Transverse Single-Spin Asymmetries of Midrapidity Eta Mesons at PHENIX

Nicole Lewis
Deep Inelastic Scattering 2019
4/9/19

Office of Science

Transverse Single-Spin Asymmetries

 (TSSAs)
G. L. Kane, J. Pumplin, and W. Repko PRL 41, 1689 (1978) predicted that the perturbative QCD contributions to TSSAs would make them less than 1%.

Transverse Single-Spin Asymmetries (TSSAs)

$$
x_{F}=\frac{p_{z}}{\sqrt{s} / 2} \quad A_{N}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}
$$

Transverse Momentum Dependent Nonperturbative Functions

Collinear: The parton model integrates over the internal dynamics of the proton
Transverse Momentum from Alessandro Bacchetta Dependent (TMD): functions explicitly depend on the nonperturbative transverse momentum k_{T}

- In order for TMD factorization to apply $k_{T}^{2} \ll Q^{2}$.
- 2 scale process: for the TMD regime to be applied a measurement needs sensitivity to both k_{T} and Q

Effects of Strangeness

(HERMES Collaboration) Phys. Rev. Let 103, 15002 (2009)

- Some indication that the Sivers asymmetry in SIDIS is slightly larger for K^{+} than for π^{+}?
- Larger spinmomentum correlations for strange quarks in the proton?

Similar effects seen in the final-state Collins asymmetry

Higher Twist Functions

Formal definition of twist: "mass dimension minus spin" of the operator in a matrix element within the Operator Product Expansion
Twist 2: traditional PDFs and FFs only consider interactions between one parton in the proton at a time

> Twist 3: Quantum mechanical interference between one parton versus interacting with two partons at the same relative x

- Can describe spin-momentum correlations in the proton and in hadronization

Twist 3 Functions

Multiparton correlations: quantum mechanical interference between scattering off of one versus two partons at the same x

- Quark-Gluon-Quark (qgq) Correlation Function: scattering off of quark and a gluon versus a single quark of the same flavor
- Three-gluon Correlation Function (ggg): two gluons versus one gluon

qgq Twist-3 Initial State

qgq Twist-3 Final State

Daniel Pitonyak International Journal of Modern Physics A 31, No. 32, 1630049 (2016)

Twist 3 Functions

Collinear: No explicit dependence on transverse momentum k_{T}

- Only need to be sensitive to a single scale: hard scale $Q \sim p_{T}$
- Related to k_{T} moments of twist-2 TMD PDFs and fragmentation functions
- At very large $Q: A_{N} \sim \frac{1}{Q}$

Koichi Kanazawa, Yuji Koike, Andreas Metz, and
Daniel Pitonyak Phys. Rev. D 89, 111501(R) (2014)

Relativistic Heavy Ion Collider

 (RHIC)

PHENIX detector

- PHENIX Central Arms
- $\Delta \phi \sim \pi$
- $|\eta|<0.35$
- Electromagnetic Calorimeter used for $\eta \rightarrow \gamma \gamma$ detection
- Using Run 2015 data
- $60 \mathrm{pb}^{-1}$ integrated luminosity
- Mean polarization: 57\%
- Using the EMCal Rich Trigger that selects for high energy clusters

Midrapidity Transverse Single-Spin Asymmetries at PHENIX

Limited PHENIX acceptance, so integrate over one side of the detector at a time:

$$
A_{N}^{r a w}=\frac{N_{L}^{\uparrow}-R \cdot N_{L}^{\downarrow}}{N_{L}^{\uparrow}+R \cdot N_{L}^{\downarrow}}
$$

- $R=L^{\uparrow} / L^{\downarrow}$ is the relative luminosity
- Equivalent formula for the right side, but with a minus sign

Background Correction for $\eta \rightarrow \gamma \gamma$

$A_{N}^{\eta}=\frac{A_{N}^{p e a k}-r A_{N}^{b g}}{1-r}$

- Where $r=\frac{N_{b g}}{N_{s i g}+N_{b g}}$ in the invariant mass peak region
- Peak:
$480<M_{\gamma \gamma}<620 \mathrm{MeV} / \mathrm{c}^{2}$
- Background:

$$
300<M_{\gamma \gamma}<400 \mathrm{MeV} / \mathrm{c}^{2}
$$

Example invariant mass histogram for photon pairs in the West Arm with $4<p_{T}<5 \mathrm{GeV} / \mathrm{c}$

$$
700<M_{\gamma \gamma}<800 \mathrm{MeV} / \mathrm{c}^{2}
$$

Results

About a factor of 3-4 increase in precision from previous PHENIX result

Results

Consistent with zero to within 0.005 at low p_{T} but may show a hint of a trend?

$A_{N}^{\pi^{0}}$ at midrapidity

Consistent with zero to within 10^{-4} at low p_{T} $\mathrm{p}+\mathrm{p} \rightarrow \pi^{0}+\mathrm{X} @ 200 \mathrm{GeV}, \mathrm{ml}<\mathbf{0} \mathbf{3 5}$

Comparing π^{0} to η results may provide information on potential effects due to strangeness, isospin, or mass.

$$
\pi^{0}=\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \quad \eta=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})
$$

Conclusion

- TSSAs probe the parton dynamics in the proton as well as the process of hadronization
- Twist 3 only require a single hard energy scale to be measured directly
- ηA_{N} at midrapidity $\sqrt{s}=200 \mathrm{GeV}$ shown
- Factor of 3-4 higher precision than the previous PHENIX result
- Consistent with zero
- Sensitive to impact of strangeness to twist-3 functions

Back Up

TSSAs at Higher Energies

Yuxi Pan for the STAR Collaboration International Journal of Modern Physics: Conference Series 40, 1660037 (2016)

Collins Asymmetry in SIDIS

- Correlation between quark transverse spin and unpolarized hadron transverse momentum
- Some indication that the $K^{ \pm}$Collins asymmetry might be larger than the $\pi^{ \pm}$ asymmetry, but not statistically significant

(COMPASS Collaboration) Phys.Lett. B 744 (2015) 250-259

Partonic Contributions

- At low p_{T} dominated by $g g \rightarrow g g$ and $g g \rightarrow q \bar{q}$
- $q g \rightarrow q g$ fraction increases with p_{T}
- $q \bar{q} \rightarrow q \bar{q}$ dominates at very high p_{T}, but that is beyond the scope of this measurement

(PHENIX Collaboration) Phys. Rev. D 83, 032001 (2011)

Systematic Studies

- Alternative A_{N} formula: Square Root formula

$$
A_{N}^{r a w}=\frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

- $\sin \phi$ modulation cross check:

$$
A_{N}^{r a w} \sin \phi_{s}=\frac{N^{\uparrow}\left(\phi_{s}\right)-R N^{\downarrow}\left(\phi_{s}\right)}{N^{\uparrow}\left(\phi_{s}\right)+R N^{\downarrow}\left(\phi_{s}\right)}
$$

- Yellow vs Blue beam asymmetry
- Both beams have alternating transverse polarization \rightarrow consider one beam polarized at a time and average over the polarization direction of the other
- Two statistically independent measurements
- Final measurement is the weighted average of these two results

Invariant Mass Spectrum at Different p_{T}

Photon pairs in the West Arm with $8<p_{T}<15 \mathrm{GeV}$

Previous PHENIX $A_{N}^{\pi^{0}}$ and A_{N}^{η} Result

(PHENIX Collaboration) PRD 90, 012006 (2014)

Comparing forward A_{N}^{η} to forward $A_{N}^{\pi^{0}}$

(STAR Collaboration)
PRD 86, 051101(R) (2012)

$A_{N}^{\pi^{0}}$ in $p^{\uparrow}+A$

