Search for supersymmetry with photons and missing transverse momentum using the CMS detector

Peter Major

Eötvös Loránd University, Budapest MTA-ELTE Lendület CMS Particle and Nuclear Physics Group

for the CMS collaboration

XVII International Workshop on Deep Inelastic Scattering, 8-12 Apr 2019, Torino (Italy)

Outline

Introduction to SUSY:

- Core idea
- Simplified models [arXiv:1301.2175]
- Experimental aspects

Results from 3 recent analysis + 1 combination:

- <u>SUS-17-011</u>: photons and missing transverse momentum strong production: T5gg, T6gg
- <u>SUS-17-012</u>: a photon, a lepton, and missing transverse momentum strong production: T5Wg, T6Wg,
 electroweak production: TChiWg
- CMS-PAS-SUS-18-005: Combined search with photons
- <u>SUS-18-002</u>: a photon, jets, b-jets, and missing transverse momentum strong production: T5ggggHG, T5bbbbZG, T5ttttZG, T6ttZG

Introduction and Motivation

FERMION	BOSON
G g x,°	G g H ⁰
X_1 X_2 X_3	Y h O A O
X, X	W H

What do we mean by SUSY?

- a spacetime symmetry
- relating fermions and bosons
- focus on the Minimal Supersymmetric Standard Model (MSSM)
- Huge parameter space → simplified models

Popular models of spontaneous symmetry breaking:

- Gauge Mediated Supersymmetry Breaking (GMSB) [arXiv:hep-ph/9801271]
- Or General Gauge Mediation (GGM) [arXiv:0801.3278]

R-parity and Lightest SUSY Particle

R-parity conservation assumption

- Baryon number conservation is not hardwired into MSSM
- R-parity is introduced to rule out undesirable couplings:


$$P_R = (-1)^{3(B-L)+2s} = egin{cases} +1 & ext{for SM particles} \ -1 & ext{for SUSY partners} \end{cases}$$

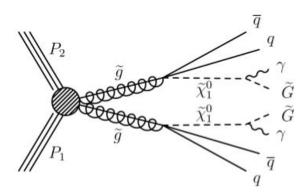
- → SUSY particles are produced in pairs
- → Lightest supersymmetric particles (LSP) are stable

In MSSM with GMSB (GGM) and R-parity conservation:

- LSP is always the gravitino (WIMP candidate)
- Next-to-LSP (NLSP) is typically a neutralino
 (and chargino), can be Bino, Wino, Higgsino like
- The NLSP usually assumed to decay as:

$$\tilde{\chi}_0 \to \tilde{G} + \gamma/Z/H \quad (\tilde{\chi}^{\pm} \to \tilde{G} + W^{\pm})$$

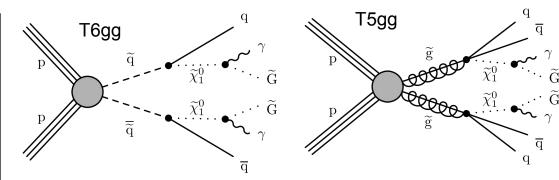
Characterizing SUSY Final States


How to find traces of GMSB MSSM using photons?

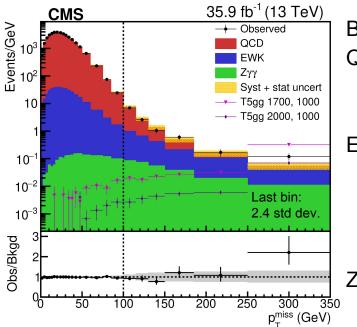
- Missing Transverse Energy (MET):
 - Momentum imbalance of all observed physics objects
 - Contributions:
 - MSSM signal: gravitinos
 - SM background: neutrinos, jet momentum mismeasurement
- Large Hadronic Activity:
 - Many reconstructed jets

$$\circ \quad H_T = \sum |p_T^{\rm jet}(i)|, \quad H_T^{\gamma} = |p_T^{\gamma}| + \sum |p_T^{\rm jet}(i)|$$

- Reconstructed Photon:
 - Large transverse energy
 - $\circ \quad S_T^{\gamma} = \sum_i E_T^{\gamma_i} + E_T^{miss}$
 - Invariant mass of MET and photon


$$M_T^2(\gamma, E_T^{miss}) = 2E_T^{miss}E_T^{\gamma}[1 - \cos \Delta \phi(\vec{p}_T^{miss}, \gamma)]$$

γ + MET in strong production sus-17-011



- Framework: GMSB
- Process:
 - Gluino pair production (T5gg)
 - Squark pair production (T6gg)
- Data used: 35.9 fb⁻¹

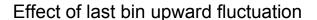
Event Selection:

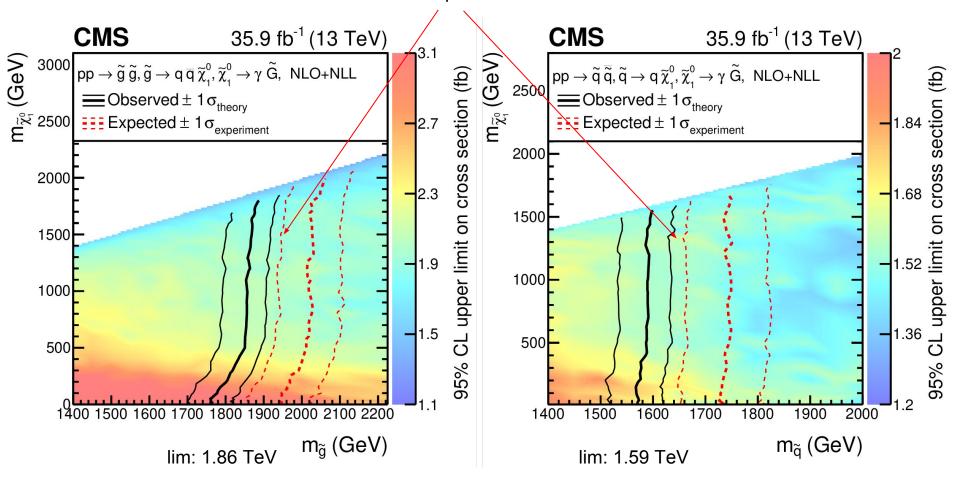
- Diphoton trigger
 - o p^y_T>30 (18) GeV, m_w>95 GeV
- Two photons
 - \circ p $^{\gamma}_{\tau}$ >40 GeV for both
 - o m_{vv}>105 GeV
- p^{miss}_T>100 GeV
- Light lepton veto:
 - \circ Muon: $p_{T}>25$ GeV, $|\eta|<2.4$
 - \circ Electron: p_{τ} >25 GeV, $|\eta|$ <2.5
- \rightarrow 6 signal search bins according to p^{miss}_{T}

Backgrounds: QCD multijet

- Data driven
- ABCD like

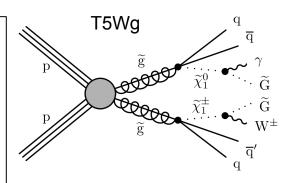
EWK

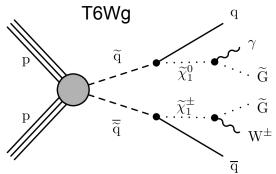

- Data driven
- From e→ γ
 misidentification
 rate


 $Z\!\!\to\nu\nu$

NLO simulation

γ + MET in strong production sus-17-011





- Framework: GGM
- Process:
 - Gluino pair production
 - Squark pair production
 - EWK production
- Data used: 35.9 fb⁻¹

Event Selection: two channels:

 $e\gamma$

Trigger:

diphoton trigger

 $p_{T}^{Y}>30 (18) \text{ GeV}, m_{vv}>95 \text{ GeV}$

 $\mu\gamma$

two $\mu\gamma$ triggers

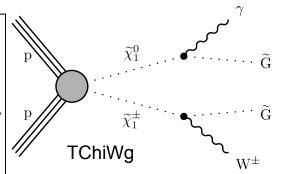
iso γ, p_{T}^{γ} >30 GeV, p_{T}^{μ} >17 GeV p_{T}^{γ} >38 GeV, p_{T}^{μ} >38 GeV

Photon:

isolated photon, $p_{\tau}^{\gamma}>35$ GeV, $|\eta|<1.44$, $\Delta\Phi(\ell,\gamma)>0.3$

Distance between leading p_{τ} photon and lepton $\Delta R > 0.8$

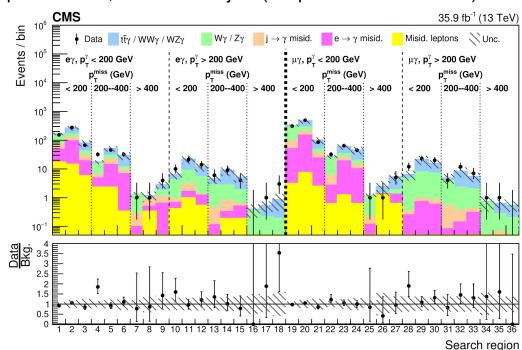
Lepton:


p^ℓ_¬>25 GeV

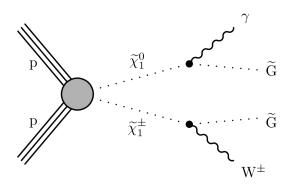
1.44<|n|<1.56 rejected

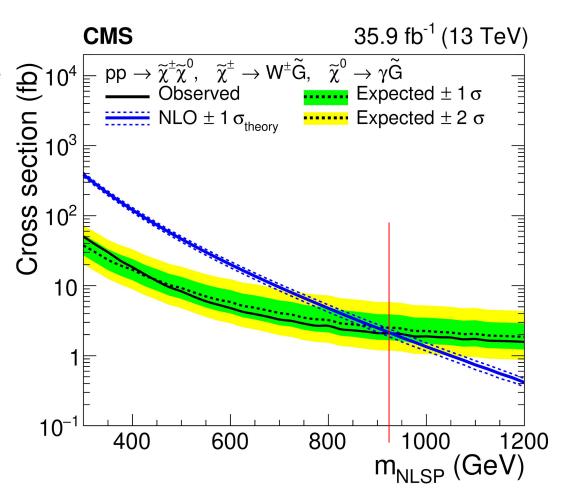
m_{ev}>100 GeV (Z veto)

MET:

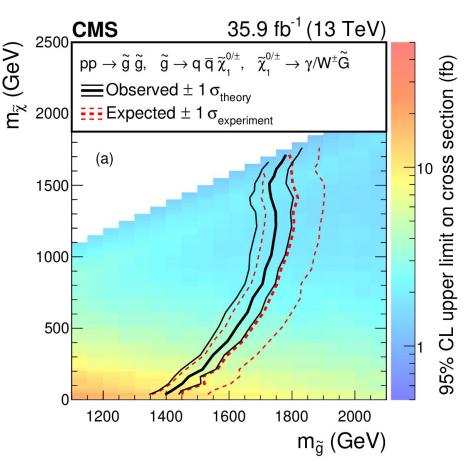

 p^{miss}_{τ} >120 GeV, M_{τ} > 100 GeV (W veto)

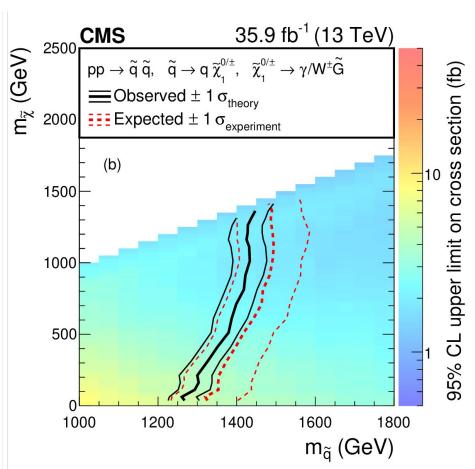
- → Signal region is binned in:
 - $p_{T}^{\gamma}, p_{T}^{miss}, H_{T}$
- \rightarrow 2x18 bins


- Misidentified photons (no genuine prompt photon)
 - Electron → Photon (data driven, rate from Z tag-and-probe)
 - Jet → Photon (semi data driven)
- EWK & misidentified leptons (lepton not from prompt W/Z decay or not lepton)
 - EWK: Wγ, Zγ (shape from simulation)
 - Rare EWK: diboson+y or tty (simulation)
 - Misidentified leptons: hadron decay, photon conv, misidentified jets (shape from non-iso \(\mathbb{CR} \)



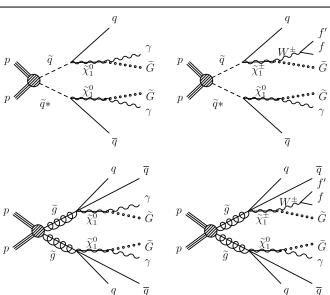
EWK Channel Results:

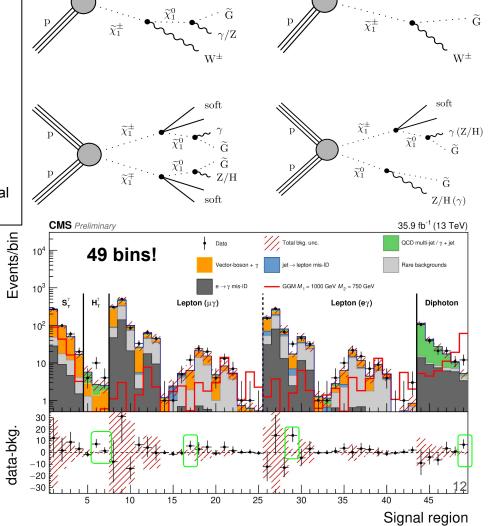

- Limit on NLSP mass in the TChiWg model
- 930 GeV (150 GeV improvement)
- Expected and observed exclusions are in good agreement



Strong Channel Results:

Up to 1.75 (1.43) TeV

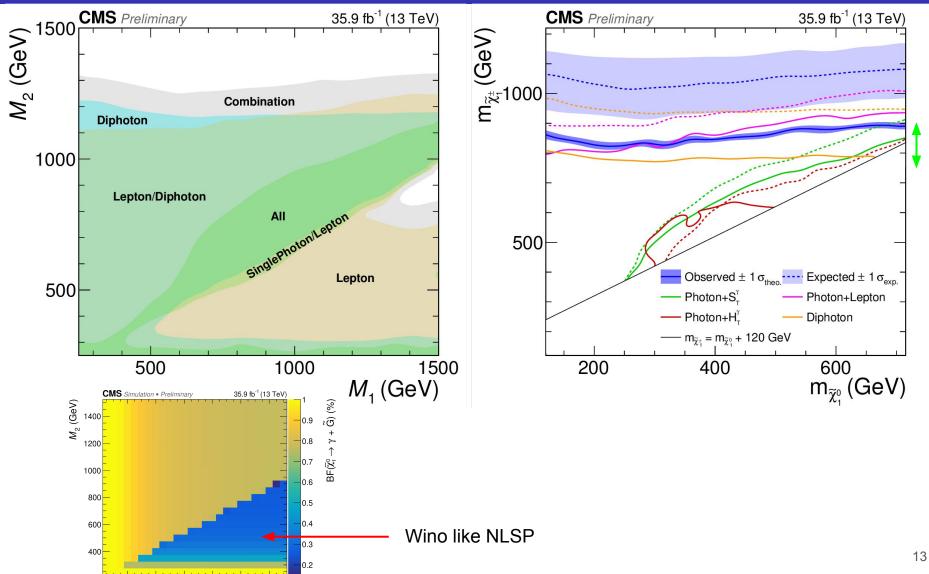



Framework: GGM

Data used: 35.9 fb⁻¹

• Four analyses combined:

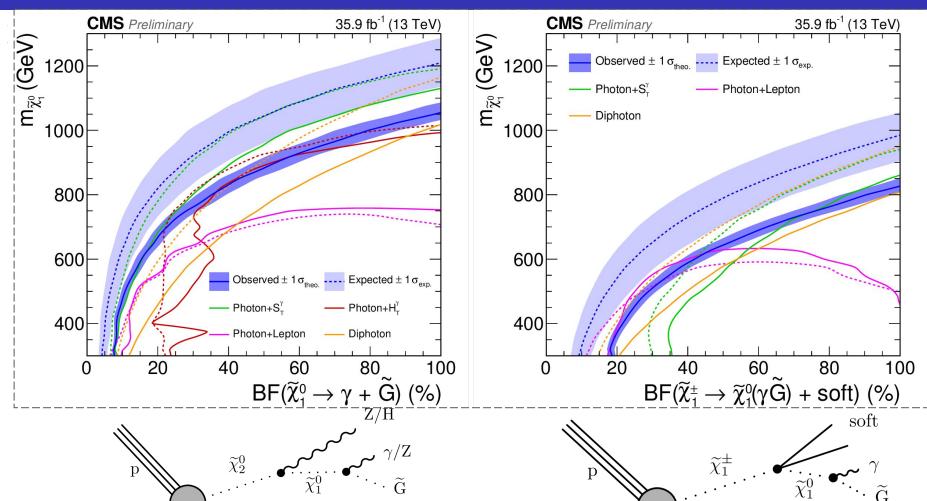
- o #1 and #2 in this talk
- Other 2 were presented at DIS2018:
 - <u>SUS-16-046</u>: electroweak SUSY productions with photons + MET
 - <u>SUS-16-047</u>: strong SUSY productions with photons + MET + large transverse hadronic activity
- Overlaps removed in an optimized way using additional vetoes

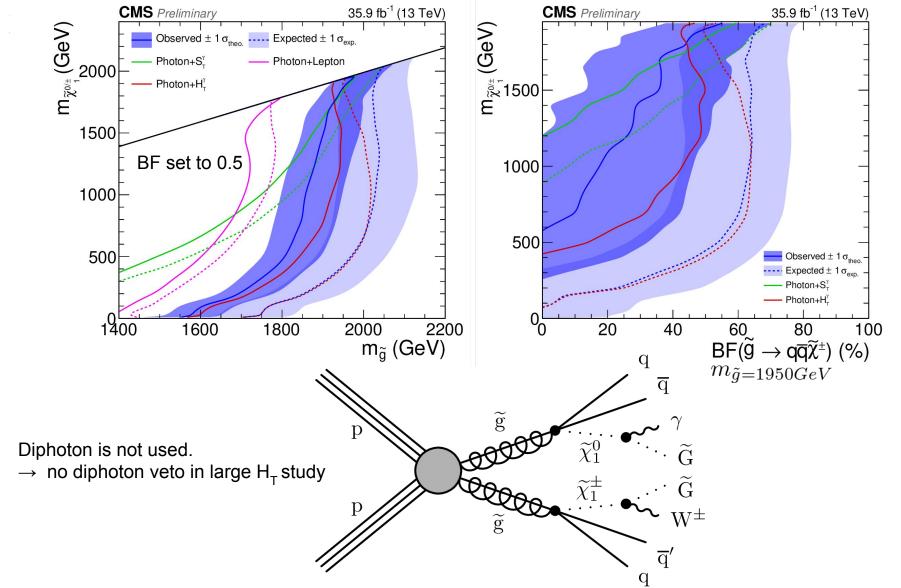

600

800

1000

1200 1400 $M_1(GeV)$




 $\tilde{\chi}_1^{\pm}$

soft

γ + MET + (b-)jets in strong production

SUS-18-003

- Framework: GMSB
- Process:
 - o Gluino pair production
 - Stop pair production
- Data used: 35.9 fb⁻¹

Event Selection:

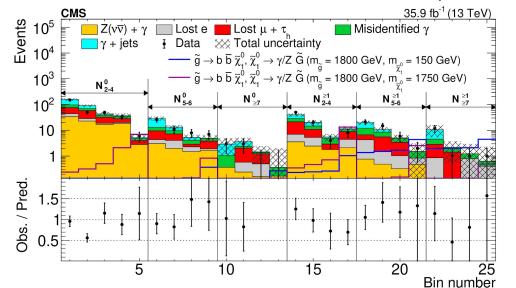
- Photon trigger
 - \circ p $^{\gamma}_{\tau}$ >90 GeV if H $^{\gamma}_{\tau}$ >600 GeV
- Photon:
 - \circ p $^{\text{Y}}_{\text{T}}$ >100 GeV & H $^{\text{Y}}_{\text{T}}$ >800 GeV
 - \circ Or p $^{V}_{\tau}$ >190 GeV & H $^{V}_{\tau}$ >500 GeV
- MET:
 - o p^{miss}_T>100 GeV
- Jets:
 - \circ N_{jets}>2 and $\Delta \phi_{\text{jet,MET}}$ >0.3
- Vetos:
 - Electrons
 - Muons
 - Charged hadron tracks

Backgrounds:

Lost ℓ or hadronic τ decay

- 1ℓ CR, TF ← MC
- τ from BF

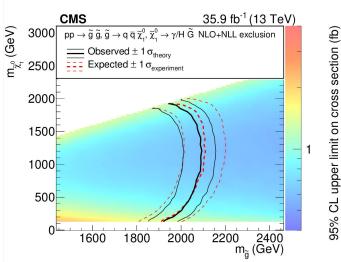
 $W \rightarrow e \nu$ and $e \rightarrow \gamma$

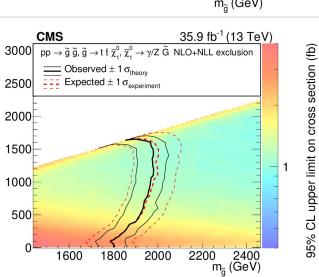

• 1e, 0 γ CR, TF ← MC

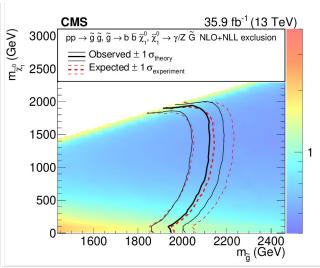
 $|Z\gamma \rightarrow \nu \nu \rangle$

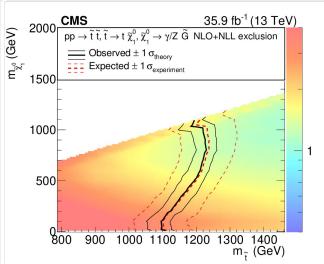
- Shape from MC
- Normalization: $Z(\ell^+\ell^-)$

QCD multijet


- $\Delta \phi_{\text{iet,MET}} < 0.3 \text{ CR}$
- MET shape from MC




γ + MET + (b-)jets in strong production



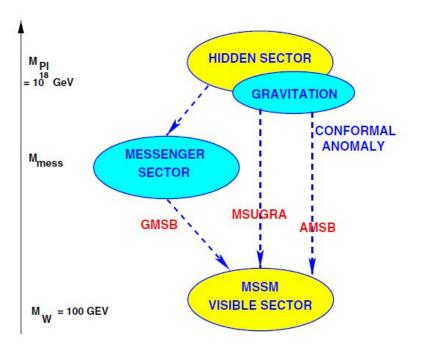
- Good agreement between expected and observed exclusion
- Limits tend to $m_{\tilde{\chi}_0}$ degrade at extreme as expected due to less jets or less MET in these regions

95% CL upper limit on cross section (fb)

95% CL upper limit on cross section (fb)

Summary

- Searches address a large area of the GMSB (GGM) MSSM parameter space
- Results consistent with SM, they provide limits on SUSY models, particle masses
- Efforts are made to combine the different results.
- No signs of SUSY yet but it could still be hiding at many places
- Only ~5% of the full pp integrated luminosity recorded yet


BACKUP

SUSY Breaking

Why do we see no traces of SUSY at low energy?

- Sleptons should be easy to see unless **SUSY** is broken!
- Several symmetry breaking mechanisms proposed
 - Eg: Gauge Mediated Supersymmetry Breaking (GMSB) [arXiv:hep-ph/9801271]
 - o Or General Gauge Mediation (GGM) [arXiv:0801.3278]

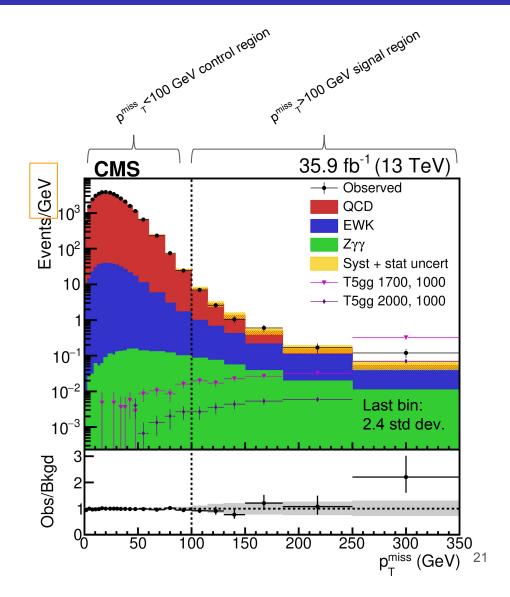
γ + MET in strong production sus-17-011

Background estimation:

- QCD multijet background
 - o Fully data driven
 - o p^{miss}_⊤<100 GeV control region
 - Double fake photon control region
 - ABCD like extrapolation
 - Scaling factor runs as exp. as a function of $p^{miss}_{_{\pm}}$

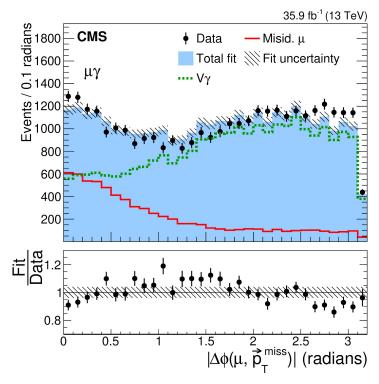
EWK background

- Fully data driven
- Primary contribution: Wγ, W+jets
- o $f_{e \to \gamma}$ misidentification rate from m_z^{ee} and $m_z^{e\gamma}$

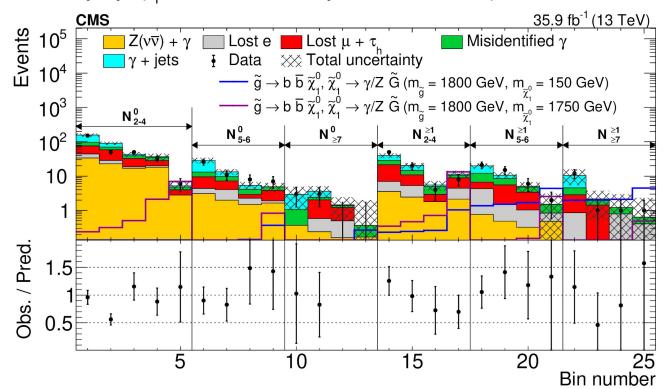

$$f_{e \rightarrow v} = N_{ev} / (2N_{ee} + N_{ev})$$

Scaling the eγ control sample by

$$f_{e\gamma \to \gamma\gamma} = f_{e \to \gamma} / (1 - f_{e \to \gamma})$$


Z→ vv background

- Modeled using NLO simulation
- Uncertainty of 50% is assigned to cover all systematics


- Misidentified photons (no genuine prompt photon)
 - Electron → Photon misidentification
 - Jet → Photon misidentification
- Dominant: EWK & misidentified leptons (lepton not from prompt W/Z decay or not lepton)
 - Misidentified leptons: non-iso lepton from hadron decay, photon conv, misidentified jets
 - Estimated by modifying the lepton definition → control region
 - Inverting the isolation requirement
 - For e the track matching and cluster shape are also inverted → cleaner hadronic signal
 - ullet $|\Delta\phi(l,p_T^{miss})|$ and ${\bf p^{miss}}_{\rm T}$ shape of this background are taken from the CR
 - EWK: main SM contributors are Wγ and Zγ
 - $\circ |\Delta\phi(l,p_T^{miss})|$ distribution from Wy and Zy is determined from simulation
 - Overall normalization from 2 component template fit
 - Performed in 40 < p^{miss}_T < 70 GeV after removing the misidentified photon and double vectorboson contributions
 - Results in a scale and a transfer factor

γ + MET + (b-)jets in strong production

- Four main SM backgrounds:
 - ρ High- ρ_{τ} γ+ W or Z decaying leptonically \rightarrow lost lepton or hadronic τ decay
 - \circ W \rightarrow eν and the e is identified as a γ
 - \circ $Z\gamma \rightarrow \nu\nu\gamma$
 - QCD multijet: jet p_⊤ mismeasurement + jet misidentified as γ

γ + MET + (b-)jets in strong production

- Four main SM backgrounds:
 - High-p_τ γ+ W or Z decaying leptonically \rightarrow lost lepton or hadronic τ decay
 - \circ W \rightarrow e ν and the e is identified as a γ
 - \circ $Z\gamma \rightarrow \nu\nu\gamma$
 - QCD multijet: jet p_T mismeasurement + jet misidentified as γ
- Example: Zγ → ννγ
 - Shape of $p^{miss}_{T}(N_{iets})$ for $Z\gamma \rightarrow \nu\nu\gamma$ is modelled in simulation
 - Normalization is measured in Zγ → ℓ⁺ℓ⁻γ data using
 - Branching ratios & reco. efficiencies considered
 - Exactly 2 oppositely charged same flavour leptons
 - p_⊤>100 GeV
 - 80 GeV< m_n<100 GeV
 - o Contamination from the in the $Z\gamma \to \ell^+\ell^-\gamma$ control region is estimated using a different flavoured control region