Searches for Electroweak SUSY and for Long-lived Particles at the LHC

Hide Oide (Università di Genova → Tokyo Tech) on behalf of the ATLAS and CMS Collaborations

2019-04-10

🛧 Tokyo Tech

DIS 2019, Torino, Italia 1

Introduction

- SUSY: hypothetical fundamental space-time symmetry between fermions and bosons.
- ★ Presence of superpartners around the EW scale can mitigate the hierarchy problem of the SM.
- ★ SUSY must be broken how SUSY-breaking happens hints the physics of the very highenergy scale.
- ★ If R-parity is exactly conserved, the lightest supersymmetric particle (LSP) can be a dark matter candidate.

— each of CMS and ATLAS collected $\sim 140 \text{ fb}^{-1}$.

- \star Searches are actively in progress.
- ★ Early full Run 2 results are coming out.

This talk covers selected recent search results of:

- Electroweak SUSY production
- Long-lived (SUSY and more...) scenarios

Electroweak SUSY production searches

Examples of simplified models

Electroweak SUSY production searches

Representative searches: Wh (e.g. 1L+bb) or WW (e.g. di-lepton) final states.

Wh

W decay

h decay

Key search feature: h(125) mass

- ★ A large fraction of $C_2 \rightarrow N_1$ decay with higgs emission expected when $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) > m(h)$ and $m(\tilde{h}) > m(\tilde{W})$.
- **★** C₁ decay: W(qq) or W(Lv)
- ★ C₂ decay: Various higgs decay branches possible e.g. :
 - ★ h(bb)
 - ★ either h(WW), h(ZZ), h($\tau\tau$) → 1L+X
 - ★ h(γγ)

- ★ Representative signatures
 - ★ All-hadronic (0L) + 2b
 - **★** Exact 1L + 2b
 - **★** Exact $1L + 2\gamma$
 - ★ Same-sign 2L or 3L

Complementary sensitivities

Wh: 1L + 2b

- ★ Lepton-triggered → well-isolated lepton
- ★ Transverse mass $m_T > 150 \text{ GeV}$
- ★ Require large contransverse mass $m_{\rm CT}$ > 170 GeV for $t\bar{t}$ rejection.
- ★ h(bb) resonance at 90 GeV < m(bb) < 150 GeV.
- ★ 2 SRs: (1) 125 GeV < MET < 200 GeV and (2) MET > 200 GeV
- ★ No significant excess observed.

Low-MET SR

High-MET SR

CMS-SUS-16-043, 36 fb⁻¹

Excluding C₁ 220-490 GeV for massless N₁

Wh: OL + 2b

- ★ MET trigger → offline MET > 200–250 GeV required.
- ★ h(bb) resonance at 105 GeV < m(bb) < 135 GeV.
- **★** Require large contransverse mass $m_{\rm CT}$ for $t\bar{t}$ rejection.
- * No excess observed in the signal region.

Sensitive to high-mass end compared to other channels.

★ Exclusion up to ~690 GeV wino.

$Wh: 1L + \gamma\gamma$ ATLAS-SUSY-2017-01, (submitted to PRD), 36 fb⁻¹

- \star h(yy) narrow peak search.
- * SM Wh process as an irreducible peaking background. Estimated from NLO cross section
- **★** Non-peaking contributions are estimated from side-band in 105 GeV < $m(\gamma\gamma)$ < 160 GeV.

90È ATLAS

1Ιγγ

80È

70Ē 60⊨

50E 40È 30 20

Mild upper fluctuation observed.

√s=13 TeV, 36.1 fb⁻¹, All limits at 95% CL

PE-150 160 170 180 190 200 210 220 230 240 250

- - Expected Limit (±1 σ.

SR channels	SR1Lyy-a	SR1Lγγ-b
Observed events	2	9
Total bkg events	0.37 ± 0.22	5.3 ± 1.0
Wh background	0.09 ± 0.01	1.8 ± 0.3
Other peaking backgrounds	0.04 ± 0.01	0.19 ± 0.02
Non-peaking background	0.22 ± 0.22	3.3 ± 0.9

Discovery p₀ values

2019-04-10

0.03 (~1.9σ)

0.09 (~1.3σ)

 $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ [GeV]

WW, di-lepton + E_{T}

- * Opposite-sign di-leptons. Same-flavor (ee, µµ; Z-veto) and different-flavour (eµ) categories.
- * Major backgrounds: VV and tt (irreducible)
- ★ Di-lepton trigger, both leptons offline $p_{\rm T} > 25 {\rm ~GeV}$
- \star Di-lepton invariant mass > 25 GeV, $m(Z) \pm 30$ GeVvetoed for SS.
- ★ Allow up to single central light jet (signal region is classified)
- \star Signal region:
 - ★ $E_{\rm T}^{\rm miss}$ > 110 GeV, $E_{\rm T}^{\rm miss}$ signif. > 10
 - ★ Stransverse mass $m_{T2} > 100 \text{ GeV}$
 - **★** SR is binned in m_{T2}

No significant deviation from the background est.

WW, di-lepton + E_{T}^{r}

- **\star** Opposite-sign di-leptons. Same-flavor (ee, $\mu\mu$; Z-veto) and different-flavour (eµ) categories.
- * Major backgrounds: VV and tt (irreducible)
- ★ Di-lepton trigger, both leptons offline $p_{\rm T} > 25 {\rm ~GeV}$
- \star Di-lepton invariant mass > 25 GeV, $m(Z) \pm 30$ GeVvetoed for SS.
- ★ Allow up to single central light jet (signal region is classified)
- \star Signal region:
 - ★ $E_{\rm T}^{\rm miss}$ > 110 GeV, $E_{\rm T}^{\rm miss}$ signif. > 10
 - **★** Stransverse mass $m_{T2} > 100 \text{ GeV}$
 - **★** SR is binned in m_{T2}

Chargino pair: excluding up to ~420 GeV

Slepton pair: excluding up to ~680 GeV

LLP Search Classes

LLP Search Classes

Direct	Ref. Code	Metastab	Analysis	$IIP Decay D \mathscr{L}_{e}[fb_{o}^{-1}]$
Monop	SUSY-2016-06	JHEP 06 (2018) 022 heavy ch	Disappearing track	36
	SUSY-2016-31	Accepted by PRD	Stable and meta-stable massive charg	ged particles 36
	<u>SUSY-2016-32</u>	Phys. Lett. B 788 (2019) 96	Stable massive charged particles (dE/	/dx + ToF) 32
	EXOT-2017-13	Phys. Rev. D 99 (2019) 052003	Multi-charged particle searches	36
	SUSY-2016-08	Phys. Rev. D 97 (2018) 052012	Displaced vertex + MET	33
	CONF-2019-006	- ***	Displaced vertex + muon	136
	EXOT-2017-25	Submitted to EPJC	Displaced jets (Calorimeter)	36
	EXOT-2017-24	Accepted by PRL	Displaced jet (Calorimeter) + Z	ets 36
	EXOT-2017-05	Phys. Rev. D 99 (2019) 052005	Displaced jets (Muon Spectrometer)	36
	EXOT-2017-03	Phys. Rev. D 99 (2019) 012001	Non-collimated muons	36
	<u>HIGG-2017-05</u>	JHEP 10 (2018) 031	h(125) \rightarrow aa, a(LLP) \rightarrow bb	36
	CONF-2016-042	- OLectron S	Displaced lepton-jets	3.4
	EXO-16-044	JHEP 08 (2018) 016	Disappearing track	35.7
CMS	<u>SUS-19-005</u>	ns 💥	Disappearing track	vertex
	EXO-15-010	PRD 94 (2016) 112004	Stable massive charged particles (dE/	'dx+ToF) 2.5
	EXO-17-018	PRD 98 (2018) 092011	Displaced vertex + jets	38.5
	EXO-16-003	PLB 780 (2018) 432	Inclusive displaced jets	2.6
	PAS-EXO-16-022	 Displaced jets 	Displaced leptons	2.6
	PAS-EXO-19-001	_ (Calo-ratio) 💥	Delayed jets	Displaced 137
	EXO-16-004	JHEP 08 (2018) 130	Stopped particles	vertex in MS 39

Direct detection of massive charged particles

Lifetime coverage >O(0.1 ns) up to stable. Observables depending on lifeime

Hideyuki Oide

2019-04-10

Direct detection of massive charged particles

ATLAS-SUSY-2016-032, submitted to PRD, 36fb⁻¹

- ★ Recent update for stable charged particle search using ToF (and dE/dx) for 2015+2016 dataset.
- Various strong limits interpretations for R-hadron, charginos or sleptons depending on signal topologies.

Stable R-hadron lifetime excluded up to ~2 TeV. Overall quite complementary searches.

Displaced vertices with jets

CMS-EXO-18-007, 36fb⁻¹

CMS/

Displaced vertices with jets

- ★ Dedicated displaced jet HLT:
 - ★ $H_T > 350 \text{ GeV}$, ≥2 **displaced jets** w/ $p_T > 40 \text{ GeV}$ and $|\eta| < 2.0$ (*) displaced jets: associating ≤2 prompt tracks, ≥1 displaced tracks
 - ★ Offline $H_T > 400 \text{ GeV}$
- ★ Jet-seeded displaced vertex reconstruction
 - ★ Seed tracks: associated to a di-jet pair, IP signif. > 5 or |d₀| > 0.5 mm
 - **★** Vertex mass > 4 GeV and pT > 8 GeV
 - ★ Track's second largest IP signif. > 15
- ★ Charged energy fraction of the di-jet associated with the most compatible primary vertices (sort of displaced version of "jet-vertex fraction").
- ★ Displaced jet likelihood score > 0.9993

	Selection on $H_{\rm T}$	Number of dijets	Expected	Observed
40	$0 < H_{\rm T} < 450 {\rm GeV}$	1	0.42 ± 0.14 (stat) ± 0.01 (syst)	0
45	$0 < H_{\rm T} < 550 {\rm GeV}$	1	$0.23\pm0.08(\mathrm{stat})\pm0.07(\mathrm{syst})$	0
	$H_{\rm T} > 550 {\rm GeV}$	1	$0.19 \pm 0.07 ({ m stat}) \pm 0.05 ({ m syst})$	1
	—	>1	0.16 ± 0.11 (stat) ± 0.06 (syst)	0

Observed events in the SRs are consistent with data-driven estimated QCD background yields. Excluded ~2.3 TeV GMSB $\tilde{g}_{(LLP)} \rightarrow g\tilde{G}$ ~2.4 TeV RPV (UDD) $\tilde{g}_{(LLP)} \rightarrow tbs$

$\tilde{g}_{(\text{LLP})} \rightarrow g\hat{C}$

$\tilde{g}_{(\text{LLP})} \rightarrow tbs$

Displaced vertices with muons ATLAS-CONF-2019-006, 136fb-1

Benchmark model: A tiny RPV coupling would make stop alive for O(1ns)

LOD

Signal DV: r > 4 mm, ≥ 3 tracks, $m_{vis} > 20$ GeV and isolated non-prompt muon (decent cosmic ray veto)

Resembling BGs: cosmic, b-jets, instrumental fakes

Displaced vertices with muons ATLAS-CONF-2019-006, 136fb-1

Vertex Seed Tracks

For DV+ μ : around 20-30% of the signal efficiency recovery.

★ For full Run-2 DV analyses: a significant improvement in the vertex reconstruction algorithm in enriching vertex properties of multiplicity and mass.

Full RUNZ

Displaced vertices with muons ATLAS-CONF-2019-006, 136fb-1

- FUILBUNZ \star MET or displaced muon trigger; exclusive 2 SRs. Cosmic ray veto + hadronic interaction veto.
 - **★** Robust data-driven background estimation for 3 exclusive categories (transfer factor from CR to SR for each of cosmic, heavy-flavor, fake Bkg components)
 - \star SR yields are consistent with background estimation.
 - **\star** Excluding stop mass up to 1.75 TeV around ~0.1 ns lifetime.

- * CMS and ATLAS have been performing wide-range SUSY searches.
 - ★ Today I focused on most-recent results.
- ★ Quite strong limits have been set so far, including R-parity-violating or long-lived scenarios (incl. other BSM scenarios).
- ★ Unfortunately, no SUSY/BSM discovery so far...
- ★ Early preliminary full Run-2 dataset results were presented, with new ideas or techniques.
- ★ More of full dataset analyses expected to come...

SUSY searches in LHC

- ★ Usual to assume *R*-parity is conserved: a pair-production of sparticles results in final states with 2x LSPs, yielding a significant E_{T}^{miss} .
- ★ Can suppose versatile sparticle mass spectra: branch search analyses depending on the characteristic of the visible (SM) final-state objects.
- ★ On top of general/comprehensive searches, dedicated searches for specifically interesting phenomenological scenarios.

SUSY searches in LHC

- ★ Most classically, select/optimize the signal regions where the SM backgrounds deplete while a good SUSY acceptance is ensured.
- \star Estimate the background yields using various control regions.
 - ★ Validate the BG estimation of each enriched sub-component in the vicinity of signal regions (VRs).
- \star Unblinding SRs after validating the BG estimation.
 - * Exclusion limits are drawn if no significant excess is observed.

The R-parity violation

R-parity-violating (RPV) superpotential

- **\star** No fundamental reasons to prohibit RPV from QFT if R-parity conserves, it's accidental.
- * Large constraints from low-energy limits e.g. proton decay at Super KamiokaNDE.

$$\mathcal{W}_{\text{RPV}} = \underbrace{\mu_i l_i h_u}_{\text{bilinear}} + \underbrace{\lambda_{ijk} l_i l_j \bar{e}_k}_{\text{LLE}} + \underbrace{\lambda'_{ijk} l_i q_j \bar{d}_k}_{\text{LQD}} + \underbrace{\lambda''_{ijk} \bar{u}_i \bar{d}_j \bar{d}_k}_{\text{UDD}}$$

- **★** Different topologies compared to R-parity-conserving (e.g. not always $E_{\rm T}^{\rm miss}$).
- * In LHC searches, usually assume only a specific RPV term and search for it.
- * Some signatures are similar to lepto-quark pair production or RPC-SUSY scenarios.

Long-lived cases

- ★ Many BSM scenarios have a possibility of creating a BSM particle with a macroscopic or stable lifetime (i.e. very narrow decay width) in the LHC.
- ★ Given that comprehensive searches are demanded, the importance of long-lived particle searches have been highlighted in recent years.
- ★ Pros:
 - ★ A unique probe to super-compressed or small coupling BSM scenarios.
 - ★ In many cases, zero or small SM backgrounds can be achieved; can expect extension of search sensitivity as luminosity gains.
- ★ Cons:
 - The LHC experiment program isn't primarily designed/optimized to perform longlived scenarios. Sensitivity is largely determined by the geometry.
 - ★ Often dedicated techniques are needed, and cares are needed in understanding of reconstruction and specialized data flow.
 - Backgrounds are often instrumental, cosmic ray: hard to predict using common MC simulations. Need to know your instruments, and in many cases data-driven background estimation is required.

Lifetime summary

ATLAS Long-lived Particle Searches* - 95% CL Exclusion **ATLAS** Preliminary Status: March 2019 $\int \mathcal{L} dt = (3.4 - 36.1) \text{ fb}^{-1} \sqrt{s} = 8, 13 \text{ TeV}$ Signature $\int \mathcal{L} dt [fb^{-1}]$ Model Lifetime limit Reference RPV $\chi_1^0 \rightarrow eev/e\mu v/\mu\mu v$ χ_1^0 lifetime 1504.05162 displaced lepton pair 20.3 7-740 mm $m(\tilde{g}) = 1.3 \text{ TeV}, m(\chi_1^0) = 1.0 \text{ TeV}$ $\operatorname{GGM} \chi_1^0 \to Z\tilde{G}$ displaced vtx + jets χ_1^0 lifetime $m(\tilde{g}) = 1.1 \text{ TeV}, m(\chi_1^0) = 1.0 \text{ TeV}$ 20.3 6-480 mm 1504.05162 $\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$ χ_1^0 lifetime displaced dimuon 32.9 0.029-18.0 m $m(\tilde{g}) = 1.1 \text{ TeV}, m(\chi_1^0) = 1.0 \text{ TeV}$ 1808.03057 χ_1^0 lifetime GMSB non-pointing or delayed γ 0.08-5.4 m SPS8 with A= 200 TeV 20.3 1409.5542 AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^{+} \chi_1^{-}$ disappearing track 20.3 χ_1^{\pm} lifetime 0.22-3.0 m $m(\chi_1^{\pm}) = 450 \, \text{GeV}$ 1310.3675 SUSY χ_1^{\pm} lifetime AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$ 0.057-1.53 m $m(\chi_1^{\pm}) = 450 \, \text{GeV}$ disappearing track 36.1 1712.02118 $m(\chi_1^{\pm}) = 450 \text{ GeV}$ AMSB $pp \rightarrow \chi_1^{\pm}\chi_1^0, \chi_1^{\pm}\chi_1^ \chi_1^{\pm}$ lifetime 1.31-9.0 m large pixel dE/dx 18.4 1506.05332 Stealth SUSY 0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$ 1504.03634 2 ID/MS vertices 19.5 **Š** lifetime Split SUSY large pixel dE/dx 36.1 *ğ* lifetime > 0.9 m $m(\tilde{g}) = 1.8 \text{ TeV}, m(\chi_1^0) = 100 \text{ GeV}$ 1808.04095 Split SUSY displaced vtx + E_T^{miss} g lifetime 0.03-13.2 m $m(\tilde{g}) = 1.8 \text{ TeV}, m(\chi_1^0) = 100 \text{ GeV}$ 1710.04901 32.8 Split SUSY 0 ℓ , 2 – 6 jets + E_T^{miss} 36.1 j lifetime 0.0-2.1 m $m(\tilde{g}) = 1.8 \text{ TeV}, m(\chi_1^0) = 100 \text{ GeV}$ ATLAS-CONF-2018-003 $H \rightarrow s s$ low-EMF trk-less jets, MS vtx 36.1 0.18-120.0 m m(s)= 25 GeV s lifetime 1902.03094 FRVZ $H \rightarrow 2\gamma_d + X$ 2 e-, µ-jets yd lifetime 0-3 mm $m(\gamma_d) = 400 \, \text{MeV}$ 1511.05542 20.3 10% FRVZ $H \rightarrow 2\gamma_d + X$ 2 e-, μ-, π-jets γ_d lifetime 0.022-1.113 m $m(\gamma_d) = 400 \text{ MeV}$ ATLAS-CONF-2016-042 3.4 П ВВ FRVZ $H \rightarrow 4\gamma_d + X$ $m(\gamma_d) = 400 \text{ MeV}$ ATLAS-CONF-2016-042 2 e-, μ-, π-jets γ_d lifetime 0.038-1.63 m 3.4 Higgs $H \rightarrow Z_d Z_d$ 0.009-24.0 m displaced dimuon 32.9 Z_d lifetime $m(Z_d) = 40 \text{ GeV}$ 1808.03057 $H \rightarrow ZZ_d$ 2 e, µ + low-EMF trackless jet 36.1 Z_d lifetime 0.22-5.3 m $m(Z_d) = 10 \text{ GeV}$ 1811.02542 VH with $H \rightarrow ss \rightarrow bbbb$ 1 – 2ℓ + multi-b-jets $\mathcal{B}(H \rightarrow ss) = 1, m(s) = 60 \text{ GeV}$ 36.1 s lifetime 0-3 mm 1806.07355 $\Phi(200 \text{ GeV}) \rightarrow ss$ **0.41-51.5 m** $\sigma \times \mathcal{B} = 1$ pb, m(s) = 50 GeV low-EMF trk-less jets, MS vtx 36.1 s lifetime 1902.03094 Scalar $\Phi(600 \text{ GeV}) \rightarrow ss$ low-EMF trk-less jets, MS vtx 36.1 0.04-21.5 m s lifetime $\sigma \times \mathcal{B} = 1 \text{ pb}, m(s) = 50 \text{ GeV}$ 1902.03094 low-EMF trk-less jets, MS vtx 36.1 0.06-52.4 m σ×B= 1 pb, m(s)= 150 GeV $\Phi(1 \text{ TeV}) \rightarrow s s$ s lifetime 1902.03094 HV Z'(1 TeV) $\rightarrow q_v q_v$ 2 ID/MS vertices 20.3 s lifetime 0.1-4.9 m $\sigma \times \mathcal{B} = 1 \text{ pb}, m(s) = 50 \text{ GeV}$ 1504.03634 Other HV Z'(2 TeV) $\rightarrow q_{v} q_{v}$ 0.1-10.1 m 2 ID/MS vertices 20.3 s lifetime $\sigma \times \mathcal{B} = 1 \text{ pb}, m(s) = 50 \text{ GeV}$ 1504.03634 0.01 0.1 10 1 100 cτ [m] √s = 13 TeV √s = 8 TeV 0.1 10 100 0.01 1 *Only a selection of the available lifetime limits is shown. τ [ns]

Hideyuki Oide 2019-04-10

Geometry and lifetime

LLP searches complete what we can do with the collider experiments.

Disappearing track: a highly-compressed spectrum

<u>CMS-SUS-19-005-PAS</u>, 137 fb⁻¹

★ A specific SUSY scenario (pure wino) like AMSB.

- ★ C₁-N₁ masses splitting arises only by dynamical loop running correction (~150 MeV)
- **\star** Long-lived C₁ production via strong interaction.
- ★ Long-lived C₁ decays to almost degenerated N₁, emitting a soft pion which is hard to be visible in the reconstruction.
- ★ Signature in : isolated high-p⊤ track with no presence of hits in the outermost 2 layers.
 (short track) further classified by track length.

Require no hits in the outermost 2 layers

 \widetilde{g}

 $\pi_{\rm soft}$

 $\Delta m \sim \mathcal{O}(100 \text{ MeV})$

 $\Delta M(\tilde{g},\tilde{\chi})$

 $\tilde{\chi}_{1(\text{LLP})}^{\perp}$

Newuni

Disappearing track: a highly-compressed spectrum

<u>CMS-SUS-19-005-PAS</u>, 137 fb⁻¹

- **★** Trigger: mixture of H_T , MET, H_T^{miss} and jet p_T .
- * Backgrounds: fake (combinatoric), charged hadrons, leptons.
 - Transfer factor for each component estimated mostly pure data-driven, for longer track case, assisted by MC simulation.
- Signal region defined separately for 2016 and 2017+2018 (pixel detector upgrade in between)

No significant excess observed in multiple SRs

WEW RUNZ

(MS

Disappearing track: a highly-compressed spectrum

g

 $\Delta M(\tilde{g},\tilde{\chi})$

 $\tilde{\chi}_{1(\text{LLP})}^{\pm}$

 $\overline{\tilde{\chi}_{1}^{0}}$

<u>CMS-SUS-19-005-PAS</u>, 137 fb⁻¹

- **★** Trigger: mixture of H_T , MET, H_T^{miss} and jet p_T .
- ★ Backgrounds: fake (combinatoric), charged hadrons, leptons.
 - ★ Transfer factor for each component estimated mostly pure data-driven, for longer track case, assisted by MC simulation.
- Signal region defined separately for 2016 and 2017+2018 (pixel detector upgrade in between)

Excluding gluino mass up to 2.46 TeV at the most sensitive lifetime (50 cm)

WEW RUNZ

Delayed jet

WEW RUNZ

- \star Assume a BSM particle yields a displaced jet before reaching the calorimeter.
- **★** A heavy BSM long-lived particle flies with significantly small β .
- \star The total flight path length can be longer than prompt jets due to presence of kinks.
- ★ A displaced jet may arrive later than prompt jets.
 - * e.g. a β=0.5 gluino decaying at the outer surface of the CMS tracker at $|\eta| = 0$: $\Delta t \sim 4$ ns.
 - **\star** CMS ECal timing resolution: down to ~0.2 ns.
 - Ecal timing: median of the each cell timing comprising the jet, after cleaning |t| > 20 ns clusters.

- ★ Various backgrounds
 - ★ Timing resolution tail
 - Electronic noises
 - Direct APD hits (skipping scintillation ~ 11 ns)
 - ★ In/Out-time pileup
 - **\star** Satellite bunches (at ±5 ns)
 - ★ Beam halo, or "non-collision backgrounds"
 - ★ Cosmic muon hits

- Background estimation for 3 different categories (cosmic, core/satellite collision, non-collision backgrounds)
- \star No events observed in the delayed signal region.
- Limit to gluino mass up to ~2.5 TeV.
 (most sensitive for around 1000 mm/c lifetime)