Frame-Independent Angular Distributions as Density Matrix Invariants
 Margarita Gavrilova, Oleg Teryaev
 Moscow Institute of Physics and Technology
 Joint Institute for Nuclear Research arXiv: 1901.04018 (to appear in Phys Rev. D)

DIS-2019, Torino, April 10

Outline

- Drell-Yan angular distributions and frame dependence; geometric model
- Hadronic tensor as density matrix (of virtual photon) and its invariants
- Counting and constraining the invariants
- Applications
- Conclusions

Angular distribution

general form of angular distribution (wrt particular frame)

$$
\begin{aligned}
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} & =\frac{3}{4 \pi} \frac{1}{3+\lambda_{\theta}}\left(1+\lambda_{\theta} \cos ^{2} \theta+\lambda_{\theta \phi} \sin 2 \theta \cos \phi\right. \\
& +\lambda_{\phi} \sin ^{2} \theta \cos 2 \phi+\lambda_{\perp \phi} \sin ^{2} \theta \sin 2 \phi \\
& +\lambda_{\perp \theta \phi} \sin 2 \theta \sin \phi+2 A_{\theta} \cos \theta \\
& \left.+2 A_{\phi} \sin \theta \cos \phi+2 A_{\perp \phi} \sin \theta \sin \phi\right)
\end{aligned}
$$

Angular distribution

general form of angular distribution :

$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}$	$=\frac{3}{4 \pi} \frac{1}{3+\lambda_{\theta}}\left(1+\lambda_{\theta} \cos ^{2} \theta+\lambda_{\theta \phi} \sin 2 \theta \cos \phi\right.$
	$+\lambda_{\phi} \sin ^{2} \theta \cos 2 \phi+\lambda_{\perp \phi} \sin ^{2} \theta \sin 2 \phi$
	$+\lambda_{\perp \theta \phi} \sin 2 \theta \sin \phi+2 A_{\theta} \cos \theta$
	$\left.+2 A_{\phi} \sin \theta \cos \phi+2 A_{\perp \phi} \sin \theta \sin \phi\right)$

Invariants

\rightarrow Facilitate comparison b/w experiments, theory and experiment
\rightarrow Reveal systematic biases

Kinematic azimuthal asymmetry from polar one ($0 T^{\prime} 05$)

Only polar asymmetry with respect to m !

$$
d \sigma \propto 1+\lambda_{0}(\vec{n} \vec{m})^{2}=1+\lambda_{0} \cos ^{2} \theta_{n m}^{2}
$$

$$
\cos \theta_{n m}=\cos \theta \cos \theta_{0}+\sin \theta \sin \theta_{0} \cos \phi
$$

- azimuthal angle appears with new

$$
\begin{aligned}
\lambda & =\lambda_{0} \frac{2-3 \sin ^{2} \theta_{0}}{2+\lambda_{0} \sin ^{2} \theta_{0}} \\
\nu & =\lambda_{0} \frac{2 \sin ^{2} \theta_{0}}{2+\lambda_{\mathrm{o}} \sin ^{2} \theta_{\mathrm{o}}}
\end{aligned}
$$

- λ_{0} - invariant!

Generalized Lam-Tung relation

- Relation between coefficients (high school math sufficient!)

$$
\lambda_{0}=\frac{\lambda+\frac{3}{2} \nu}{1-\frac{1}{2} \nu}
$$

- Reduced to standard LT relation for transverse polarization ($\lambda_{0}=1$)
- LT - contains two very different inputs: kinematical asymmetry+transverse polarization
- Non-coplanarity - violation of LT (talk of W.-C. Chang)

General approach: the number of independent invariants

$\rightarrow 8$ parameters describe distribution
$\rightarrow 3$ Euler angles parameterize rotation
8-3 = 5 independent invariants

Hadronic tensor in terms of observables

$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \propto W^{\mu \nu} L_{\mu \nu}$

Hadronic tensor in terms of observables

$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \propto W^{\mu \nu} L_{\mu \nu}$
$q_{\mu} W^{\mu \nu}=0 \quad \longrightarrow \quad W^{i j}=\left(\begin{array}{ccc}d_{1} & a_{1}+i a_{2} & b_{1}+i b_{2} \\ a_{1}-i a_{2} & d_{2} & c_{1}+i c_{2} \\ b_{1}-i b_{2} & c_{1}-i c_{2} & d_{3}\end{array}\right)$

Hadronic tensor in terms of observables

$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \propto W^{\mu \nu} L_{\mu \nu}$
$q_{\mu} W^{\mu \nu}=0 \quad \longrightarrow \quad W^{i j}=\left(\begin{array}{ccc}d_{1} & a_{1}+i a_{2} & b_{1}+i b_{2} \\ a_{1}-i a_{2} & d_{2} & c_{1}+i c_{2} \\ b_{1}-i b_{2} & c_{1}-i c_{2} & d_{3}\end{array}\right)$
$L_{i j} \propto \delta_{i j}-n_{i} n_{j}+i g \epsilon_{i j k} n^{k}$

Hadronic tensor in terms of observables

$$
\begin{aligned}
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \propto & \left(d_{1}+\frac{1}{2} d_{2}+\frac{1}{2} d_{3}\right)+\left(-d_{1}+\frac{1}{2} d_{2}+\frac{1}{2} d_{3}\right) \cos ^{2} \theta \\
- & a_{1} \sin 2 \theta \cos \phi+\frac{1}{2}\left(d_{3}-d_{2}\right) \sin ^{2} \theta \cos 2 \phi \\
- & b_{1} \sin 2 \theta \sin \phi-c_{1} \sin ^{2} \theta \sin 2 \phi \\
- & 2 a_{2} \sin \theta \sin \phi+2 b_{2} \sin \theta \cos \phi-2 c_{2} \cos \theta \\
& \text { compare with the general expression }
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} & =\frac{3}{4 \pi} \frac{1}{3+\lambda_{\theta}}\left(1+\lambda_{\theta} \cos ^{2} \theta+\lambda_{\theta \phi} \sin 2 \theta \cos \phi\right. \\
& +\lambda_{\phi} \sin ^{2} \theta \cos 2 \phi+\lambda_{\perp \phi} \sin ^{2} \theta \sin 2 \phi \\
& +\lambda_{\perp \theta \phi} \sin 2 \theta \sin \phi+2 A_{\theta} \cos \theta \\
& \left.+2 A_{\phi} \sin \theta \cos \phi+2 A_{\perp \phi} \sin \theta \sin \phi\right)
\end{aligned}
$$

Hadronic tensor in terms of observables

$$
W^{i j}=\frac{2}{3+\lambda_{\theta}}\left(\begin{array}{ccc}
\frac{1-\lambda_{\theta}}{2} & -\lambda_{\theta \phi}-i A_{\perp \phi} & -\lambda_{\perp \theta \phi}+i A_{\phi} \\
-\lambda_{\theta \phi}+i A_{\perp \phi} & \frac{1+\lambda_{\theta}-2 \lambda_{\phi}}{2} & -\lambda_{\perp \phi}-i A_{\theta} \\
-\lambda_{\perp \theta \phi}-i A_{\phi} & -\lambda_{\perp \phi}+i A_{\theta} & \frac{1+\lambda_{\theta}+2 \lambda_{\phi}}{2}
\end{array}\right)
$$

(normalization condition $\operatorname{Tr} \mathrm{W}=1$)

Hadron tensor in terms of observables

$$
W^{i j}=\frac{2}{3+\lambda_{\theta}}\left(\begin{array}{ccc}
\frac{1-\lambda_{\theta}}{2} & -\lambda_{\theta \phi}-i A_{\perp \phi} & -\lambda_{\perp \theta \phi}+i A_{\phi} \\
-\lambda_{\theta \phi}+i A_{\perp \phi} & \frac{\theta+\lambda_{\theta}-2 \lambda_{\phi}}{2} & -\lambda_{\perp \phi}-i A_{\theta} \\
-\lambda_{\perp \theta \phi}-i A_{\phi} & -\lambda_{\perp \phi}+i A_{\theta} & \frac{1+\lambda_{\theta}+2 \lambda_{\phi}}{2}
\end{array}\right)
$$

(normalization condition $\operatorname{Tr} \mathrm{W}=1$)

$$
W=\frac{1}{3} \cdot \mathbf{1}+W_{s}+i W_{a}
$$

Spin 1: symmetric and antisymmetric part do not mix: rotational invariants can be found as eigenvalues of matrices:

$$
W, W_{s}, W_{a}, W_{s} W_{a}, W_{s} W_{a} W_{s}, \ldots
$$

Set of characteristic equations for

 $\stackrel{W_{a}}{ }, W_{a}, W_{a}+i W_{a}$ and $W_{a} W_{b}$$$
w^{(a)}\left(w^{(s)^{2}}+4 U_{1}\right)=0
$$

$$
\mathrm{w}^{(\mathrm{v})^{3}}-\frac{4}{3} U_{2} \mathrm{w}^{(\mathrm{n})}-\frac{8}{27} T=0
$$

$$
w^{3}-\left(4 U_{1}+\frac{4}{3} U_{2}\right) w-\frac{8}{27}(T+R)=0
$$

$$
w^{\left.(\omega)^{\prime}\right)}\left(w^{(a s)^{2}}+\frac{16}{9} M\right)=0
$$

Invariants

$$
\begin{aligned}
U_{1} & =\frac{A_{\theta}^{2}+A_{\phi}^{2}+A_{\perp \theta \phi}^{2}}{\left(3+\lambda_{\theta}\right)^{2}}, \quad U_{2}=\frac{\lambda_{\theta}^{2}+3\left(\lambda_{\phi}^{2}+\lambda_{\theta \phi}^{2}+\lambda_{\perp \phi}^{2}+\lambda_{\perp \theta \phi}^{2}\right)}{\left(3+\lambda_{\theta}\right)^{2}} \\
T & =\frac{\left(\lambda_{\theta}+3 \lambda_{\phi}\right)\left(2 \lambda_{\theta}^{2}-6 \lambda_{\theta} \lambda_{\phi}+9 \lambda_{\theta \phi}^{2}\right)+9\left(\lambda_{\theta} \lambda_{\perp \theta \phi}^{2}-2 \lambda_{\theta} \lambda_{\perp \phi}^{2}+6 \lambda_{\theta \phi} \lambda_{\perp \theta \phi} \lambda_{\perp \phi}-3 \lambda_{\phi} \lambda_{\perp \theta \phi}^{2}\right)}{\left(3+\lambda_{\theta}\right)^{3}} \\
R & =\frac{1}{\left(\lambda_{\theta}+3\right)^{3}}\left(54\left(A_{\theta} A_{\phi} \lambda_{\theta \phi}+A_{\theta} A_{\perp \phi} \lambda_{\perp \theta \phi}+A_{\perp \phi} A_{\phi} \lambda_{\perp \phi}\right)+9 \lambda_{\theta}\left(2 A_{\theta}^{2}-A_{\perp \phi}^{2}-A_{\phi}^{2}\right)\right. \\
& \left.+27 \lambda_{\phi}\left(A_{\phi}^{2}-A_{\perp \phi}^{2}\right)\right) \\
M & =\frac{1}{\left(3+\lambda_{\theta}\right)^{4}}\left\{A_{\theta}^{2}\left(\lambda_{\theta}^{2}-9 \lambda_{\phi}^{2}-9 \lambda_{\perp \phi}^{2}\right)-A_{\phi}^{2}\left(2 \lambda_{\theta}\left(\lambda_{\theta}+3 \lambda_{\phi}\right)+9 \lambda_{\perp \theta \phi}^{2}\right)\right. \\
& +A_{\perp \phi}^{2}\left(6 \lambda_{\theta} \lambda_{\phi}-2 \lambda_{\theta}^{2}-9 \lambda_{\theta \phi}^{2}\right)+6 A_{\theta} A_{\perp \phi}\left(\lambda_{\perp \theta \phi}\left(\lambda_{\theta}-3 \lambda_{\phi}\right)+3 \lambda_{\theta \phi} \lambda_{\perp \phi}\right) \\
& \left.+6 A_{\phi}\left[A_{\theta}\left(\lambda_{\theta \phi}\left(\lambda_{\theta}+3 \lambda_{\phi}\right)+3 \lambda_{\perp \theta \phi} \lambda_{\perp \phi}\right)+A_{\perp \phi}\left(3 \lambda_{\theta \phi} \lambda_{\perp \theta \phi}-2 \lambda_{\theta} \lambda_{\perp \phi}\right)\right]\right\}
\end{aligned}
$$

Restrictions on Invariants

Positivity condition together with normalization lead to the following inequalities:

$$
\begin{gathered}
0 \leq w_{1,2,3} \leq 1 \\
0 \leq w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3} \leq \frac{1}{3} \\
0 \leq w_{1} w_{2} w_{3} \leq \frac{1}{27}
\end{gathered}
$$

Constraints for Invariants

Positivity condition together with normalization lead to the following inequalities:

$$
\begin{gathered}
0 \leq w_{1,2,3} \leq 1 \\
0 \leq w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3} \leq \frac{1}{3} \\
0 \leq w_{1} w_{2} w_{3} \leq \frac{1}{27} \\
\frac{U_{1}+\frac{1}{3} U_{2} \leq \frac{1}{12} \quad \rightarrow \quad U_{1} \leq \frac{1}{12}, \quad U_{2} \leq \frac{1}{4}}{} \frac{-\frac{1}{8} \leq R+T \leq \frac{3}{8}}{}
\end{gathered}
$$

FIG. 2. Angalni mofflement he nud hy mensured b
 frame, dit - GJF franoe. Different polets eorrespond eo dil ferent whins of eransverse momentum. Only sentistleal erroe are shown.

How invariant are they?

TABLE Y. The values of invariants Us and T calculated for angular cofflelents mensored by PHENIX collaborntion [4] In
 GeV). Only statistical errors ne taken luto noconint.

	U_{5}			T		
$\rho_{\mathrm{T}}[\mathrm{GeV} / \mathrm{c}]$	$2-3$	$3-4$	$4-10$	$2-4$	$3-4$	$4=10$
HX	3.0 ± 2.5	2.8 ± 1.7	1.2 ± 0.8	4.8 ± 6.5	1.7 ± 2.7	1.4 ± 1.4
CS	$=(6.2 \pm 0.4)$	1.0 ± 0.8	0.6 ± 0.8	3 - $15.2 \pm 1.5)$	-0.1 ± 1.6	-0.3 ± 0.8
GTE	8.0 ± 2.6	3.8 ± 3.6	1.0 ± 0.6	10.5 ± 12.1	0.7 ± 6.9	0.9 ± 0.8
GIF	8.7 ± 4.4	3.0 ± 1.7	4.3 ± 2.2	24.3 ± 20.1	3.3 ± 2.5	7.4 ± 7.1

Invariants discussed in literature

\rightarrow Faccioli et al. (PRL 105 (2010) 061601)

$$
\mathcal{F}=\frac{1+\lambda_{\theta}+\lambda_{\phi}}{3+\lambda_{\theta}}
$$

\rightarrow Faccioli et al. (PRD 81 (2010) 111502), Palestini (PRD 83 (2011) 031503)

$$
\left(\lambda_{0}(\mathrm{OT} \text { '05) })=\tilde{\lambda}=\frac{\lambda_{\theta}+(3 / 2) \lambda_{\phi}}{1-(1 / 2) \lambda \phi}=\frac{3 \mathcal{F}-1}{1-\mathcal{F}}\right.
$$

Faccioli et al. (PRD 83 (2011) 056008)

$$
G=\frac{1+\lambda_{\theta}-\lambda_{\phi}}{3+\lambda_{\theta}}
$$

along the x axis
\rightarrow Faccioli et al. (PRD 83 (2011) 056008)

$$
\lambda_{\theta}
$$

along the z -
axis
\rightarrow Ma,Qiu,Zhang (arXiv: 1703.04752 (2017))
rotations along
the y-axis in the dilepton rest frame

Connection to invariants from arXiv: 1703.04752

$$
\begin{aligned}
& \tilde{U}_{1}=\frac{3}{\pi} U_{1} \\
& \tilde{U}_{2}=\frac{1}{5 \pi} U_{2}
\end{aligned}
$$

$$
\tilde{W}_{3}=\frac{1}{70 \pi^{2}}(T+7 R)
$$

$$
\tilde{W}_{4}=\frac{9}{20 \pi} \tilde{U}_{1}^{2}+\frac{15}{28 \pi} \tilde{U}_{2}^{2}+\frac{27}{14 \pi} \tilde{U}_{1} \tilde{U}_{2}-\frac{9}{35 \pi^{3}} \frac{1}{144}\left(45 U_{1}+10 R+36 M\right)
$$

$$
\tilde{W}_{5}=\frac{5}{2 \pi}\left(\frac{3}{7} \tilde{U}_{1}+\frac{5}{11} \tilde{U}_{2}\right) \tilde{W}_{3}+\frac{3}{539 \pi^{4}}\left(U_{1}\left(-\frac{143}{4}+429 U_{2}-297 T\right)+\frac{7}{3} U_{2} R\right)
$$

Invariants in terms of eigenvalues

$$
\begin{gathered}
w_{1}^{(a)} w_{2}^{(a)}+w_{1}^{(a)} w_{3}^{(a)}+w_{2}^{(a)} w_{3}^{(a)}=w_{2}^{(a)} w_{3}^{(a)}=4 U_{1} \\
w_{1}^{(s)} w_{2}^{(s)}+w_{1}^{(s)} w_{3}^{(s)}+w_{2}^{(s)} w_{3}^{(s)}=-\frac{4}{3} U_{2} \\
w_{1}^{(s)} w_{2}^{(s)} w_{3}^{(s)}=\frac{8}{27} T \\
w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}=-4 U_{1}-\frac{4}{3} U_{2} \\
w_{1} w_{2} w_{3}=\frac{8}{27}(T+R) \\
w_{1}^{(a s)} w_{2}^{(a s)}+w_{1}^{(a s)} w_{3}^{(a s)}+w_{2}^{(a s)} w_{3}^{(a s)}=w_{2}^{(a s)} w_{3}^{(a s)}=4 M
\end{gathered}
$$

Special case

\rightarrow Gottfried-Jackson frame-z || quark momenta
\rightarrow Collins-Soper frame-z || bisection

$$
\begin{gathered}
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{3+\lambda_{\theta}}\left(1+\lambda_{\theta} \cos ^{2} \theta+\lambda_{\theta \phi} \sin 2 \theta \cos \phi+\lambda_{\phi} \sin ^{2} \theta \cos 2 \phi\right) \\
W^{i j}=\frac{1}{3+\lambda_{\theta}}\left(\begin{array}{cc}
1-\lambda_{\theta} & \downarrow \\
-2 \lambda_{\theta \phi} & 1+\lambda_{\theta}-2 \lambda_{\phi} \\
0 & 0
\end{array}\right) 0 \\
y^{2} \\
w_{1}=\frac{1+\lambda_{\theta}+2 \lambda_{\phi}}{3+\lambda_{\theta}} \quad w_{2,3}=\frac{1-\lambda_{\phi} \pm \sqrt{\left(\lambda_{\theta}-\lambda_{\phi}\right)^{2}+4 \lambda_{\theta \phi}^{2}}}{3+\lambda_{\theta}}
\end{gathered}
$$

Faccioli invariant

Other special rotations

$$
W^{i j}=\frac{1}{3+\lambda_{\theta}}\left(\begin{array}{ccc}
1-\lambda_{\theta} & -2 \lambda_{\theta \phi} & -2 \lambda_{\perp \theta \phi} \\
-2 \lambda_{\theta \phi} & 1+\lambda_{\theta}-2 \lambda_{\phi} & -2 \lambda_{\perp \phi} \\
-2 \lambda_{\perp \theta \phi} & -2 \lambda_{\perp \phi} & 1+\lambda_{\theta}+2 \lambda_{\phi}
\end{array}\right) \quad \bar{e}_{x}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \bar{e}_{z}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

$$
\begin{gathered}
e_{x}^{\mu} W_{\mu \nu} e_{x}^{\nu}=\frac{1+\lambda_{\theta}-\lambda_{\phi}}{3+\lambda_{\theta}}=G \\
e_{z}^{\mu} W_{\mu \nu} e_{z}^{\nu}=\frac{1-\lambda_{\theta}}{3+\lambda_{\theta}} \Rightarrow \lambda_{\theta}=\text { invariant }
\end{gathered}
$$

CONCLUSIONS/OUTLOOK

- Invariants may be expressed via eigenvalues of density matrix and its components
- Corresponds to general structure of quantum theory
- May/should be used for data analysis (errors are currently large)
- Incorporating to calculations
- Higher spin
- Crossed processes

