Towards extraction of GPDs from DVCS data

Paweł Sznajder
National Centre for Nuclear Research, Warsaw

XXVII International Workshop on Deep Inelastic Scattering and Related Subjects (DIS2019)
April 11, 2019
Introduction

Global analysis of DVCS data - “classic” approach

Global analysis of DVCS data - ANN approach

Summary
Deeply Virtual Compton Scattering (DVCS)

Chiral-even GPDs:
(helicity of parton conserved)

\[H^{q,g}(x, \xi, t) \quad \text{for sum over parton helicities} \]
\[E^{q,g}(x, \xi, t) \]
\[\tilde{H}^{q,g}(x, \xi, t) \quad \text{for difference over parton helicities} \]
\[\tilde{E}^{q,g}(x, \xi, t) \]

nucleon helicity conserved

nucleon helicity changed

factorization for \(|t|/Q^2 \ll 1\)
GPDs accessible in various production channels and observables
→ experimental filters

DVCS
Deeply Virtual Compton Scattering

TCS
Timelike Compton Scattering

HEMP
Hard Exclusive Meson Production

more production channels sensitive to GPDs exist!
GPDs studied in various laboratories
→ need to cover a broad kinematic range

experiments
closed active planned
Kinematic cuts used in presented analyses:

\[Q^2 > 1.5 \text{ GeV}^2 \]

\[-t/Q^2 < 0.2 \]
Nucleon tomography

- Nucleon tomography

\[
q(x, b_{\perp}) = \int \frac{d^2 \Delta}{4\pi^2} e^{-ib_{\perp} \cdot \Delta} H^q(x, 0, t = -\Delta^2)
\]

- Study of long. polarization with GPD \tilde{H}
- Study of distortion in transv. polarized nucleon with GPD E

- Impact parameter b_{\perp} defined w.r.t. center of momentum, such as $\sum x b_{\perp} = 0$
Energy momentum tensor

Energy momentum tensor in terms of form factors:

\[
\langle p', s' | \hat{T}^{\mu\nu} | p, s \rangle = \bar{u}(p', s') \left[\frac{P^\mu P^\nu}{M} A(t) + \frac{\Delta^\mu \Delta^\nu - \eta^{\mu\nu} \Delta^2}{M} C(t) + M \eta^{\mu\nu} \bar{C}(t) + \frac{P^\mu i \sigma^{\nu\lambda} \Delta_{\lambda}}{4M} [A(t) + B(t) + D(t)] + \frac{P^\nu i \sigma^{\mu\lambda} \Delta_{\lambda}}{4M} [A(t) + B(t) - D(t)] \right] u(p, s)
\]

Access to total angular momentum and “mechanical” forces acting on quarks

\[
A^q(0) + B^q(0) = \int_{-1}^{1} x [H^q(x, \xi, 0) + E^q(x, \xi, 0)] = 2J^q
\]

Ji’s sum rule
PARTONS project

- PARTONS - platform to study GPDs
- Come with number of available physics developments implemented
- Addition of new developments as easy as possible
- To support effort of GPD community
- Can be used by both theorists and experimentalists

http://partons.cea.fr
PARTONS project

- PARTONS - platform to study GPDs
- Come with number of available physics developments implemented
- Addition of new developments as easy as possible
- To support effort of GPD community
- Can be used by both theorists and experimentalists

http://partons.cea.fr

H^u @ x_i = 0.2, t = -0.1 GeV^2, \mu_F^2 = 2 GeV^2

GK11
MPSSW13
VGG
Vinnikov
H. Moutarde, P. S., J. Wagner "Border and skewness functions from a leading order fit to DVCS data"

Goal: global extraction of Compton Form Factors (CFFs) from DVCS data using LO/LT formalism

Analysis done within PARTONS framework
Compton Form Factors

- imaginary part

\[\text{Im} G_0(\xi, t) = \pi G^{(+)}(\xi, \xi, t) = \pi \sum_q e_q^2 G_q^{(+)}(\xi, \xi, t) \]

\[G_q^{(+)}(x, \xi, t) = G_q^q(x, \xi, t) \mp G_q^q(-x, \xi, t) \]

\[G^{(+)}_q(\xi, \xi, t) = G^{val}_q(\xi, \xi, t) + 2G^{sea}_q(\xi, \xi, t) \]

- real part

\[\text{Re} G(\xi, t) = \text{P.V.} \int_0^1 G^{(+)}(x, \xi, t) \left(\frac{1}{\xi - x} \mp \frac{1}{\xi + x} \right) \, dx \]

\[\text{Re} G(\xi, t) = \text{P.V.} \int_0^1 G^{(+)}(x, x, t) \left(\frac{1}{\xi - x} \mp \frac{1}{\xi + x} \right) \, dx + C_G(t) \]

\[C_H(t) = -C_E(t) \quad C_{\tilde{H}}(t) = C_{\tilde{E}}(t) = 0 \]

"-" for \(G \in \{ H, E \} \)

"+" for \(G \in \{ \tilde{H}, \tilde{E} \} \)

connected to EMT FF
Ansatz

\[C^q_G(t) = 2 \int_{0}^{1} \left(G^{q(+)}(x, x, t) - G^{q(+)}(x, 0, t) \right) \frac{1}{x} \, dx \]

- subtraction constant as analytic continuation of Mellin moments to \(j = -1 \)

\[G^q(x, 0, t) = \text{pdf}^q_G(x) \, \exp(f^q_G(x)t) \quad \quad f^q_G(x) = A^q_G \log(1/x) + B^q_G (1-x)^2 + C^q_G (1-x)x \]

- reduction to PDFs and correspondence to EFFs
- modify "classical" \(\log(1/x) \) term by \(B^q_G (1-x)^2 \) in low-\(x \) and by \(C^q_G (1-x)x \) in high-\(x \) regions
- polynomials found in analysis of EFF data \(\rightarrow \) good description of data
- allow to use the analytic regularisation prescription
- finite proton size at \(x \rightarrow 1 \)

\[G^q(x, x, t) = G^q(x, 0, t) \, g^q_G(x, x, t) \quad g^q_G(x, x, t) = \frac{a^q_G}{(1-x^2)^2} \left(1 + t(1-x)(b^q_G + c^q_G \log(1+x)) \right) \]

- at \(x \rightarrow 0 \) constant skewness effect
- at \(x \rightarrow 1 \) reproduce power behaviour predicted for GPDs in Phys. Rev. D69, 051501 (2004)
- \(t \)-dependence similar to DD-models with \(1-x \) to avoid any \(t \)-depen. at \(x = 1 \)
1. Analysis of PDF parameterisations

\[\text{pdf}(x, Q^2) = x^{-g(\delta_p, \delta_q, Q^2)}(1 - x)^\alpha \]
\[\times \sum_{i=0}^{4} g(p_i, q_i, Q^2)x^i \]
\[g(p, q, Q^2) = p + q \log \frac{Q^2}{Q_0^2} \]

2. Analysis of Elastic Form Factor data

\[\chi^2/\text{ndf} = 129.6/(178 - 9) \approx 0.77 \]

3. Analysis of DVCS data

\[\chi^2/\text{ndf} = 2346.3/(2600 - 13) \approx 0.91 \]
\[Q^2 = 2 \text{ GeV}^2 \]
Results

Nucleon tomography:

\[Q^2 = 2 \text{ GeV}^2 \]

no uncertainties!
Results

Nucleon tomography:

\[
\langle b^2 \rangle_q (x) = \frac{\int d^2b_\perp \, b^2 q(x, b_\perp)}{\int d^2b_\perp \, q(x, b_\perp)}
\]

\[Q^2 = 2 \text{ GeV}^2\]
H. Moutarde, P. S., J. Wagner “Unbiased determination of Compton Form Factors” preliminary results

Goal: global extraction of Compton Form Factors (CFFs) from DVCS data using ANN technique

Analysis done within PARTONS framework
Quality of fit:

\[\frac{\chi^2}{n\text{Points}} = \frac{2243.5}{2624} \approx 0.85 \]

<table>
<thead>
<tr>
<th>No.</th>
<th>Collab.</th>
<th>Year</th>
<th>(\chi^2)</th>
<th>(n)</th>
<th>(\chi^2/n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HERMES</td>
<td>2001</td>
<td>10.7</td>
<td>10</td>
<td>1.07</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2006</td>
<td>5.5</td>
<td>4</td>
<td>1.38</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2008</td>
<td>18.5</td>
<td>18</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2009</td>
<td>34.7</td>
<td>35</td>
<td>0.99</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2010</td>
<td>40.7</td>
<td>18</td>
<td>2.26</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2011</td>
<td>16.7</td>
<td>24</td>
<td>0.70</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2012</td>
<td>22.4</td>
<td>35</td>
<td>0.64</td>
</tr>
<tr>
<td>8</td>
<td>CLAS</td>
<td>2001</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2006</td>
<td>1.0</td>
<td>2</td>
<td>0.52</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2008</td>
<td>376.4</td>
<td>283</td>
<td>1.33</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2009</td>
<td>28.3</td>
<td>22</td>
<td>1.29</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2015</td>
<td>306.6</td>
<td>311</td>
<td>0.99</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>2015</td>
<td>884.7</td>
<td>1333</td>
<td>0.66</td>
</tr>
<tr>
<td>14</td>
<td>Hall A</td>
<td>2015</td>
<td>231.8</td>
<td>228</td>
<td>1.02</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>2017</td>
<td>211.4</td>
<td>276</td>
<td>0.77</td>
</tr>
<tr>
<td>16</td>
<td>COMPASS</td>
<td>2018</td>
<td>3.0</td>
<td>2</td>
<td>1.50</td>
</tr>
<tr>
<td>17</td>
<td>ZEUS</td>
<td>2009</td>
<td>5.49</td>
<td>4</td>
<td>1.38</td>
</tr>
<tr>
<td>18</td>
<td>H1</td>
<td>2005</td>
<td>22.2</td>
<td>7</td>
<td>3.17</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>2009</td>
<td>23.4</td>
<td>12</td>
<td>1.95</td>
</tr>
</tbody>
</table>
@ $t = -0.3 \text{ GeV}^2$, $Q^2 = 2 \text{ GeV}^2$
Subtraction constant

- Direct extraction of subtraction constant → encouraging precision
- As expected, no \(\xi \) behaviour observed → consistency check
- Strong, model independent constraints on extraction of pressure information
■ Parameterizations of border and skewness functions
 → basic properties of GPD as building blocks
 → small number of parameters
 → encoded access to nucleon tomography and subtraction constant

■ Neural network parameterization of CFFs
 → model independent extraction (also true for subtraction constant)
 → powerful tool to study GPDs / reduction of model uncertainties
 → perfect to study impact of future experiments