LINEARLY POLARIZED GLUONS TMDPDFS AT NNLO IN QCD

Sergio Leal Gómez (UCM)
In collaboration with: Daniel Gutiérrez-Reyes (UCM), Ignazio Scimemi (UCM) and Alexey Vladimirov (Universität Regensburg)

DIS 2019 TORINO
OUTLINE

1. Polarized gluons

2. Factorization Theorems and TMD

3. Summary
Higgs production

Gluons trigger most of the scattering processes at high energies.

When two linearly polarized gluons, one from each hadron, participate in the scattering could give a term independent of the azimuthal angle.

In this way they can contribute to production of scalar or pseudoscalar particle.

Linearly polarized gluon leads to a modulation of the Higgs transverse momentum.

The contribution of linearly polarized gluons is 1%.

\[
\frac{d\sigma^{H(A)}}{d^3q} \sim \left(f_1^g \otimes f_1^g \pm w_H \otimes h_{1\perp}^g \otimes h_{1\perp}^g \right)
\]

For two photons decay we have

\[
\frac{d\sigma^{gg}}{dq d\cos \theta} = F_1 (\theta, Q = \sqrt{s}) \left(f_1^g \otimes f_1^g \right) + F_2 (\theta, Q = \sqrt{s}) \left(w_H \otimes h_{1\perp}^g \otimes h_{1\perp}^g \right)
\]

when \(Q = m_H \) we have \(F_1 \sim \pm F_2 \)
Linearly polarized gluons can also generate a $\cos 2\phi (\cos 4\phi)$ modulation in azimuthal angle in gluon-fusion scattering where a single (double) gluon-helicity flips occur.

For TMD factorization to apply, di-QQ production should result from a Single Parton Scattering and Final State Interaction should be negligible, which is satisfy when quarkonia are produced via CST.

In the limit $M_Q << M_{QQ}$ we have $F_1 \sim F_4$.

$\langle \cos 4\phi \rangle$ gets close to 50% in the P_{QQ_T} region probed by CMS and ATLAS.

Cross section

$$\frac{d\sigma}{dM_{QQ}dY_{QQ}dP_{QQ_T}^2 d\Omega} \sim F_1 (f^g_1 \otimes f^g_1) + F_2 \left(w_H \otimes h_{1}^{\perp g} \otimes h_{1}^{\perp g} \right) +$$

$$\cos 2\phi \left(F_3 \left(w_3 \otimes f^g_1 \otimes h_{1}^{\perp g} \right) + F'_3 \left(w'_3 \otimes h_{1}^{\perp g} \otimes f^g_1 \right) \right) +$$

$$\cos 4\phi F_4 \left(w_4 \otimes h_{1}^{\perp g} \otimes h_{1}^{\perp g} \right)$$

$\langle \cos n\phi \rangle$ is defined as

$$\langle \cos n\phi \rangle = \frac{\int d\phi \cos n\phi \frac{d\sigma}{dM_{QQ}dY_{QQ}dP_{QQ_T}^2 d\Omega}}{\int d\phi \frac{d\sigma}{dM_{QQ}dY_{QQ}dP_{QQ_T}^2 d\Omega}}$$

for $n = 2, 4$.

\[(UCM) \]
Example: Drell-Yan

The cross section can be factorized as the product of TMDPDFs

The hard component hard is process dependent and can be calculated by perturbation theory.

Differential cross section for a Drell-Yan process

\[
\frac{d\sigma}{dQ^2dydq_T^2} = \frac{4\pi}{3N_c} \frac{P}{sQ^2} \sum_{GG'} z_{GG'}^{l'l'}(q) \sum_{ff'} z_{FF'}^{GG'} \left| C_V(q, \mu) \right|^2
\]

\[
\int \frac{d^2\vec{b}}{4\pi} e^{i\vec{b} \cdot \vec{q}} F_f \left(x_1, \vec{b}, \mu, \zeta \right) F_{f'} \left(x_2, \vec{b}, \mu, \zeta \right) + \mathcal{O} \left(\frac{q_T}{Q} \right)
\]
Factorization Theorems and TMDs

Hadronic part of Drell-Yan process

\[d\sigma \sim \int d^4 ye^{-i q \cdot y} \langle h_1 (p, s_1) h_2 (\bar{p}, s_2) | J^{\dagger \mu} (y) J^{\nu} (0) | h_1 (p, s_1) h_2 (\bar{p}, s_2) \rangle \]

Factorized hadronic part

\[d\sigma \sim \int db_T e^{-i q T b_T} | C_v (Q^2) |^2 \Phi_f \leftarrow h_1 (x_1, b_T) \Phi_{f, \leftarrow h_2} (x_2, b_T) S (b_T) \]

In this form, we have a double counting of the soft modes. We need to subtract them from the TMDPDFs.
Factorization Theorems and TMDs

Factorized hadronic part

\[d\sigma \sim \int d b_T e^{-i q_T b_T} |C_V(Q^2)|^2 \frac{\Phi_{f \leftarrow h_1}(x_1, b_T)}{Z_{\text{zero-bin}}} \frac{\Phi_{f \leftarrow h_2}(x_2, b_T)}{Z_{\text{zero-bin}}} S(b_T) \]

The \(Z_{\text{zero-bin}} \) depends of the regularization scheme.

Soft function

\[S(b_T) = \frac{Tr_c}{N_c} \langle 0 | T \left[S_n^{T \dagger} \bar{S}_n^{T} \right] (0^+, 0^-, b_T) \bar{T} \left[\bar{S}_n^{T \dagger} S_n^{T} \right] (0) | 0 \rangle \]

Soft function is a colourless object. arXiv: 1511.05590
We use their definition in impact parameter space. arXiv: 1702.06558

Gluon TMD

\[
\phi_{\mu\nu}(x, \vec{b}) = \frac{1}{xp^+} \int \frac{d\lambda}{2\pi} e^{-ixp^+\lambda} F_{+\mu}(\lambda n + b_T) \mathcal{W}(\lambda, b_T) F_{+\nu}(0)
\]

Quark TMD

\[
\phi_{ij}(x, \vec{b}) = \int \frac{d\lambda}{2\pi} e^{-ixp^+\lambda} \bar{q}_i(\lambda n + b_T) \mathcal{W}(\lambda, b_T) q_j(0)
\]

\[
\mathcal{W}(\lambda, b_T) = \tilde{\mathcal{W}}_n^T(\lambda n + b_T) \sum_X |X\rangle\langle X| \tilde{\mathcal{W}}_n^T(0)
\]

Wilson lines make the operator gauge invariant.
δ-scheme and Soft function

Soft Wilson Lines

\[
\tilde{S}_n(y) = P \exp \left[-ig \int_0^\infty d\sigma \tilde{n} \cdot A(y + \tilde{n}\sigma) \right] \rightarrow \tilde{S}_n(y) = P \exp \left[-ig \int_0^\infty d\sigma \tilde{n} \cdot A(y + \tilde{n}\sigma) e^{-\delta^+ \sigma} \right]
\]

\[
S_n(y) = P \exp \left[ig \int_{-\infty}^0 d\sigma n \cdot A(y + n\sigma) \right] \rightarrow S_n(y) = P \exp \left[ig \int_{-\infty}^0 d\sigma n \cdot A(y + n\sigma) e^{+\delta^- \sigma} \right]
\]

Wilson Lines

\[
\tilde{W}_n(y) = P \exp \left[-ig \int_0^\infty d\sigma \tilde{n} \cdot A(y + \tilde{n}\sigma) \right] \rightarrow \tilde{S}_n(y) = P \exp \left[-ig \int_0^\infty d\sigma \tilde{n} \cdot A(y + \tilde{n}\sigma) e^{-\delta^+ \sigma x} \right]
\]

\[
W_n(y) = P \exp \left[ig \int_{-\infty}^0 d\sigma n \cdot A(y + n\sigma) \right] \rightarrow S_n(y) = P \exp \left[ig \int_{-\infty}^0 d\sigma n \cdot A(y + n\sigma) e^{+\delta^- \sigma x} \right]
\]

Only the limit \(\delta \rightarrow 0 \) is relevant (and gauge invariant). The different definition of the regularization in the \(W \) and \(S \) Wilson lines solve the zero-bin problem.
With the δ-scheme we get

$$Z_{\text{zero-bin}} = S(b_T)$$

Factorized and regularizes hadronic part

$$d\sigma \sim \int db_T e^{-iq_T b_T} \left| C_v (Q^2, \mu) \right|^2 \frac{\Phi_{f \leftarrow h_1} (x_1, b_T, \epsilon, \delta; \mu, \zeta)}{\sqrt{S (b_T, \epsilon, \delta; \mu, \zeta)}} \frac{\Phi_{f' \leftarrow h_2} (x_2, b_T, \epsilon, \delta; \mu, \zeta)}{\sqrt{S (b_T, \epsilon, \delta; \mu, \zeta)}}$$

- The term $\frac{1}{\sqrt{S (b_T, \epsilon, \delta; \mu, \zeta)}}$ regularized the rapidity divergences.
- We have a new scale ζ associated with rapidity divergences.
The cross section for Drell-Yan and SIDIS process can be written as the product of TMDs. This allows to manage in a consistent way the *rapidity* divergences.

We have a nonperturbative well-defined TMD. We provide a perturbative calculation of TMD to extract its matching coefficient with unintegrated distribution in the asymptotic large-q_T limit without any reference to particular scattering process.
Polarized TMDs and small-b OPE

Decomposition over Lorentz invariants

$$
\Phi_{g \leftarrow h}^{\mu\nu}(x, \vec{b}) = \langle h \big| \Phi^{\mu\nu}(x, \vec{b}) \big| h \rangle \\
= \frac{1}{2} \left(-g_T^{\mu\nu} f_1^g - i\epsilon_T^{\mu\nu} S_L g_{1L}^g + 2 h_{1L}^g \left(\frac{g_T^{\mu\nu}}{2} + \frac{b^\mu b^\nu}{\vec{b}^2} \right) + \cdots \right)
$$

- f_1^g TMDPDFs of unpolarized gluons up to NNLO. arXiv:1604.07869
- g_{1L}^g TMDPDFs of helicity gluons up to NLO. arXiv:1502.05354, arXiv: 1702.06558
- h_{1L}^g TMDPDFs of linearly polarized gluons.

OPE a twist-2

$$
\Phi_{\mu\nu}(x, \vec{b}) = \left[\left(C_{g \leftarrow q}(x, \vec{b}) \right)_{\mu\nu}^{ab} \otimes \Phi_{ab}(x) \right] + \left[\left(C_{g \leftarrow g}(x, \vec{b}) \right)_{\mu\nu}^{\alpha\beta} \otimes \Phi_{\alpha\beta}(x) \right] + \cdots
$$

Unpolarized PDFs

$$
\phi_{q \leftarrow h, ij} = \langle h \big| \phi_{ij}(x) \big| h \rangle = \frac{1}{2} f_q(x) \gamma_{ij} \cdots
$$
$$
\phi_{g \leftarrow h, \mu\nu}(x) = \langle h \big| \phi_{\mu\nu} \big| h \rangle = -\frac{1}{2} g_T^{\mu\nu} f_g(x) + \cdots
$$
Regularized TMD

Gluon TMD

\[
\Gamma^{\mu \nu} \Phi^\text{ren}_{\mu \nu} = Z_g (\epsilon; \mu, \zeta) \ Z_3 (\epsilon; \mu)^{-1} \ S (b_T, \epsilon, \delta; \mu, \zeta)^{-1/2} \ \Gamma^{\mu \nu} \Phi^\text{bare}_{\mu \nu}
\]

Coefficient C

\[
C^{[2]}_{f \rightarrow f'} = \phi^{[2]} - \sum_r C^{[1]}_{f \rightarrow r} \otimes f^{[1]}_{r \leftarrow f'} - f^{[2]}_{f \leftarrow f'}
\]

Lorentz structures allow up to twist-2

\[
\Gamma^g = \{ g_T^{\mu \nu}, \epsilon_T^{\mu \nu}, b_T^\mu b_T^\nu / b_T^2 \}
\]
Matching coefficient

Coefficient $C_{g \leftarrow g}^{[2]}$

$$C_{g \leftarrow g}^{[2]}(x, L_\mu) = C_A^2 D_{C_A}^{[2]}(x, L_\mu) + C_A TrN_f D_{C_A TrN_f}^{[2]}(x, L_\mu) + C_F TrN_f D_{C_F TrN_f}^{[2]}(x, L_\mu)$$

with $L_x = \log \left(\frac{X^2 b_T^2}{4 e^{-2\gamma_E}} \right)$. The functions $D_i(x, L_\mu)$ can be written as

$$D_i^{[n]}(x, L_\mu) = \sum_{k=0}^{2n} D_i^{[n,k]}(x) L_\mu^k$$

where $i = C_A TrN_f, C_A^2, C_F TrN_f$
Matching coefficients

Coefficient $C_A \, TrN_f$

\[
D^{[2,0]}_{C_A \, TrN_f} = - \frac{8 \left(-17 + 16x^3 + x^3 - 6x\log(x) \right)}{9x}
\]

Coefficient $C_F \, TrN_f$

\[
D^{[2,0]}_{C_F \, TrN_f} = \frac{8 \left(2(-1 + x)^3 + x\log(x)^2 \right)}{x}
\]
Linearly polarized gluons have phenomenological interest and still there is a lack of knowledge about them.

Factorization theorems allow identify universal independent object: \rightarrow TMDPDFs.

Using δ-scheme for regularized rapidity divergences we are able to identified $Z_{\text{zero-bin}} = S(b_T, \epsilon, \delta; \mu, \zeta)$.

Rapidity divergences have their own renormalization scale ζ.

Coefficient $C^{[2]}(x, L_\mu)$ is well defined and only depends of x and logaritmicaly of b_T.
Thanks for your attention!!!