

Dark Matter searches with ATLAS

Patrick Rieck

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

on behalf of the ATLAS collaboration

XXVII International Workshop on Deep Inelastic Scattering and Related Subjects Torino, 9 April 2019

 Astrophysics / cosmology: Most of the matter content of the universe is transparent.

- Astrophysics / cosmology: Most of the matter content of the universe is transparent.
- Appealing scenario: Weakly Interacting Massive Particle(s)

- Astrophysics / cosmology: Most of the matter content of the universe is transparent.
- Appealing scenario: Weakly Interacting Massive Particle(s)
- Direct and indirect searches: confirmation of or pressure onto the WIMP hypothesis in the next few years

- Astrophysics / cosmology: Most of the matter content of the universe is transparent.
- Appealing scenario: Weakly Interacting Massive Particle(s)
- Direct and indirect searches: confirmation of or pressure onto the WIMP hypothesis in the next few years

How does ATLAS contribute to the search for Dark Matter?

- Collider approach to Dark Matter
- Dark Matter signatures and searches
- Combinations of Dark Matter searches

- Collider approach to Dark Matter
- Dark Matter signatures and searches
- Combinations of Dark Matter searches

 Direct detection: nuclear recoil from elastic scattering

- Direct detection: nuclear recoil from elastic scattering
- Indirect detection: dark matter annihilation

- Direct detection: nuclear recoil from elastic scattering
- Indirect detection: dark matter annihilation
- Collider searches: associated production of dark matter and SM particles

- Direct detection: nuclear recoil from elastic scattering
- Indirect detection: dark matter annihilation
- Collider searches: associated production of dark matter and SM particles

General Strategies

- Direct detection: nuclear recoil from elastic scattering
- Indirect detection: dark matter annihilation
- Collider searches: associated production of dark matter and SM particles

Comparison of search strategies:

	Direct	Indirect	Collider - LHC
Typical mass range Observables beyond m_{χ} Model dependence	10 GeV $< m_{\chi} <$ 1 TeV	10 GeV < m_{χ} <100 TeV	$m_{\chi} \lesssim$ 1 TeV
	$\sigma_{\chi N \rightarrow \chi N}$	$\sigma_{\chi\chi \rightarrow NN}$	many
	DM on Earth	DM in space	particle physics

Interpretation of collider Dark Matter searches

Recent years: growing interest in DM frameworks which are not necessarily connected to SUSY - simplified models as a generic approach

- Recent years: growing interest in DM frameworks which are not necessarily connected to SUSY - simplified models as a generic approach
 - Simplified signal models

- Recent years: growing interest in DM frameworks which are not necessarily connected to SUSY - simplified models as a generic approach
 - Simplified signal models
 - e.g. a single mediator Φ (scalar or vector-coupling, parity +1 or -1)

- Recent years: growing interest in DM frameworks which are not necessarily connected to SUSY - simplified models as a generic approach
 - Simplified signal models
 - e.g. a single mediator Φ (scalar or vector-coupling, parity +1 or -1)
 - Assumption: decoupling of further, heavier particles at LHC energies

- Recent years: growing interest in DM frameworks which are not necessarily connected to SUSY - simplified models as a generic approach
 - Simplified signal models
 - e.g. a single mediator Φ (scalar or vector-coupling, parity +1 or -1)
 - Assumption: decoupling of further, heavier particles at LHC energies
 - Prediction of different signatures
 - Dark matter + SM particle X
 - SM resonances

Interpretation of collider Dark Matter searches

- Recent years: growing interest in DM frameworks which are not necessarily connected to SUSY - simplified models as a generic approach
 - Simplified signal models
 - e.g. a single mediator Φ (scalar or vector-coupling, parity +1 or -1)
 - Assumption: decoupling of further, heavier particles at LHC energies
 - Prediction of different signatures
 - Dark matter + SM particle X
 - SM resonances

 Dark Matter candidates from Supersymmetry with R-parity conservation (UV-complete models), covered in <u>tomorrows WG3 sessions</u>

Collider approach to Dark Matter ATLAS Run 2 Dataset

 Large dataset collected by ATLAS in Run 2 (2015-2018):

> $\sqrt{s}_{pp} = 13 \text{ TeV}$ $\int L dt = 139 \text{ fb}^{-1}$

- Analysis of this dataset ongoing; up to 80 fb⁻¹ used for the results presented in the following
- *E*^{miss}_T Trigger used for most Dark Matter searches, fully efficient for *E*^{miss}_T ≥ 200 GeV

ATLAS Public Results

- Collider approach to Dark Matter
- Dark Matter signatures and searches

Outline

Collider approach to Dark Matter

• Dark Matter signatures and searches: E_T^{miss} +

- Jet
- ► H(bb)
- W/Z(qq)
- ► Z(ℓℓ)
- "VBF"

Combinations of Dark Matter searches

Dark Matter Signatures: Monojet

► $E_{\rm T}^{\rm miss}$ > 250 GeV + up to 4 jets \Rightarrow sensitivity to several new phenomena

- Signal region (no leptons) + W(eν), W(μν), Z(μμ) and top-quark control regions
 - ► High precision theoretical predictions of $W/Z p_T$ distributions (NLO EWK) \Rightarrow accurate modelling of the E_T^{miss} distribution in the signal region
 - Combined fit of signal and control regions

Dark Matter Signatures: Monojet

Patrick Rieck · MPP Munich

Dark Matter Signatures: Monojet

 Interpretation wrt. various signal models. Here: Dark Matter pair production via an axial-vector mediator.

- ► Associated production of Dark Matter and a Higgs boson ⇒ no "ISR model", probing dark matter interactions more directly
- Aiming for $h \rightarrow bb$ decays (largest branching ratio)

- ► Associated production of Dark Matter and a Higgs boson ⇒ no "ISR model", probing dark matter interactions more directly
- Aiming for h→bb decays (largest branching ratio)
- 2 topologies, depending on the Higgs boson momentum
 - Resolved: Pair of separated jets

- ► Associated production of Dark Matter and a Higgs boson ⇒ no "ISR model", probing dark matter interactions more directly
- Aiming for h→bb decays (largest branching ratio)
- 2 topologies, depending on the Higgs boson momentum
 - Resolved: Pair of separated jets
 - Boosted: Single large-Radius jet

ď

High energy

Z'. A

signature

- Boosted topology: using large-R jet substructure with two b-tagged track jets
- For large p^h: track jets close to each other ⇒ Fixed-Radius (FR) track jets merge
- ► Hence decrease the track jet radius as p_T^{track jet} increases ⇒ Variable-Radius (VR) track jets

large-R

- ► Run 2 data from 2015 2017: $\int L dt = 80 \text{ fb}^{-1}$
- Discriminating variables: di-jet or large-R jet mass, E_T^{miss}
- Interpret results in terms of mass limits on new mediators
- Compared to predecessor analysis: improvement in particular due to the use of Variable-Radius track jets
 - Relevant also for other searches for new phenomena with ATLAS

Dark Matter Signatures: $W/Z(qq)+E_T^{miss}$

- ► Different interpretations, including H → inv. decays
- Considering both resolved and boosted W/Z→qq decays
- E^{miss}_T for different *b*-tag multiplicities as discriminating variable variable

Dark Matter Signatures: $Z(\ell \ell) + E_T^{miss}$

- ► Different interpretations, including H → inv. decays
- Single lepton triggers ⇒ sensitivity to signals with lower E_T^{miss}
- E^{miss}_T in *ee* and μμ signal regions as discriminating variable

Patrick Rieck · MPP Munich

Dark Matter Signatures: VBF+ E_{T}^{miss}

- ► Events with 2 jets with a rapidity difference $|\Delta \eta_{jj}| > 4.8$ and $E_T^{miss} > 180 \text{ GeV}$ \Rightarrow distinct signature ("Vector Boson Fusion")
- Background constraints derived from W+jets and Z+jets control regions
- Max. Likelihood Fit using three bins of m_{dijet} starting at 1 TeV
- ► Resulting observed (expected) limit: $\mathcal{B}(H \rightarrow inv.) < 0.37 (0.28^{+0.11}_{-0.08})$

(without constraints from Higgs boson observations)

Dark Matter Signatures: More Searches

More Mono-X signatures

- Further Dark Matter production modes and alternative Standard Model decays
 - Mono-Photon
 - Mono-H(γγ)
 - Mono-Top-Quark
 - Dark Matter + heavy flavour pair production

New Resonances

- Complementary constraints within the simplified model context
- <u>Dedicated ATLAS talk</u> by Johannes Erdmann tomorrow

- Collider approach to Dark Matter
- Dark Matter signatures and searches
- Combinations of Dark Matter searches

- Collider approach to Dark Matter
- Dark Matter signatures and searches
- Combinations of Dark Matter searches
 - Spin-1 mediators
 - $H \rightarrow$ invisible decays

Vector Mediators

- Summary of exclusion limits of dark matter and resonance searches, both hadronically and leptonically
- Complementarity: large exclusion range achieved via combination
- Similar results for axial-vector mediators

Patrick Rieck · MPP Munich

Vector Mediators, comparison with direct searches

Vector Mediators, comparison with direct searches

m_χ [TeV]

Vector Mediators, comparison with direct searches

For the model parameters chosen here: higher sensitivity of the $E_{\rm T}^{\rm miss}$ + jet search compared to direct searches at low values of m_{χ} (where the χ -nucleon elastic scaterring cross-section is small)

Higgs-boson decays to weakly interacting particles

Patrick Rieck · MPP Munich

Dark Matter Searches at ATLAS

Summary

- Analysed Run 2 data with up to $\int L dt = 80 \text{ fb}^{-1}$
- Numerous final states covered
- Interpretation in view of simplified models

Conclusions

- 1. Complementarity of direct, indirect and collider Dark Matter searches
- 2. Complementarity of different final states
- 3. Analysis improvements due to both increased statistics and new analysis techniques, both to come with the analysis of the full Run 2 dataset

Patrick Rieck · MPP Munich

$Z(\nu\nu)/Z(\ell\ell)$ ratio measurement

Differential measurements of

 $R^{\text{miss}} = \frac{\sigma_{\text{fid}}(Z \rightarrow \nu \nu + \text{jets})}{\sigma_{\text{fid}}(Z \rightarrow \ell \ell + \text{jets})}$

- Two regions with different unfoldings
 - ► ≥1 jet: E_{T}^{miss}
 - VBF: $E_{\rm T}^{\rm miss}$, dijet mass, dijet $\Delta \varphi$
- Allowing to constrain many (future) jets + E_T^{miss} BSM models

Photon+ E_{T}^{miss}

- E^γ_T and E^{miss}_T > 150 GeV + up to one jet
 - Photon trigger allows for lower *E*^{miss}_T values compared to the mono-jet analysis
- Again, combined fit of signal and control regions using E_T^{miss}

Patrick Rieck · MPP Munich

Mono-h($\gamma\gamma$)

- Circumvent E^{miss}_T trigger threshold of the Mono-h(bb) analysis: h → γγ
- ► $\mathcal{BR}(h \to \gamma \gamma) < \mathcal{BR}(h \to bb)$, but better m_h resolution
- Z'+2HDM limits, also referring to the spin-indep. DM-Nucleon cross-section

Single top + E_{T}^{miss}

- Resonant and non-resonant top + dark matter production (+ Vector-like T-quark search with $T \rightarrow tZ$ decays)
- Several reducible backgrounds (SM top), negligible irreducible background: FCNCs
- Two approaches: leptonic top decays and boosted hadronic top decays

1812.09743, subm. to JHEP

Patrick Rieck · MPP Munich

Heavy Flavour Quarks + *E*^{miss}

- Several models with new scalar particles mediating between SM and DM particles
- Avoid constraints from flavour physics
 Yukawa couplings set proportional to fermion masses
- Five signal regions sensitive to different BSM scenarios + several control regions for background normalisation
- Limits on new particle masses + model independent limits on detector level cross-sections

2HDM + Pseudoscalar Model

- Careful extension of the SM avoiding numerous constraints, UV complete
- Dark matter: fermion, SM gauge group singlet
- Many relevant production modes; notably including resonant production H → aZ and A → ah

2HDM + Pseudoscalar

- UV-complete model, avoiding constraints from direct searches
- Rich phenomenology with several important final states
- Proposed in JHEP05 2017 138, i.e. in the middle of Run 2 ⇒ desire for reinterpretation
 - Rerunning analyses, in case of Mono-H(bb) semi-automatically - see this <u>ATLAS contribution at last week's</u> LHC reinterpretation workshop
- Ability to perform reinterpretations becoming more important

Mono-Higgs(bb) Improvement due to VR track jets

