Physics Potential of The ATLAS Experiment at The High Luminosity LHC

Ben Smart,

on behalf of the ATLAS Collaboration, at Deep Inelastic Scattering 2019, Tornio

 In the future, to improve our measurements and searches, the LHC and ATLAS will be upgraded:

LHC / HL-LHC Plan

- The LHC will become the High-Luminosity-LHC, to produce 3000 fb⁻¹ of integrated luminosity by 2037.
 - Higher Energy → benefits searches for new particles.
 - Higher integrated luminosity → benefits precision measurements and studies of rare processes.
- Instantaneous luminosity x5-7
 - → Particle densities x5-7
- Integrated luminosity x10
 - → Radiation damage x10

ATLAS Detector Upgrades For HL-LHC

Triggers

L0 (Calo+Muon+ITk): 1 MHz

• L1: 400 kHz

HLT: 10 kHz

Calorimeters

 New readout electronics allowing 1 MHz L0 trigger rate

Muon systems

- New trigger and readout electronics
- Additional inner barrel layer for better acceptance

High Granularity Timing Detector

- Silicon pixel sensors
- $2.7 < |\eta| < 4.2$ acceptance
- 30 ps timing resolution

Inner Tracker (ITk)

• New all-Silicon tracker with $|\eta|$ < 4.0 acceptance

 ATLAS prospect analyses for HL-LHC are performed in one of three ways, with scaled uncertainties, (and most theory uncertainties halved):

Full-simulation

Full Geant4 detector simulation used.

Computationally expensive.

Used for detector performance studies (tracking, b-tagging, etc.)

Smeared truth-level analysis

Event generator output is smeared to emulate detector effects.

Smearing functions are derived from full simulation.

Less computationally expensive than full simulation.

Scaled Run 2 results

Run 2 analyses scaled to 14 TeV.

 Latest HL-LHC results available in five HL-LHC 'Yellow Report' chapters: Standard Model, Higgs, SUSY+Exotics, Flavour Physics, Heavy Ions, and a Summary. Click on the orange text for web-links. **Standard Model Prospects**

Vector Boson Scattering

- Currently, ATLAS has observed WW and WZ VBS processes.
- It is still not known whether the Higgs boson completely preserves unitarity of the VV longitudinal scattering amplitude at all energies.

- Smeared truth-level analyses are used.
- At the HL-LHC, we expect 5σ observations of all VBS processes, with good precision.

Process	$W^{\pm}W^{\pm}$	WZ	WV	ZZ
Final state	$\ell^{\pm}\ell^{\pm}jj$	3ℓjj	ℓ jjjj	4ℓjj
Precision	6%	6%	6.5%	10-40%
Significance	$> 5\sigma$	$> 5\sigma$	$> 5\sigma$	$> 5\sigma$

(Yellow Report HL-LHC Summary) (CERN-LPCC-2018-03)

- Current ATLAS W mass accuracy is 19 MeV.
- With the HL-LHC, this is hoped to be reduced to 12 MeV.
- This is assuming current PDF uncertainties.
- Low pile up, <µ> = 2 runs,
 of interest for W mass
 measurement, would collect
 the data giving the HL-LHC
 results shown here in the plot
 in one week.
- The increased acceptance
 of the ATLAS tracker up to
 |η| < 4.0 benefits the study
 of W→Iv decays,
 as shown in the plot.

HE-LHC results - outwith the scope of this talk

(CERN-LPCC-2018-03)

- With HL-LHC data, PDFs can be better constrained.
- Forward-W data available due to the increased acceptance of ATLAS will be particularly beneficial for this.

Experimental systematic uncertainties will affect the constraining of PDFs.
 Scenario A = optimistic reduction of systematic uncertainties.
 Scenario C = conservative reduction of systematic uncertainties.

Physics Gain Of Increased Angular Acceptance ATLAS At HL-LHC

- Increased acceptance of ITk, Muon systems, plus HGTD, benefits pile-up rejection, and thus robustness against pile-up effects, for all analyses.
- Analyses with forward physics especially benefit from from increased angular acceptance:

Measurement precision

Physics channel	η <2.7	η <4.0	
Same-sign WW scattering	4.5%	4.0%	(ATL-PHYS-PUB-2017-023)
VBF H→WW*	22%	12%	(ATLAS-TDR-025)

Higgs Prospects

Higgs Production At The HL-LHC

- The HL-LHC will be ideal for further study of the Higgs boson.
- HL-LHC will have more than 10 times the integrated luminosity of the LHC.
- Thus more than 10 times the number of Higgs bosons available to study at the HL-LHC compared to the LHC.
- ~100k Higgs to di-Higgs decays.

- Will allow precision Higgs measurements on the order of a few percent.
- Can further explore Higgs self-coupling through Higgs to di-Higgs decays.
- Increased sensitivity to rare decays and new physics.

Higgs Couplings

- Latest ATLAS+CMS results are given in the 'κ-framework'.
- This is a set of k factors that linearly modify the coupling of the Higgs boson to SM elementary particles.
- $\kappa_i = 1$, for all i, is the SM.
- Thus if any κ is not equal to 1, we will have new physics.

• κ_λ corresponds to the Higgs self-coupling.

(CERN-LPCC-2018-04)

Latest ATLAS Run 2 results are shown in green (ATLAS-CONF-2019-005)

- The Higgs self-coupling is a crucial test of the Standard Model and electroweak symmetry breaking.
- It is accessible through Higgs to di-higgs decays.
- Different final states offer balance of cross-section v. clean identification.

bbbb	Scaled Run 2 analysis	Largest BR, Large bkg, Challenging identification
bbττ	Scaled Run 2 analysis	Large BR, Small BG, Reasonable identification
bbyy	Smeared truth-level analysis	Small BR, Clean identification + triggering

Higgs Self-Coupling

- Setting limits on the Higgs self-coupling modifying factor κ_{λ} allows to test the SM and for BSM physics, $(\kappa_{\lambda} = 1 \text{ in the SM}).$
- Exclusion limits for different κ_{λ} values, assuming κ_{λ} = 1, are shown on the right.

- As κ_{λ} increases, channel cross-sections increase, but acceptances decrease (analyses are optimised for κ_{λ} = 1), thus giving shape of curves above.
- Exclusion limits will improve with analyses optimised for different κ_{λ} values, but this is considerable work, hence is not prioritised at present.

- Evidence and observation of Higgs to di-Higgs decays depends on true value of κ_{λ} . ATLAS reaches 3.0 σ for κ_{λ} = 1.
- Combination of all channels required. Future improvements in analysis techniques and systematics will be of great benefit.
- Combined ATLAS+CMS Standard Model H→HH significance: 4.0 σ
 Full HL-HLC dataset required to measure Higgs self-coupling.

Beyond The Standard Model Prospects

SUSY Mass-Scale Reach

• 20-50% increase on current results in most cases.

Exotics Mass-Scale Reach

Dark Matter Searches

- Dark matter candidates postulated by, for example, SUSY.
- Also possible to produce 'simplified' DM models with fewer parameters.
 - Say, a mediator which decays to a DM particle and a SM particle, giving 4 parameters: m_{med} , m_{DM} , med-SM and med-DM couplings.

Spin-0 mediator

- 'Flagship' dark matter search: high- p_{τ} jet + MET.
- With ATLAS at HL-LHC, discovery (exclusion) of m_Z up to 2.25 (2.65) TeV.
- Main uncertainties come from MC modelling, and jet/MET scale and resolution.

W' And Z' Searches

• W' \rightarrow Iv searches (I = e, μ)

- Current Run 2 exclusion limit is 5.6 TeV.
- With HL-LHC the limits become:

Decay	Exclusion [TeV]	Discovery [TeV]
$W'_{\rm SSM} \to e\nu$	7.6	7.5
$W'_{\rm SSM} \to \mu\nu$	7.3	7.1
$W'_{ m SSM} o \ell u$	7.9	7.7

(CERN-LPCC-2018-05)

- $Z' \rightarrow II$ searches (I = e,µ)
 - Current (139 fb⁻¹) limits shown below left.
 - HL-LHC limits shown below right.

	Lower limits on m_z			$_{\rm Z'}$ [TeV]			
Model	e	e	,	μ	ℓ	$\ell\ell$	
	obs	\exp	obs	\exp	obs	\exp	_
Z'_{ψ}	4.1	4.3	4.0	4.0	4.5	4.5	_
Z_χ'	4.6	4.6	4.2	4.2	4.8	4.8	
$Z'_{ m SSM}$	4.9	4.9	4.5	4.5	5.1	5.1	_

(CERN-EP-2019-030)

	$\sqrt{s} = 14 \text{ TeV}$		
Decay	Exclusion	Discovery	
$Z'_{\rm SSM} \to ee$	6.4 TeV	$6.3~{ m TeV}$	
$Z'_{\rm SSM} \to \mu\mu$	$5.8~{ m TeV}$	$5.7~{ m TeV}$	
$Z'_{ ext{SSM}} o \ell\ell$	$6.5~{ m TeV}$	6.4 TeV	
$Z'_{\psi} \to ee$	5.7 TeV	$5.6 \mathrm{TeV}$	
$Z'_{\psi} o \mu \mu$	5.2 TeV	$5.0~{ m TeV}$	
$Z'_\psi o \ell \ell$	5.8 TeV	$5.7~{ m TeV}$	

(CERN-LPCC-2018-05)

(CERN-LPCC-2018-05)

(CERN-LPCC-2018-05)

ATLAS Prospects – Long Lived Particles

- ITk design allows for extended reach of long lived particle searches.
- More hits-on-track, with better hit-position resolution, of the ITk allows tracks originating from verticies at a larger radius to still be reconstructed, compared to the Run 2 Inner Detector.

(CERN-LPCC-2018-05)

Summary

- In the future, the LHC and ATLAS will be upgraded:
 - The LHC will become the High Luminosity LHC, with $<\mu>=200$ at \sqrt{s} = 14 TeV, collecting 3000 fb⁻¹ in 10 years.
 - ATLAS will receive upgrades to its trigger, muon, and calorimeter systems, as well as a new tracking detector.
- All these developments will benefit searches for new particles, precision measurements, and studies of rare processes, with the ATLAS Detector.
- The latest estimations of physics potential at the HL-LHC are given in the input to European Strategy CERN 'Yellow Report'.
 - Results are promising and very competitive.
 - But let's push to do even better!
 - 5 σ SM H \rightarrow HH significance?

Backup

ATLAS Higgs Prospects – Di-Higgs, HH → bbbb

- As κ_{λ} increases, channel cross-section increases, but acceptance decreases (analysis is optimised for κ_{λ} = 1), thus giving shape of curves on the right.
- With current systematic uncertainties, significance: 0.62 σ
- With zero systematic uncertainties, significance: 1.4 σ

(ATL-PHYS-PUB-2018-053)

ATLAS Higgs Prospects – Di-Higgs, HH $\rightarrow \gamma \gamma$ bb

- Clean $\gamma\gamma$ peak.
- Small cross section.
- Reducible background is ccγγ, jjγγ, bbjγ, ccjγ, bbjj.
 Other background is Z(bb)γγ, tt̄, tt̄γ.
- Limits on κ_{λ} not dominated by systematic uncertainties.

(ATL-PHYS-PUB-2018-053)

ATLAS Higgs Prospects – Di-Higgs, HH → TTbb

- Run 2 analysis is extrapolated to HL-LHC.
- τ_{lep}τ_{had} and τ_{had}τ_{had} decay channels are considered.
- The κ_{λ} exclusion interval at 95% CL is, with current systematic uncertainties: $1.0 < \kappa_{\lambda} < 7.0$ with no systematic uncertainties: $1.4 < \kappa_{\lambda} < 6.3$

(ATL-PHYS-PUB-2018-053)

• Exclusion limits on Higgs self-coupling κ_{λ} when combining all HH channels and HL-LHC data from ATLAS and CMS.

- Combined Standard Model H→HH significance: 4 σ
 Full HL-HLC dataset required to measure Higgs self-coupling.
- The Higgs boson self-coupling can be constrained to $-0.1 \le \lambda_{\rm HHH}/\lambda {\rm SM}_{\rm HHH} \le 2.7 \ \cup \ 5.5 \le \lambda_{\rm HHH}/\lambda {\rm SM}_{\rm HHH} \le 6.9,$ at 95% CL.