Combined Higgs boson measurements at the ATLAS experiment

Soshi Tsuno
on behalf of ATLAS Collaboration

Simplified Template Cross Section (STXS)

Theorists and Experimentalists agreed on "common (model-independent) observables".
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

Cross sections and fractional uncertainties				
STXS	sig	stat	mu	es
Incl	48.52	+/- 0.00	+4.6\%	+2.1\%
FWDH	4.27	+/- 0.01	+4.5\%	+1.9\%
VBF_J3V	0.27	+/- 0.00	+0.0\%	+0.0\%
VBF_J3	0.36	+/- 0.00	+0.0\%	+0.0\%
=0J	27.25	+/- 0.03	+3.8\%	+0.1\%
=1J_0-60	6.49	+/- 0.01	+5.2\%	+4.5\%
=1J_60-120	4.50	+/- 0.01	+5.2\%	+4.5\%
=1J_120-200	0.74	+/- 0.00	+5.2\%	+4.5\%
=1J_200->	0.15	+/- 0.00	+5.2\%	+4.5\%
>=2J_0-60	1.22	+/- 0.01	+8.9\%	+8.9\%
>=2J_60-120	1.86	+/- 0.01	+8.9\%	+8.9\%
=2J_120-200	0.99	+/- 0.00	+8.9\%	+8.9\%
>=2J_200->	0.42	+/- 0.00	+8.9\%	+8.9\%
=0J	30.12	+/- 0.03	+3.8\%	+0.1\%
=1J	12.92	+/- 0.02	+5.2\%	+4.5\%
>=2J	5.47	+/- 0.01	+7.8\%	+7.8\%
>=1J 60-200	9.09	+/- 0.01	+6.2\%	+5.8\%
=1J 120-200	1.96	+/- 0.01	+6.8\%	+6.5\%
>=1J >200	0.58	+/- 0.00	+7.9\%	+7.7\%
>=1J >60	9.68	+/- 0.01	+6.3\%	+5.9\%
>=1J >120	2.54	+/- 0.01	+7.0\%	+6.8\%
>=	18.40	+/- 0.02	+6.0\%	+5.

STXS example from individual channel

Example : $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4$ l channel

Statistical combination

Construct profile likelihood:

$$
\Lambda(\boldsymbol{\alpha})=\frac{L(\boldsymbol{\alpha}, \hat{\boldsymbol{\theta}}(\boldsymbol{\alpha}))}{L(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\theta}})}
$$

$\theta(\alpha)$: nuisance parameters
Systematic uncertainties:

ID, JET, MET, TAU
 THEORY

Treated as common across channels.

α : parameter of interests

The α might be the cross section, $\mu \times \sigma\left(n_{s}\right)$,

$$
n_{k}^{\text {signal }}=\mathcal{L}_{k} \sum_{i} \sum_{f}(\sigma \times \mathrm{B})_{i f}(A \times \epsilon)_{i f, k}
$$

$\left\{\begin{array}{l}\text { Production } \mathrm{i}=\mathrm{ggF}, \mathrm{VBF}, \mathrm{WH}, \mathrm{ZH}, \mathrm{ttH} \ldots \\ \text { Decay } \mathrm{f}=\gamma \gamma, \mathrm{ZZ}, \mathrm{WW}, \tau \tau, \mathrm{bb}\end{array}\right.$
And signal strength μ :

$$
\mu_{i f}=\frac{\sigma_{i}}{\sigma_{i}^{\mathrm{SM}}} \times \frac{\mathrm{B}_{f}}{\mathrm{~B}_{f}^{S \mathrm{SM}}}
$$

Maximize $-2 \log (\Lambda(\alpha))$:
follows χ^{2} distribution with
$\left\{\begin{array}{l}\hat{\alpha}, \hat{\theta} \text { is the best fit values } \\ \hat{\theta} \text { is the value at given } \alpha\end{array}\right.$

Higgs combination

Reference: ATLAS-CONF-2019-005

Analysis	Integrated luminosity (fb^{-1})
$H \rightarrow \gamma \gamma$ (including $t \bar{t} H, H \rightarrow \gamma \gamma$)	79.8
$H \rightarrow Z Z^{*} \rightarrow 4 \ell$ (including $t \bar{t} H, H \rightarrow Z Z^{*} \rightarrow 4 \ell$)	79.8
$H \rightarrow W W^{*} \rightarrow e \nu \mu \nu$	36.1
$H \rightarrow \tau \tau$	36.1
$V H, H \rightarrow b \bar{b}$	79.8 ${ }^{\text {- }}$, UPDATE (previous: 36.1fb ${ }^{-1}$)
$\mathrm{VBF}, H \rightarrow b \bar{b}$	-24.5-30.6-' NEW
$H \rightarrow \mu \mu$	79.8
$t \bar{t} H, H \rightarrow b \bar{b}$ and $t \bar{t} H$ multilepton	36.1
$H \rightarrow$ invisible	$36.1{ }^{\text {- }}$) NEW (see talk by Tulay)
Off-shell $H \rightarrow Z Z^{*} \rightarrow 4 \ell$ and $H \rightarrow Z Z^{*} \rightarrow 2 \ell 2 \nu$	--36.1---'

(\%) Signal samples: gluon-fusion: PowHeg Box NNLOPS, normalized to N3 O QCD + NLO EW corrections VBF/VH/ttH : PowHeg Box NLO, normalized to NNLO QCD + NLO EW corrections (except ttH)

Signal yield

Average \# of signal per $1 \mathrm{fb}^{-1}$			Sensitive to ggh	Direct measurement	
Decay	Total	ggF BF WH	$Z H$ (${ }^{\prime} \bar{t} \hat{t}+t \bar{H}^{\prime}$)	S/sqrt(B)	Reference
$H \rightarrow \gamma \gamma$	46.4	'41.1, (3.19	0.6760 .505	$\sim 6 @ 79.8 \mathrm{fb}^{-1}$	ATLAS-CONF-2018-028
$H \rightarrow Z Z^{*}$	1.50	$1.24: 0.109000316$	0.02220 .104	$\sim 9 @ 79.8 \mathrm{fb}^{-1}$	ATLAS-CONF-2018-018
$H \rightarrow W W^{*}$	42.2	${ }^{1} 29.8{ }^{\prime}$ ' ${ }^{\prime}$ '0.05', 0.758	$0.209 \quad 8.36$	$\sim 9.6 @ 36.1 \mathrm{fb}^{-1}$	ATLAS-CONF-2018-004
$H \rightarrow \tau \tau$	17.1	9.31 '3.82,' 0.715	$0.419 \quad 2.85$	$\sim 6.5 @ 36.1 \mathrm{fb}^{-1}$	ATLAS-CONF-2018-021
$H \rightarrow b \bar{b}$	66.0	9.68 9.68 ${ }^{6}$	6.30 , 35.5	$\sim 5.4 @ 79.8 \mathrm{fb}^{-1}$	Phys.Lett.B786(2018)59
$H \rightarrow \mu \mu$	6.67	5.96 0.474 0.143	0.07650 .0112		
		Sensitive to			

Production cross sections

Increased statistics in VH channel.

$$
\left(36.1 \mathrm{fb}^{-1}=>79.8 \mathrm{fb}^{-1}\right)
$$

Assuming the SM branching ratio, consistent with SM prediction.

Mild deviation of VBF is from $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 \mathrm{I}$.

SM compatibility

$H \rightarrow \gamma \gamma$ mode is the strongest.

Systematic uncertainties

Theory and experimental uncertainties are

Uncertainty source	$\Delta \mu / \mu[\%]$
Statistical uncertainty	4.4
Systematic uncertainties-	6.2
,-Theory uncertainties	4.8
Signal	4.2
- - . Background	$2.6-$
	4.1
Luminosity	2.0
Background modeling	1.6
Jets, $E_{\mathrm{T}}^{\text {miss }}$	1.4
Flavour tagging	1.1
Electrons, photons	2.2
Muons	0.2
τ-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

Systematic uncertainties

Theory and experimental uncertainties are almost same order (~4-5\%).

Uncertainty source	$\Delta \mu / \mu[\%]$
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
Signal	4.2
Background	2.6
Experimental uncertainties (excl. MC stat.)	4.1
-.----------	2.0
Background modeling	1.6
Jets, $E_{\mathrm{T}}^{\text {miss }}$	1.4
Flavour tagging	1.1
--------Electrons, photons	2.2
Muons	0.2
τ-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

Systematic uncertainties

Theory and experimental uncertainties are almost same order (~4-5\%).

Luminosity and photon uncertainties are leading source of systematics.

Jet/MET/tau uncertainties are relatively small, since dominant modes are $\mathrm{H} \rightarrow \gamma \gamma$ and ZZ .

If full Run-2 dataset ($\sim 140 \mathrm{fb}^{-1}$) is included, the situation might be different.

Thanks for data-driven background estimation method, the background theory uncertainty is under control in 2-3\%.

Uncertainty source	$\Delta \mu / \mu[\%]$
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
Signal	4.2
Background	2.6
Experimental uncertainties (excl. MC stat.)	4.1
Luminosity	2.0
Background modeling-	1.6
Jets, $E_{\mathrm{T}}^{\text {miss }}$	1.4
Flavour tagging	1.1--
Electrons, photōns	2.2
Muons	0.2
$\bar{\tau}$-lepton	0.4 -
Other	1.6--
MC statistical uncertainty	1.7
Total uncertainty	7.6

Systematic uncertainties

Theory and experimental uncertainties are almost same order (~4-5\%).

Uncertainty source	$\Delta \mu / \mu[\%]$
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
Signal	4.2
=-.--------------------	2.6
\& Experimental uncertainties (excl. MC stat.)	4.1
Luminosity	2.0
----------------1ackground modeling	1.6
Jets, $E_{\mathrm{T}}^{\text {miss }}$	1.4
Flavour tagging	1.1
Electrons, photons	2.2
Muons	0.2
τ-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

Further systematic breakdown

Ratio respect to $\sigma_{\text {ggF }}$ and $B_{Z z}$

Get the values without SM assumption.

\square less model-dependent

Use measured cross section (ggF).
Cancel some systematic uncertainty.
So far, measured $B_{z z}$ has higher value than prediction. Thus, ratio of B presents below 1.

STXS : Stage-1 results

Example of 15 exclusive STXS regions

High $p_{T}(H)$ region is sensitive to $B S M$ signal.

Correlation matrix

Mostly, the correlation is weak. (each exclusive region is well defined.)

Strong correlation to be understood: ATLAS Preliminary

$\sqrt{s}=13 \mathrm{TeV}, 36.1-79.8 \mathrm{fb}^{-1}$
$m_{H}=125.09 \mathrm{GeV},\left|y_{H}\right|<2.5$

aq $\rightarrow H$ qq. VH topo

$$
q q \rightarrow H q q, p_{T}^{j} \geq 200 \mathrm{GeV}
$$

$q q \rightarrow H V, p_{T}^{v}<250 \mathrm{GeV}$
$q q \rightarrow H / v, p_{T}^{v} \geq 250 \mathrm{GeV}$
$g g / q q \rightarrow H I I, p_{T}^{V}<150 \mathrm{GeV}$-0.03-0.01-0.01-0.01 0.03 0.02 $0.05-0.01-0.02-0.15-0.19$ 1 $-0.05-0.19-0.01-0.09$ 0.26-0.03-0.02
 -99 qa $^{\prime} \rightarrow$ HIII, $p^{v} \geq 250 \mathrm{GeV}$

kappa-framework

Practical to assess the nature Higgs properties as first order.
Factorize the component by coupling constant.
 $\sigma_{i} \times \mathrm{B}_{f}=\frac{\sigma_{i}(\boldsymbol{\kappa}) \times \Gamma_{f}(\boldsymbol{\kappa})}{\Gamma_{H}}$, where, k_{i} is coupling strength $\kappa_{j}^{2}=\frac{\sigma_{j}}{\sigma_{j}^{\mathrm{SM}}}$ or $\kappa_{j}^{2}=\frac{\Gamma_{j}}{\Gamma_{j}^{S \mathrm{M}}} . \quad$ (if $\mathrm{SM} \mathrm{k}=1$)

April.09.2019

Yukawa coupling

Allow to float individual coupling strength;

$$
\left(k_{z}, k_{W}, k_{b}, k_{t}, k_{\tau}, k_{\mu}\right)
$$

Yukawa coupling is expressed as:

$$
\left\{\begin{array}{l}
y_{V, i}=\sqrt{\kappa_{V, i} \frac{g_{V, i}}{2 v}}=\sqrt{\kappa_{V, i}} \frac{m_{V, i}}{v} \\
y_{F, i}=\kappa_{F, i} \frac{g_{F, i}}{\sqrt{2}}=\kappa_{F, i} \frac{m_{F, i}}{v}
\end{array}\right.
$$

Parameter	Result
κ_{Z}	1.10 ± 0.08
κ_{W}	1.05 ± 0.08
κ_{b}	$1.06_{-0.18}^{+0.19}$
κ_{t}	$1.02_{-0.10}^{+0.11}$
κ_{τ}	1.07 ± 0.15
κ_{μ}	<1.51 at $95 \% \mathrm{CL}$.

Constraint to 2HDM / hMSSM

Minimum extension of the SM :

```
{ 5 Higgs bosons:(h),
```

The mixing angle C.L. contour only allows the alignment limits $(\cos (\beta-\alpha)=0)$.
At decoupling limit (SM), the CP-odd Higgs mass A is excluded $m_{A}<480 \mathrm{GeV}$ for any $\tan \beta$.

April. 09.2019

Update of HL-LHC perspective

Last update was based on RUN-1 data.
New update uses RUN-2 data.
Two "uncertainty" scenarios are considered:
S1: extrapolated from RUN-2 systematics,
S2 : half systematics of RUN-2, except PDF uncert.

Summary

Higgs combination is updated.
Gain of the statistical power in $\mathrm{VH} \rightarrow$ bb process is significant $\left(36.1 \mathrm{fb}^{-1}=>79.8 \mathrm{fb}^{-1}\right)$

So far, all results are consistent with the SM.
The statistical uncertainty becomes compatible with systematic uncertainties in $\mathrm{H} \rightarrow \gamma \gamma$, WW.

With full RUN-2 dataset (140fb-1), the systematic uncertainty will be more important.

Backup

Higgs program at LHC

—onput σ, d

THEORY group given bin x (STXS framework)

Compete systematics (LHCHXSWG)
inputo, do
CMS
measure σ, do etc.

Combine results

- Both ATLAS and CMS use common generators.
- Output format (differential xsec) is well defined (STXS).

Easy to combine the results, Easy to compare with theory.

Production cross section

Vector Boson association (VH)

$$
\sigma_{\mathrm{H}}(\mathrm{SM})=55.6_{-3.4}^{+2.4} \mathrm{pb} @ \mathrm{~N}^{3} \mathrm{LO}(\mathrm{QCD})+\mathrm{NLO}(\mathrm{EW})
$$

Top-quark association (ttH)

Vector Boson fusion (VBF)

Decay mode and analysis channels

$\gamma \gamma$, ZZ(4I) : Golden channels. Small BR. but good mass reconstruction, clean signatures

WW(Iv|v) : Large BR. Good S/B, but poor mass resolution.
$\tau \tau$: Reasonable mass reconstruction, Relatively clean signature, reveals fermion mass origin.
bb: Largest BR. Difficult to trigger, large background, The last major channel to be observed.

Rare decays ($\mu \mu, Z \gamma, c c$) : Small $B R$, studies as on-going.

STXS and differential cross sections

ATLAS-CONF-2018-018

kappa-framework

Relation to k_{i}, example diagrams

Production	Loops	Interference	Effective modifier	Resolved modifier
$\sigma(\mathrm{ggF})$	\checkmark	$t-b$	κ_{g}^{2}	$1.04 \kappa_{t}^{2}+0.002 \kappa_{b}^{2}-0.04 \kappa_{t} \kappa_{b}$
σ (VBF)	-	-	,	$0.73 \kappa_{W}^{2}+0.27 \kappa_{Z}^{2}$
$\sigma(q q / q g \rightarrow Z H)$	-	-	-	κ_{Z}^{2}
$\sigma(g g \rightarrow Z H)$	\checkmark	$t-Z$	$\kappa_{(g g Z H)}$	$2.46 \kappa_{Z}^{2}+0.46 \kappa_{t}^{2}-1.90 \kappa_{Z} \kappa_{t}$
$\sigma(W H)$	-	-)	κ_{W}^{2}
$\sigma(t \bar{t} H)$	-	-	-	κ_{t}^{2}
$\sigma(t H W)$	-	$t-W$	-	$2.91 \kappa_{t}^{2}+2.31 \kappa_{W}^{2}-4.22 \kappa_{t} \kappa_{W}$
$\sigma(t H q)$	-	$t-W$	-	$2.63 \kappa_{t}^{2}+3.58 \kappa_{W}^{2}-5.21 \kappa_{t} \kappa_{W}$
$\sigma(b \bar{b} H)$	-	-	-	κ_{b}^{2}
Partial decay width				
$\Gamma^{\text {bb }}$	-	-	-	κ_{b}^{2}
$\Gamma^{W W}$	-	-	-	κ_{W}^{2}
$\Gamma^{g g}$	\checkmark	$t-b$	κ_{g}^{2}	$1.11 \kappa_{t}^{2}+0.01 \kappa_{b}^{2}-0.12 \kappa_{t} \kappa_{b}$
$\Gamma^{\tau \tau}$	-	-	-	κ_{τ}^{2}
$\Gamma^{Z Z}$	-	-	-	κ_{Z}^{2}
$\Gamma^{c c}$	-	-	-	$\kappa_{c}^{2}\left(=\kappa_{t}^{2}\right)$
$\Gamma^{\gamma \gamma}$	\checkmark	$t-W$	κ_{γ}^{2}	$1.59 \kappa_{W}^{2}+0.07 \kappa_{t}^{2}-0.67 \kappa_{W} \kappa_{t}$
$\Gamma^{Z \gamma}$	\checkmark	$t-W$	$\kappa_{(Z \gamma)}^{2}$	$1.12 \kappa_{W}^{2}-0.12 \kappa_{W} \kappa_{t}$
$\Gamma^{s s}$	-	-	-	$\kappa_{s}^{2}\left(=\kappa_{b}^{2}\right)$
$\Gamma^{\mu \mu}$	-	-	-	κ_{μ}^{2}
Total width ($\left.\mathrm{B}_{\text {inv }}=\mathrm{B}_{\text {undet }}=0\right)$				
Γ_{H}	\checkmark	-	κ_{H}^{2}	$\begin{aligned} & 0.58 \kappa_{b}^{2}+0.22 \kappa_{W}^{2} \\ & +0.08 \kappa_{g}^{2}+0.06 \kappa_{\tau}^{2} \\ & +0.03 \kappa_{Z}^{2}+0.03 \kappa_{c}^{2} \\ & +0.0023 \kappa_{\gamma}^{2}+0.0015 \kappa_{(Z \gamma)}^{2} \\ & +0.0004 \kappa_{s}^{2}+0.00022 \kappa_{\mu}^{2} \\ & \hline \end{aligned}$

Constraint to new physics

Self coupling

Direct search : previous talk.
Indirect constraint from loop diagrams

-
\qquad

Measured to be ATL-PHYS-PUB-2019-009 $\kappa_{\lambda}=4.0_{-4.1}^{+4.3}=4.0_{-3.6}^{+3.7}$ (stat. $)_{-1.5}^{+1.6}$ (exp. $)_{-0.9}^{+1.3}$ (sig. th. $)_{-0.9}^{+0.8}$ (bkg. th.)

- ggF production (loop in ttH) is sensitive.
- Large theory uncertainty, assuming new physics only enter in the $\lambda_{\text {ннн }}$ coupling.
- Results is compatible with direct search.

Higgs mass combination

arXiv:1806.00242

