat{\theta} - \Delta \hat{\theta}$ \sqrt{s} = 13 TeV, 36.1 fb⁻¹ Nuis, Param, Pull ttH cross section (scale variations) Jet energy scale (pileup subtraction) Luminosity Jet energy scale (flavor comp. 2 €SS) Jet energy scale variation 1 ttW cross section (scale variations) ttZ cross section (scale variations) Thad identification ttH cross section (PDF) ttH modeling (shower tune) Flavor tagging c-jet/Thad rare top decay cross section 3€ Nonprompt closure ttW modeling (generator) Nonprompt stat. in 4th bin of 3€ SR -1.5-0.50.5 1.5 $(\hat{\theta} - \theta_0)/\Delta \theta$

ttH multi-lepton

- Signal is extracted with a binned profile likelihood fit across all categories including main background CR.
- Main systematic uncertainties
 - ttH modelling (cross section)
 - Jet energy scale/resolution
 - Non-prompt e/μ estimates