

Transverse Single-Spin Asymmetries

Represent a puzzle since first observed in 1975

$$A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

Expected to be $\mathcal{O}(10^{-4})$ in perturbative QCD

Suppressed as $\frac{\alpha_s m_q}{\sqrt{s}}$ in leading twist Instead they persist at RHIC energies at $\mathcal{O}(10^{-1})$

Higher-twist terms expected to play important role

Two Possible Mechanisms

In the transverse momentum factorization approach the asymmetry is generated by the Sivers effect and the Collins effect coupled to the transversity distribution

<u>Sivers effect:</u> Correlations between nucleon transverse spin and parton transverse momentum in the polarized nucleon

Initial-state effect

<u>Collins effect:</u> Fragmentation of transversely polarized parton into finalstate hadron

Final-state effect

<u>In the twist-3 collinear factorization approach</u> a complete description includes twist-3 functions from

The polarized proton

The unpolarized proton

The parton fragmentation

PHENIX at RHIC

Data taken during the 2015 RHIC run with the PHENIX detector

$$p^{\uparrow} + p$$
, $p^{\uparrow} + \text{Al}$, and $p^{\uparrow} + \text{Au}$ at $\sqrt{s_{NN}} = 200 \, \text{GeV}$

Vertical proton polarizations in the range $57-61\% \pm 3\%$

Beam bunches every 106 ns, alternating spin patterns

April 9, 2019 4

The PHENIX Detector

Two central multi-detector arms, two muon end-caps (North, South Arm)

Only the muon arms are used in this analysis

 $7.5\lambda_I$ hadron absorber

3 cathode-strip chambers (μ tracker) in radial field, $\int B \cdot dl = 0.72~{
m T} \cdot {
m m}$

5 planes of larocci tubes and steel absorbers, $\sim 5\lambda_I$ total (µID)

Acceptance $1.2 < \eta < 2.4$ (pol. *p-going*), $-2.2 < \eta < -1.2$ (*A*-going)

Data Selection

Charged hadrons identified using the muon arms:

Tracks stopping in the third or fourth plane of µID

Composition:
$$\pi^+/K^+/p \approx 45\%/47\%/5\%$$
 p fraction increases to 7% (9%) for p+Al (p+Au)

Estimated from measured ratios at mid-rapidity and simulations

PYTHIA or HIJING for mid-to-forward-rapidity conversion GEANT4 for passage through absorber

The Beam-Beam Counters provide z-vertex and min-bias trigger

Also event centrality based on charge distribution in the A-going side Coverage: $3.1 < |\eta| < 3.9$; full azimuthal acceptance

Results for positively-charged tracks at forward rapidity presented here

$$1.4 < \eta < 2.4, \ 0.1 < x_F < 0.2, \ 1.8 < p_T < 7.0 \,\text{GeV}/c$$

Smaller asymmetries expected for negative due to K/π cancellations

Extraction of TSSA

AN extracted using an unbinned maximum-likelihood method

$$\log \mathcal{L} = \sum_{i} \log(1 + P \cdot A_N \sin(\phi_{\text{pol}} - \phi_i))$$

 ϕ_i Track azimuthal angle relative to polarized-proton direction

 $\phi_{
m pol}$ Azimuthal angle of beam polarization $(\pm\pi)$

P Beam polarization

 A_N Determined by maximizing likelihood

Statistical uncertainty calculated from the 2nd derivative

$$\sigma^{2}(A_{N}) = \left[-\frac{\partial^{2} \mathcal{L}}{(\partial A_{N})^{2}} \right]^{-1}$$

A systematic uncertainty from comparison with sine-modulation results

Systematic Uncertainties

Main sources: smearing and method

Smearing: From Monte Carlo truth-vs.-reconstructed-bin matrix

Method: From Comparison of likelihood and modulation results
Other sources are negligible

Total uncertainty: Sum in quadrature

	$p^{\uparrow}+p$	p^{\uparrow} +Al	p^{\uparrow} +Au
A_N	3.11×10^{-2}	1.18×10^{-2}	0.10×10^{-2}
$\delta A_N^{ m stat}$	0.37×10^{-2}	0.74×10^{-2}	0.56×10^{-2}
$\delta A_N^{ m syst}$	$^{+0.05}_{-0.18} \times 10^{-2}$	$^{+0.09}_{-0.08} \times 10^{-2}$	$^{+0.10}_{-0.10} \times 10^{-2}$
$\delta A_N^{ m method}$	$^{+0.05}_{-0.05} \times 10^{-2}$	$^{+0.08}_{-0.08} \times 10^{-2}$	$^{+0.10}_{-0.10} \times 10^{-2}$
$\delta A_N^{ m smear}$	$^{+0.00}_{-0.17} \times 10^{-2}$	$^{+0.03}_{-0.00} \times 10^{-2}$	$^{+0.01}_{-0.00} \times 10^{-2}$

Statistical errors dominate

A-Dependence of Asymmetry

Clear A-dependence of A_N is seen

Decreasing from 3% for p+p to 1% for p+AI to consistent with 0 for p+AI

Statistical shown uncertainties as error bars

Systematic uncertainties as boxes

Fit function: $f(A^{1/3}) = \frac{A_N^0}{\left(A^{1/3}\right)^{\alpha}}$ Best value: $\alpha = 1.21$

Result inconsistent with $\alpha = 0$

Increase in χ^2 by about 20

Dependence on Number of Collisions

Also looked at A_N as a function of average number of N-N collisions

 $N_{
m coll}^{
m Avg}$ is also related to the effective target thickness

Calculated for each centrality class using the Glauber model

A decrease of A_N with the number of collisions is seen

Fit function: $f(N_{\rm coll}^{\rm Avg}) = \frac{A_0}{\left(N_{\rm coll}^{\rm Avg}\right)^{\beta}}$ Best value: $\beta = 1.19$

Again excluding $\beta = 0$

Discussion

First observation of nuclear dependence of transverse single-spin asymmetry

Observed in positive-hadron production at forward rapidities

Disfavors A-independent scenarios for explaining TSSA in hadron production at similar kinematics

Also observed dependence on number of collisions

Suggests that the suppression of A_N is related to the density of nuclear matter traversed by the proton

May be related to novel effects in p+A scattering, such as multiple parton scattering

Or interaction of the parton with hot QCD matter

Results should provide new insights into the origins of A_N

May also provide new tools for studying small-system collisions