Combined Higgs boson measurements at the ATLAS experiment

Soshi Tsuno on behalf of ATLAS Collaboration

Simplified Template Cross Section (STXS)

Theorists and Experimentalists agreed on "common (model-independent) observables".

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

Theory systematics are provided.

Cross secti	ons and f	ractional	uncerta	inties
STXS	sig	stat	mu	res
Incl	48.52 +/	- 0.00	+4.6%	+2.1%
FWDH	4.27 +/	- 0.01	+4.5%	+1.9%
VBF_J3V	0.27 +/	- 0.00	+0.0%	+0.0%
VBF_J3	0.36 +/	- 0.00	+0.0%	+0.0%
=0J	27.25 +/	- 0.03	+3.8%	+0.1%
=1J_0-60	6.49 +/	- 0.01	+5.2%	+4.5%
=1J_60-120	4.50 +/	- 0.01	+5.2%	+4.5%
=1J_120-200	0.74 +/	- 0.00	+5.2%	+4.5%
=1J_200->	0.15 +/	- 0.00	+5.2%	+4.5%
>=2J_0-60	1.22 +/	- 0.01	+8.9%	+8.9%
>=2J_60-120	1.86 +/	- 0.01	+8.9%	+8.9%
>=2J_120-200	0.99 +/	- 0.00	+8.9%	+8.9%
>=2J_200->	0.42 +/	- 0.00	+8.9%	+8.9%
=ØJ	30.12 +/	- 0.03	+3.8%	+0.1%
=1J	12.92 +/	- 0.02	+5.2%	+4.5%
>=2J	5.47 +/	- 0.01	+7.8%	+7.8%
>=1J 60-200	9.09 +/	- 0.01	+6.2%	+5.8%
>=1J 120-200	1.96 +/	- 0.01	+6.8%	+6.5%
>=1J >200	0.58 +/	- 0.00	+7.9%	+7.7%
>=1J >60	9.68 +/	- 0.01	+6.3%	+5.9%
>=1J >120	2.54 +/	- 0.01	+7.0%	+6.8%
>=1	18.40 +/	- 0.02	+6.0%	+5.5%

"bin size", "categorization" is well defined.

STXS example from individual channel

Example : $H \rightarrow ZZ \rightarrow 4I$ channel

ATLAS-CONF-2018-018

In this talk, the combined results are presented ($H \rightarrow \gamma\gamma$, ZZ, $\tau\tau$, bb)

Statistical combination

Construct profile likelihood :

α : parameter of interests

The α might be the cross section, $\mu \times \sigma(n_s)$,

$$n_k^{\text{signal}} = \mathcal{L}_k \sum_i \sum_f (\sigma \times B)_{if} (A \times \epsilon)_{if,k}$$

Production i = ggF, VBF, WH, ZH, ttH ... Decay f = $\gamma\gamma$, ZZ, WW, ττ, bb

And signal strength $\boldsymbol{\mu}$:

$$\mu_{if} = \frac{\sigma_i}{\sigma_i^{\text{SM}}} \times \frac{\mathbf{B}_f}{\mathbf{B}_f^{\text{SM}}}$$

Maximize -2log($\Lambda(\alpha)$) :

 $\Lambda(\alpha) = \frac{L(\alpha, \hat{\theta}(\alpha))}{L(\hat{\alpha}, \hat{\theta})}$

follows χ^2 distribution with

 $\begin{array}{c}
\hat{\alpha}, \hat{\theta} \text{ is the best fit values} \\
\hat{\theta} \text{ is the value at given } \alpha
\end{array}$

$\theta(\alpha)$: nuisance parameters

Systematic uncertainties :

ID, JET, MET, TAU THEORY

Treated as common across channels.

Higgs combination

Reference : <u>ATLAS-CONF-2019-005</u>

(%) **Signal samples**: gluon-fusion : PowHeg Box NNLOPS, normalized to N³LO QCD + NLO EW corrections

VBF/VH/ttH : PowHeg Box NLO, normalized to NNLO QCD + NLO EW corrections (except ttH) w/ PDF4LHC15

Signal yield

Average #	of signa	al per 1fb ⁻¹ Se	ensitive to g	gН	Direct measurem	ient
<u></u>						
Decay	Total	ggF VBF W	'H ZH	$t\bar{t}H+tH$	S/sqrt(B)	Reference
$H \to \gamma \gamma$	46.4	41.1 (3.19) 0.9	998 0.676	0.505	~6@79.8fb ⁻¹	ATLAS-CONF-2018-028
$H \to ZZ^*$	1.50	1.24 0.109 0.0	316 0.022	2 0.104	~9@79.8fb ⁻¹	ATLAS-CONF-2018-018
$H \to WW^*$	42.2	29.8, 3.05 0.1	758 0.209	8.36	~9.6@36.1fb ⁻¹	ATLAS-CONF-2018-004
$H\to\tau\tau$	17.1	9.31 3.82 0.1	715 0.419) 2.85	~6.5@36.1fb ⁻¹	ATLAS-CONF-2018-021
$H \to b\bar{b}$	66.0	9.68 9.68 4.	81 6.30	35.5	~5.4@79.8fb ⁻¹	Phys.Lett.B786(2018)59
$H \to \mu \mu$	6.67	5.96 0.474 0.1	143 0.076	5 0.0112	_	
					-	
		Sensitive	e to VBF	Sensitive	to VH	

Production cross sections

Increased statistics in VH channel. $(36.1 \text{fb}^{-1} => 79.8 \text{fb}^{-1})$

Assuming the SM branching ratio, consistent with SM prediction.

Mild deviation of VBF is from $H \rightarrow ZZ \rightarrow 4I$.

SM compatibility

 $H \rightarrow \gamma \gamma$ mode is the strongest.

 $\sigma_{\rm VBF}$ [pb]

Theory and experimental uncertainties are almost same order (~4-5%).

Luminosity and photon uncertainties are leading source of systematics.

Jet/MET/tau uncertainties are relatively small, since dominant modes are H $\rightarrow \gamma\gamma$ and ZZ.

If full Run-2 dataset (~140fb⁻¹) is included, the situation might be different.

Thanks for data-driven background estimation method, the background theory uncertainty is under control in 2-3%.

Uncertainty source	$\Delta\mu/\mu$ [%]
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Théory uncertainties	4.8
Signal	4.2
Background	2_6
Experimental uncertainties (excl. MC stat.)	4.1
Luminosity	2.0
Background modeling	1.6
Jets, $E_{\mathrm{T}}^{\mathrm{miss}}$	1.4
Flavour tagging	1.1
Electrons, photons	2.2
Muons	0.2
au-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

Theory and experimental uncertainties are almost same order (\sim 4-5%).

Luminosity and photon uncertainties are leading source of systematics.

Jet/MET/tau uncertainties are relatively small, since dominant modes are H $\rightarrow \gamma\gamma$ and ZZ.

If full Run-2 dataset (~140fb⁻¹) is included, the situation might be different.

Thanks for data-driven background estimation method, the background theory uncertainty is under control in 2-3%.

$\Delta\mu/\mu$ [%]
4.4
6.2
4.8
4.2
2.6
4.1
2.0
1.6
1.4
1.1
2.2
0.2
0.4
1.6
1.7
7.6

Theory and experimental uncertainties are almost same order (~4-5%).

Luminosity and photon uncertainties are leading source of systematics.

Jet/MET/tau uncertainties are relatively small, since dominant modes are H $\rightarrow \gamma\gamma$ and ZZ.

If full Run-2 dataset (~140fb⁻¹) is included, the situation might be different.

Thanks for data-driven background estimation method, the background theory uncertainty is under control in 2-3%.

Uncertainty source	$\Delta \mu / \mu$ [%]
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
Signal	4.2
Background	2.6
Experimental uncertainties (excl. MC stat.)	4.1
Luminosity	2.0
Background modeling	1.6
$Jets, E_{T}^{miss}$	1.4
Flavour tagging	1,1
Electrons, photons	2.2
Muons	0.2
au-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

Theory and experimental uncertainties are almost same order (~4-5%).

Luminosity and photon uncertainties are leading source of systematics.

Jet/MET/tau uncertainties are relatively small, since dominant modes are H $\rightarrow \gamma\gamma$ and ZZ.

If full Run-2 dataset (~140fb⁻¹) is included, the situation might be different.

Thanks for data-driven background estimation// method, the background theory uncertainty is under control in 2-3%.

Uncertainty source	$\Delta\mu/\mu$ [%]
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
Signal	4.2
Background	2.6
Experimental uncertainties (excl. MC stat.)	4.1
Luminosity	2.0
Background modeling	1.6
Jets, $E_{\rm T}^{\rm miss}$	1.4
Flavour tagging	1.1
\sim Electrons, photons	2.2
Muons	0.2
au-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

Further systematic breakdown

Driv	en by H $\rightarrow \gamma\gamma$, ZZ	Н	→ ττ, WW	$H \rightarrow bb$		modeling of top background
Uncertainty source		$\frac{\Delta \sigma_{\rm ggF}}{\sigma_{\rm ggF}} [\%]$	$\frac{\Delta \sigma_{\rm VBF}}{\sigma_{\rm VBF}} \ [\%]$	$\frac{\Delta \sigma_{WH}}{\sigma_{WH}} \begin{bmatrix} \% \end{bmatrix}$	$\frac{\Delta \sigma_{ZH}}{\sigma_{ZH}} \begin{bmatrix} \% \end{bmatrix}$	$\frac{\Delta \sigma_{t\bar{t}H+tH}}{\sigma_{t\bar{t}H+tH}} \begin{bmatrix} \% \end{bmatrix}$
Statistical uncertainties		6.4	15	21	23	14
Systematic uncertainties		6.2	12	22	17	15
Theory uncertainties		3.4	9.2	14	14	12
Signal		2.0	8.7	5.8	6.7	6.3
Background		2.7	3.0	13	12	(10)
Experimental uncertainties	(excl. MC stat.)	5.0 J	et/MET 6.5	9.9	9.6	flavor 9.2
Luminosity		2.1	1.8	1.8	1.8	tagging $\begin{bmatrix} 3.1\\ \end{bmatrix}$
Background modeling	r	2.5	2.2	4.7	2.9	5.7
Jets, $E_{\mathrm{T}}^{\mathrm{miss}}$	lepton (e, µ)	0.9	5.4	3.0	3.3	4.0
Flavour tagging	identification	0.9	1.3	〈 7.9	8.0	1.8
Electrons, photons		2.5	1.7	1.8	1.5	3.8
Muons		0.4	0.3	0.1	0.2	0.5
au-lepton		0.2	1.3	0.3	0.1	2.4
Other		2.5	1.2	0.3	1.1	0.8
MC statistical uncertainties		1.6	4.8	8.8	7.9	4.4
Total uncertainties		8.9	19	30	29	21

Ratio respect to σ_{ggF} and B_{ZZ}

Get the values without SM assumption.

less model-dependent

Use measured cross section (ggF).

Cancel some systematic uncertainty.

So far, measured B_{ZZ} has higher value than prediction. Thus, ratio of B presents below 1.

Parameter normalized to SM value

STXS : Stage-1 results

Example of 15 exclusive STXS regions

High $p_T(H)$ region is sensitive to BSM signal.

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1}$ $m_H = 125.09 \text{ GeV}, y_H < 2.5$ $p_{SM} = 89\%$ Intervention of the second s	$B_{\gamma\gamma}/B_{z}$ $B_{b\overline{b}}/B_{z}$ B_{WW}/B $B_{\tau^{+}\tau^{-}}/B$	z 🗪		0.86 0.63 0.86	$\begin{array}{c} +0.14 \\ -0.12 \\ +0.35 \\ -0.28 \\ +0.18 \\ +0.18 \\ -0.16 \\ +0.29 \end{array} +0$.11' .22 .18' .13 .11' .22	Syst. +0.07) -0.06) +0.27 -0.22) +0.12 -0.11) +0.19 -0.14) -0.14)
$\begin{array}{l} gg \rightarrow H, \ 0\text{-jet} \times B_{ZZ} \\ gg \rightarrow H, \ 1\text{-jet}, \ p_{T}^{H} < 60 \ \text{GeV} \times B_{ZZ} \\ gg \rightarrow H, \ 1\text{-jet}, \ 60 \leq p_{T}^{H} < 120 \ \text{GeV} \times B_{Z} \\ gg \rightarrow H, \ 1\text{-jet}, \ 120 \leq p_{T}^{H} < 200 \ \text{GeV} \times B \\ gg \rightarrow H, \ 2\text{-jet}, \ p_{T}^{H} \geq 200 \ \text{GeV} \times B_{ZZ} \\ gg \rightarrow H, \ 2\text{-jet}, \ p_{T}^{H} < 200 \ \text{GeV} \times B_{ZZ} \end{array}$				1.29 0.57 0.87 1.30 2.05 1.11	+0.18 + -0.17 (- +0.43 + -0.41 (- +0.38 + -0.34 (- +0.81 + -0.72 (- +0.84 + -0.72 (- +0.56 +	Stat. +0.16 -0.15; +0.37 -0.35; +0.33 -0.31; +0.71 -0.65; +0.73 -0.64; +0.46 -0.44;	+0.23 -0.22) +0.18 -0.15) +0.39 -0.30) +0.43 -0.32) +0.32
$qq \rightarrow Hqq$, VBF topo + Rest × B_{ZZ} $qq \rightarrow Hqq$, VH topo × B_{ZZ} $qq \rightarrow Hqq$, $p_{T}^{j} \ge 200 \text{ GeV} \times B_{ZZ}$		-		1.57 -0.12 -0.95	-0.38 (- +1.35 + -1.13 (- +1.51 (+	+0.36 -0.32' +1.31 -1.11' +1.34 -1.29'	+0.27 -0.21) +0.32 -0.24) +0.69 -0.72)
$qq \rightarrow Hlv, p_T^V < 250 \text{ GeV} \times B_{ZZ}$ $qq \rightarrow Hlv, p_T^V \ge 250 \text{ GeV} \times B_{ZZ}$	ŀ		4	2.28 1.91	-1.01 (- +2.32 / +	+1.02 -0.85' +1.44 -1.00'	+0.71 -0.55) +1.81 -0.66)
$gg/qq \rightarrow HII, p_{\tau}^{v} < 150 \text{ GeV} \times B_{ZZ}$ $gg/qq \rightarrow HII, 150 \leq p_{\tau}^{v} < 250 \text{ GeV} \times B_{ZZ}$ $gg/qq \rightarrow HII, p_{\tau}^{v} \geq 250 \text{ GeV} \times B_{ZZ}$				0.85 0.86 12.92	-1.57 (- +1.29 + -1.13 (- +3.03 (+	+1.01 -0.98' +1.02 -0.90' +1.87 -1.33'	+0.76 -1.22) +0.79 -0.70) +2.38 -0.71)
$ttH + tH \times B_{zz}$ $-10 -5$	I 0	Para	 5	1.44	+0.39 -0.33 (- - -0.33 (- - - - - - - - - - - - - - - - - - -		

Correlation matrix

Mostly, the correlation is weak. (each exclusive region is well defined.)

Strong correlation to be understood:

			-	
$gg \rightarrow H, \ge 2$ -jet, $p_{_T}^H < 200 \text{ GeV}$	-0.17	-0.03	1	-0.26
<i>qq→Hqq</i> , VBF topo + Rest	-0.01	0.31	-0.26	1
<i>qq→Hqq</i> , VH topo	0.05	-0.15	-0.42	0.13
$qq \rightarrow Hqq, p_{\tau}^{j} \ge 200 \text{ GeV}$	0.08	-0.55	-0.01	-0.30
	→ <i>H</i> , 1-jet, 120 ≤ p_T^H < 200 GeV	$gg \rightarrow H$, ≥ 1 -jet, $p_T^H \ge 200 \text{ GeV}$	$gg \rightarrow H$, ≥ 2 -jet, $p_T^H < 200 \text{ GeV}$	qq → Hqq, VBF topo + Rest

<u> 6</u>6

kappa-framework

Practical to assess the nature Higgs properties as first order.

Factorize the component by coupling constant.

g

 $k_g x \sigma_{SM}$

g

Η

 $k_{\gamma}x\Gamma_{SM}$

Yukawa coupling

Allow to float individual coupling strength;

(k_Z, k_W, k_b, k_t, k_{τ}, k_{μ})

Yukawa coupling is expressed as:

$y_{V,i} = \sqrt{\kappa_{V,i} \frac{g_{V,i}}{2v}} = \sqrt{\kappa_{V,i} \frac{m_{V,i}}{v}}$
$y_{F,i} = \kappa_{F,i} \frac{g_{F,i}}{\sqrt{2}} = \kappa_{F,i} \frac{m_{F,i}}{v}$

Parameter	Result
κ_Z	1.10 ± 0.08
κ_W	1.05 ± 0.08
κ_b	$1.06_{-0.18}^{+0.19}$
κ_t	$1.02_{-0.10}^{+0.11}$
$\kappa_{ au}$	1.07 ± 0.15
κ_{μ}	< 1.51 at 95% CL.

Constraint to 2HDM / hMSSM

Minimum extension of the SM :

 $\begin{bmatrix} 5 \text{ Higgs bosons : (h) H, A, H^+, H^- } \\ 2 \text{ mixing parameters : (} \alpha, \beta \end{bmatrix}$

The mixing angle C.L. contour only allows the alignment limits $(\cos(\beta-\alpha)=0)$.

At decoupling limit (SM), the CP-odd Higgs mass A is excluded $m_A < 480$ GeV for any tan β .

Assume observed Higgs boson

Update of HL-LHC perspective

Last update was based on RUN-1 data.

New update uses RUN-2 data.

Two "uncertainty" scenarios are considered:

S1 : extrapolated from RUN-2 systematics,

S2 : half systematics of RUN-2, except **PDF uncert**.

Summary

Higgs combination is updated.

Gain of the statistical power in VH \rightarrow bb process is significant (36.1fb⁻¹ => 79.8fb⁻¹)

So far, all results are consistent with the SM.

The statistical uncertainty becomes compatible with systematic uncertainties in H $\rightarrow \gamma\gamma$, WW.

With full RUN-2 dataset (140fb⁻¹), the systematic uncertainty will be more important.

Backup

Production cross section

 $\sigma_{H}(SM) = 55.6^{+2.4}_{-3.4} \text{ pb } @ \text{N}^{3}\text{LO}(\text{QCD}) + \text{NLO}(\text{EW})$

April.09.2019

Decay mode and analysis channels

γγ, ZZ(4I) : Golden channels. Small BR. but good mass reconstruction, clean signatures

WW(IvIv) : Large BR. Good S/B, but poor mass resolution.

ττ : Reasonable mass reconstruction, Relatively clean signature, reveals fermion mass origin.

bb : Largest BR. Difficult to trigger, large background, The last major channel to be observed.

Rare decays ($\mu\mu$, Z γ , cc) : Small BR, studies as on-going.

STXS and differential cross sections

ATLAS-CONF-2018-018

kappa-framework

Relation to $k_{\rm i}$, example diagrams

Production	Loops	Interference	Effective modifier	Resolved modifier
$\sigma(\text{ggF})$	√	t-b	$\frac{\kappa_q^2}{\kappa_q^2}$	$1.04\kappa_t^2 + 0.002\kappa_b^2 - 0.04\kappa_t\kappa_b$
$\sigma(\text{VBF})$	_	_	-	$0.73 \kappa_W^2 + 0.27 \kappa_Z^2$
$\sigma(qq/qg \rightarrow ZH)$	-	-	-	κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	t-Z	$\kappa_{(ggZH)}$	$2.46 \kappa_Z^2 + 0.46 \kappa_t^2 - 1.90 \kappa_Z \kappa_t$
$\sigma(WH)$	-	-	-	κ_W^2
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2
$\sigma(tHW)$	-	t - W	-	$2.91 \kappa_t^2 + 2.31 \kappa_W^2 - 4.22 \kappa_t \kappa_W$
$\sigma(tHq)$	-	t - W	-	$2.63 \kappa_t^2 + 3.58 \kappa_W^2 - 5.21 \kappa_t \kappa_W$
$\sigma(bar{b}H)$	-	-	-	κ_b^2
Partial decay wid	th			
Γ^{bb}	_	_	_	κ_b^2
Γ^{WW}	_	-	-	κ_W^2
Γ^{gg}	\checkmark	t-b	κ_q^2	$1.11 \kappa_t^2 + 0.01 \kappa_b^2 - 0.12 \kappa_t \kappa_b$
$\Gamma^{\tau\tau}$	-	-	-	$\kappa_{ au}^2$
Γ^{ZZ}	-	-	-	κ_Z^2
Γ^{cc}	-	-	-	$\kappa_c^2 \ (= \kappa_t^2)$
$\Gamma^{\gamma\gamma}$	\checkmark	t - W	κ_{γ}^2	$1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t^2$
$\Gamma^{Z\gamma}$	\checkmark	t - W	$\kappa^2_{(Z\gamma)}$	$1.12\kappa_W^2 - 0.12\kappa_W\kappa_t$
Γ^{ss}	-	-	-	$\kappa_s^2 \ (= \kappa_b^2)$
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2
Total width $(B_{inv}$	$= B_{unde}$	$t_{t} = 0)$		
				$0.58 \kappa_b^2 + 0.22 \kappa_W^2$
				$+0.08 \kappa_g^2 + 0.06 \kappa_\tau^2$
Γ_H	\checkmark	-	κ_{H}^{2}	$+0.03 \kappa_Z^2 + 0.03 \kappa_c^2$
				$+0.0023 \kappa_{\gamma}^2 + 0.0015 \kappa_{(Z\gamma)}^2$
				$+0.0004 \kappa_s^2 + 0.00022 \kappa_\mu^2$

Constraint to new physics

Self coupling

Direct search : previous talk.

Indirect constraint from loop diagrams

Measured to be <u>ATL-PHYS-PUB-2019-009</u> $\kappa_{\lambda} = 4.0^{+4.3}_{-4.1} = 4.0^{+3.7}_{-3.6} (\text{stat.})^{+1.6}_{-1.5} (\text{exp.})^{+1.3}_{-0.9} (\text{sig. th.})^{+0.8}_{-0.9} (\text{bkg. th.})$

- ggF production (loop in ttH) is sensitive.
- Large theory uncertainty, assuming new physics only enter in the λ_{HHH} coupling.
- Results is compatible with direct search.

April.09.2019

Higgs mass combination

arXiv:1806.00242

-2In(A)