Towards extraction of GPDs from DVCS data

Paweł Sznajder National Centre for Nuclear Research, Warsaw

XXVII International Workshop on Deep Inelastic Scattering and Related Subjects (DIS2019) April 11, 2019

Outline

- Introduction
- Global analysis of DVCS data "classic" approach
- Global analysis of DVCS data ANN approach
- Summary

Introduction

Deeply Virtual Compton Scattering (DVCS)

factorization for $|t|/Q^2 \ll 1$

Chiral-even GPDs: (helicity of parton conserved)

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicities
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference over parton helicities
nucleon helicity conserved	nucleon helicity changed	

Introduction

GPDs accessible in various production channels and observables \rightarrow experimental filters

DVCSDeeply Virtual Compton
Scattering

TCS
Timelike Compton
Scattering

HEMP
Hard Exclusive Meson
Production

more production channels sensitive to GPDs exist!

Experimental campaign

GPDs studied in various laboratories

→ need to cover a broad kinematic range

experiments

closed active planned

DVCS data

Kinematic cuts used in presented analyses:

$$Q^2 > 1.5 \text{ GeV}^2$$

 $-t/Q^2 < 0.2$

- ▼ HALLA
- ▲ CLAS
- HERMES
- COMPASS
- + H1 and ZEUS

Nucleon tomography

Nucleon tomography

$$q(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} H^q(x, 0, t = -\mathbf{\Delta}^2)$$

- Study of long. polarization with GPD H
- Study of distortion in transv. polarized nucleon with GPD E
- Impact parameter ${f b}_{\! \perp}$ defined w.r.t. center of momentum, such as $\sum x \, {f b}_{\perp} = 0$

Energy momentu tensor

Energy momentum tensor in terms of form factors:

$$\langle p', s' | \hat{T}^{\mu\nu} | p, s \rangle = \bar{u}(p', s') \left[\frac{P^{\mu}P^{\nu}}{M} A(t) + \frac{\Delta^{\mu}\Delta^{\nu} - \eta^{\mu\nu}\Delta^{2}}{M} C(t) + M\eta^{\mu\nu} \bar{C}(t) + \frac{P^{\mu}i\sigma^{\nu\lambda}\Delta_{\lambda}}{4M} A(t) + B(t) + D(t) + \frac{P^{\nu}i\sigma^{\mu\lambda}\Delta_{\lambda}}{4M} A(t) + B(t) - D(t) \right] u(p, s)$$

Access to total angular momentum and "mechanical" forces acting on quarks

$$A^{q}(0) + B^{q}(0) = \int_{-1}^{1} x \left[H^{q}(x,\xi,0) + E^{q}(x,\xi,0) \right] = 2J^{q}$$

Ji's sum rule

PARTONS project

- PARTONS platform to study GPDs
- Come with number of available physics developments implemented
- Addition of new developments as easy as possible
- To support effort of GPD community
- Can be used by both theorists and experimentalists

http://partons.cea.fr

PARTONS project

- PARTONS platform to study GPDs
- Come with number of available physics developments implemented
- Addition of new developments as easy as possible
- To support effort of GPD community
- Can be used by both theorists and experimentalists

■ More info in: Eur. Phys. J. C78 (2018) 6, 478

http://partons.cea.fr

 H^{u} @ xi = 0.2, t = -0.1 GeV², μ_{F}^{2} = 2 GeV²

Analysis

H. Moutarde, P. S., J. Wagner "Border and skewness functions from a leading order fit to DVCS data" Eur. Phys. J. C78 (2018) 11, 890

Goal: global extraction of Compton Form Factors (CFFs) from DVCS data using LO/LT formalism

Analysis done within PARTONS framework

Compton Form Factors

imaginary part

$$Im\mathcal{G}(\xi,t) = \pi G^{(+)}(\xi,\xi,t) = \pi \sum_{q} e_q^2 G^{q(+)}(\xi,\xi,t)$$

$$G^{q(+)}(x,\xi,t) = G^{q}(x,\xi,t) \mp G^{q}(-x,\xi,t)$$
$$G^{q(+)}(\xi,\xi,t) = G^{q_{\text{val}}}(\xi,\xi,t) + 2G^{q_{\text{sea}}}(\xi,\xi,t)$$

"-" for $G \in \{H, E\}$ "+" for $G \in \{\widetilde{H}, \widetilde{E}\}$

real part

$$Re\mathcal{G}(\xi,t) = \text{P.V.} \int_0^1 G^{(+)}(x,\xi,t) \left(\frac{1}{\xi-x} \mp \frac{1}{\xi+x}\right) dx$$

$$Re\mathcal{G}(\xi, t) = \text{P.V.} \int_0^1 G^{(+)}(x, x, t) \left(\frac{1}{\xi - x} \mp \frac{1}{\xi + x} \right) dx + C_G(t)$$

$$C_H(t) = -C_E(t)$$
 $C_{\widetilde{H}}(t) = C_{\widetilde{E}}(t) = 0$

connected to EMT FF

Ansatz

$$C_G^q(t) = 2 \int_{(0)}^1 \left(G^{q(+)}(x, x, t) - G^{q(+)}(x, 0, t) \right) \frac{1}{x} dx$$

• subtraction constant as analytic continuation of Mellin moments to j = -1

$$G^{q}(x,0,t) = \operatorname{pdf}_{G}^{q}(x) \exp(f_{G}^{q}(x)t) \qquad f_{G}^{q}(x) = A_{G}^{q} \log(1/x) + B_{G}^{q}(1-x)^{2} + C_{G}^{q}(1-x)x$$

- reduction to PDFs and correspondence to EFFs
- modify "classical" log(1/x) term by $B_{G}^{q}(1-x)^{2}$ in low-x and by $C_{G}^{q}(1-x)x$ in high-x regions
- polynomials found in analysis of EFF data → good description of data
- allow to use the analytic regularisation prescription
- finite proton size at x → 1

$$G^{q}(x,x,t) = G^{q}(x,0,t) \ g_{G}^{q}(x,x,t) \qquad g_{G}^{q}(x,x,t) = \frac{a_{G}^{q}}{(1-x^{2})^{2}} \left(1 + t(1-x)(b_{G}^{q} + c_{G}^{q} \log(1+x))\right)$$

- at x → 0 constant skewness effect
- at $x \rightarrow 1$ reproduce power behaviour predicted for GPDs in Phys. Rev. D69, 051501 (2004)
- t-dependence similar to DD-models with (1-x) to avoid any t-dep. at x = 1

1. Analysis of PDF parameterisations

$$pdf(x, Q^{2}) = x^{-g(\delta_{p}, \delta_{q}, Q^{2})} (1 - x)^{\alpha}$$

$$\times \sum_{i=0}^{4} g(p_{i}, q_{i}, Q^{2}) x^{i}$$

$$g(p, q, Q^2) = p + q \log \frac{Q^2}{Q_0^2}$$

2. Analysis of Elastic Form Factor data

3. Analysis of DVCS data

$$\chi^2/\text{ndf} = 2346.3/(2600 - 13) \approx 0.91$$

Results

Subtraction constant:

$$Q^2 = 2 \text{ GeV}^2$$

$$t = 0$$

Results

Nucleon tomography:

Results

Nucleon tomography:

$$\langle b_{\perp}^2 \rangle_q(x) = \frac{\int d^2 \mathbf{b}_{\perp} \ \mathbf{b}_{\perp}^2 q(x, \mathbf{b}_{\perp})}{\int d^2 \mathbf{b}_{\perp} \ q(x, \mathbf{b}_{\perp})}$$

Analysis

H. Moutarde, P. S., J. Wagner "Unbiased determination of Compton Form Factors" preliminary results

Goal: global extraction of Compton Form Factors (CFFs) from DVCS data using ANN technique

Analysis done within PARTONS framework

PARTONS NN 2019 -

Quality of fit:

$$\chi^2$$
/nPoints = 2243.5/2624 ≈ 0.85

No.	Collab.	Year	χ^2	n	χ^2/n
1	HERMES	2001	10.7	10	1.07
2		2006	5.5	4	1.38
3		2008	18.5	18	1.03
4		2009	34.7	35	0.99
5		2010	40.7	18	2.26
6		2011	16.7	24	0.70
7		2012	22.4	35	0.64
8	CLAS	2001		0	
9		2006	1.0	2	0.52
10		2008	376.4	283	1.33
11		2009	28.3	22	1.29
12		2015	306.6	311	0.99
13		2015	884.7	1333	0.66
14	Hall A	2015	231.8	228	1.02
15		2017	211.4	276	0.77
16	COMPASS	2018	3.0	2	1.50
17	ZEUS	2009	5.49	4	1.38
18	H1	2005	22.2	7	3.17
19		2009	23.4	12	1.95

@
$$t = -0.3 \text{ GeV}^2$$
, $Q^2 = 2 \text{ GeV}^2$

Subtraction constant

as function of ξ @ $|t| = 0.3 \text{ GeV}^2$, $Q^2 = 2 \text{ GeV}^2$

as function of Q^2 @ $\xi = 0.2$, $|t| = 0.3 \text{ GeV}^2$

as function of |t|@ $\xi = 0.2$, $Q^2 = 2 \text{ GeV}^2$

- Direct extraction of subtraction constant → encouraging precision
- As expected, no ξ behaviour observed \rightarrow consistency check
- Strong, model independent constraints on extraction of pressure information

SUMMARY

- Parameterizations of border and skewness functions
 - → basic properties of GPD as building blocks
 - → small number of parameters
 - → encoded access to nucleon tomography and subtraction constant
- Neural network parameterization of CFFs
 - → model independent extraction (also true for subtraction constant)
 - → powerful tool to study GPDs / reduction of model uncertainties
 - → perfect to study impact of future experiments