Unequal Rapidity Correlators

in the dilute limit of JIMWLK

Andrecia Ramnath (with Tuomas Lappi)

arXiv:1904.00782 [hep-ph]

Motivation

- Understand QCD dynamics of particle correlations with large rapidity separation, in saturation regime
- Within Color Glass Condensate framework \rightarrow find equivalence between two descriptions of JIMWLK evolution

- Go to dilute limit \rightarrow describe emergence of BFKL dynamics

Context

Ultra-relativistic nuclear collision \rightarrow

Wilson line describes interaction (eikonal approximation)
diagrammatic notation

$$
U_{\boldsymbol{x}}^{\dagger} \equiv P \exp \left\{i g \int d x^{+} \alpha_{\boldsymbol{x}}^{a}\left(x^{+}\right) t^{a}\right\}
$$

Wilson Line Correlators

- Wilson lines appear in cross sections inside correlators e.g. dipole operator $\hat{S}_{x y} \equiv \frac{\operatorname{tr}\left\{U_{x}^{\dagger} U_{y}\right\}}{N_{\mathrm{c}}}=\frac{1}{N_{\mathrm{c}}} \operatorname{tr}\left\{\begin{array}{l}\left.\square=\begin{array}{l}x \\ \hline\end{array}\right\} \\ \hline\end{array}\right\}$
- JIMWLK equation describes rapidity evolution of correlators

$$
\begin{array}{r}
\langle\hat{\mathcal{O}}\rangle_{Y} \equiv \int[D U] W_{Y}[U] \hat{\mathcal{O}} \quad \\
H \equiv \frac{1}{8 \pi^{3}} \int_{\boldsymbol{u v} \boldsymbol{z}} \underbrace{\mathcal{K}_{\boldsymbol{v} \boldsymbol{z}}^{i}}_{\mathcal{K}_{\boldsymbol{u} \boldsymbol{v} \boldsymbol{z}}^{i}\left(L_{\boldsymbol{u}}^{a}-U_{\boldsymbol{z}}^{\dagger a b} R_{\boldsymbol{u}}^{b}\right)\left(L_{\boldsymbol{v}}^{a}-U_{\boldsymbol{z}}^{\dagger a c} R_{\boldsymbol{v}}^{c}\right)} \rightarrow \quad W_{Y}[U]=H W_{Y}[U] \\
\mathcal{K}_{\boldsymbol{u} \boldsymbol{z}}^{i}=\frac{(\boldsymbol{u}-\boldsymbol{z})^{i}}{(\boldsymbol{u}-\boldsymbol{z})^{2}}
\end{array}
$$

- Lie derivatives

JIMWLK Evolution

Fokker-Planck

Langevin
stochastic diffusive process in space of Wilson lines

Blaizot, Iancu \& Weigert [Nucl.Phys. A713 (2003) 441-469],
Kovner \& Lublinsky [JHEP 0611 (2006) 083],
Iancu \& Triantafyllopoulos [JHEP 1311 (2013) 067],
Hatta \& Iancu [JHEP 1608 (2016) 083]

Langevin Picture

- Discretize rapidity
$Y-Y_{0}=N \epsilon$,
$\epsilon \rightarrow 0$,
$n=0, \ldots, N$
Blaizot, Iancu \& Weigert [Nucl.Phys. A713 (2003) 441-469]

- Langevin equation for Wilson line

$$
U_{\boldsymbol{x}, n+1}^{\dagger}=\exp \left\{i \epsilon g \alpha_{x, n}^{L}\right\} U_{\boldsymbol{x}, n}^{\dagger} \exp \left\{-i \epsilon g \alpha_{x, n}^{R}\right\}
$$

- Color rotations

$$
\begin{aligned}
& \begin{aligned}
\alpha_{\boldsymbol{x}, n}^{L} U_{\boldsymbol{x}, n}^{\dagger}= & \frac{1}{\sqrt{4 \pi^{3}}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i} \underbrace{\nu_{\boldsymbol{z}, n}^{i, a}} \\
& \left\langle\nu_{\boldsymbol{x}, m}^{i, a} \nu_{\boldsymbol{y}, n}^{j b}\right\rangle=\frac{1}{\epsilon} \delta^{i j} \delta^{a b} \delta_{m n} \delta_{\boldsymbol{x} \boldsymbol{y}}
\end{aligned} \\
& \text { Gaussian white noise } \\
& \text { rotated noise } \quad \tilde{\nu}_{\boldsymbol{z}, n}^{i, a} \equiv U_{\boldsymbol{z}, n}^{\dagger a b} \nu_{\boldsymbol{z}, n}^{i, b}
\end{aligned}
$$

First Expansion

- Expand Langevin equation in rapidity step epsilon

$$
\begin{aligned}
& U_{\boldsymbol{x}, n+1}^{\dagger}=U_{\boldsymbol{x}, n}^{\dagger} \quad+\frac{i \epsilon g}{\sqrt{4 \pi^{3}}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i} \nu_{\boldsymbol{z}, n}^{i, a}\left(t^{a} U_{\boldsymbol{x}, n}^{\dagger}-U_{\boldsymbol{x}, n}^{\dagger} U_{\boldsymbol{z}, n}^{\dagger a b} t^{b}\right) \\
& -\frac{\epsilon g^{2}}{4 \pi^{3}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{x} \boldsymbol{z}} t^{a}\left(t^{a} U_{\boldsymbol{x}, n}^{\dagger}-U_{\boldsymbol{x}, n}^{\dagger} U_{\boldsymbol{z}, n}^{\dagger a b} t^{b}\right) \quad+\mathcal{O}\left(\epsilon^{3 / 2}\right) \\
& =
\end{aligned}
$$

Second Expansion - Dilute Limit

- Expand in elements of group algebra
- Evolution equation

$$
\begin{aligned}
& \lambda_{\boldsymbol{x}, n+1}=\lambda_{\boldsymbol{x}, n} \quad+\frac{i \epsilon g}{\sqrt{4 \pi^{3}}} \int_{\boldsymbol{y}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{y}}^{i} \nu_{\boldsymbol{y}, n}^{i, a} i f^{a b c} t^{c}\left(\lambda_{\boldsymbol{x}, n}^{b}-\lambda_{\boldsymbol{y}, n}^{b}\right) \quad-\frac{\epsilon g^{2}}{4 \pi^{3}} \int_{\boldsymbol{y}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{x} \boldsymbol{y}} t^{a} i f^{a b c} t^{c}\left(\lambda_{\boldsymbol{x}, n}^{b}-\lambda_{\boldsymbol{y}, n}^{b}\right) \quad+\mathcal{O}\left(\epsilon^{3 / 2}, \lambda^{2}\right)
\end{aligned}
$$

(this Reggeizes - backup slide)

BFKL Equation

- Define unintegrated gluon distribution

- Evolution equation for lambda gives

$$
\phi_{\boldsymbol{x} \overline{\boldsymbol{x}}}^{n+1}-\phi_{\boldsymbol{x} \overline{\boldsymbol{x}}}^{n}=-\frac{N_{\mathrm{c}}}{2} \frac{\epsilon \alpha_{s}}{\pi^{2}} \int_{\boldsymbol{z}}\left[\mathcal{K}_{\boldsymbol{x} \boldsymbol{x} \boldsymbol{z}}\left(\phi_{\boldsymbol{x} \overline{\boldsymbol{x}}}^{n}-\phi_{\boldsymbol{z} \overline{\boldsymbol{x}}}^{n}\right)+\mathcal{K}_{\overline{\boldsymbol{x}} \overline{\boldsymbol{x}} \boldsymbol{z}}\left(\phi_{\boldsymbol{x} \bar{x}}^{n}-\phi_{\boldsymbol{x} \boldsymbol{z}}^{n}\right)-2 \mathcal{K}_{\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{z}}\left(\phi_{\boldsymbol{x} \overline{\boldsymbol{x}}}^{n}-\phi_{\boldsymbol{x} \boldsymbol{z}}^{n}-\phi_{\boldsymbol{z} \overline{\boldsymbol{x}}}^{n}+\phi_{\boldsymbol{z} \boldsymbol{z}}^{n}\right)\right]+\mathcal{O}\left(\epsilon^{3 / 2}, \phi^{3 / 2}\right)
$$

- Fourier transform

$$
\phi^{n+1}(\boldsymbol{q})-\phi^{n}(\boldsymbol{q})=+4 N_{\mathrm{c}} \epsilon \alpha_{s} \int_{\boldsymbol{p}} \frac{1}{(\boldsymbol{q}-\boldsymbol{p})^{2}}\left(\frac{\phi^{n}(\boldsymbol{p}) \boldsymbol{p}^{2}}{\boldsymbol{q}^{2}}-\frac{1}{2} \frac{\phi^{n}(\boldsymbol{q}) \boldsymbol{q}^{2}}{\boldsymbol{p}^{2}}\right)+\mathcal{O}\left(\epsilon^{3 / 2}, \phi^{3 / 2}\right)
$$

\rightarrow well-known color singlet, zero momentum transfer BFKL equation (not "Mueller's BFKL" - backup slide)

Two-Particle Production

- Double inclusive quark-gluon production at unequal rapidities $Y_{N}-Y_{0} \geq 1 / \alpha_{s}$

- Modified expectation value $\langle\hat{\mathcal{O}}\rangle_{Y-Y_{A}} \equiv \int[D U D \bar{U}] W_{Y-Y_{A}}\left[U, \bar{U} \mid U_{A}, \bar{U}_{A}\right] \hat{\mathcal{O}}$
- Modified evolution equation

$$
\left.\frac{\partial}{\partial Y} W_{Y-Y_{A}}\left[U, \bar{U} \mid U_{A}, \bar{U}_{A A}\right]=H_{\text {evol }} \right\rvert\, W_{Y-Y_{A}}\left[U, \bar{U} \mid U_{A}, \bar{U}_{A}\right]
$$

Two-Particle Cross Section

- Cross section

$$
\begin{aligned}
\frac{d \sigma_{q g}}{d Y d^{2} \boldsymbol{p} d Y_{A} d^{2} \boldsymbol{k}_{A}}=\frac{1}{(2 \pi)^{4}} \int_{\boldsymbol{x} \overline{\boldsymbol{x}}} e^{-i \boldsymbol{p} \cdot(\boldsymbol{x}-\overline{\boldsymbol{\mathcal { O }}}\rangle_{Y_{A}}} & \equiv \int[D U] W_{Y_{A}}[U] \hat{\mathcal{O}} \\
\overbrace{\mathrm{prod}}\left(\boldsymbol{k}_{A}\right) & \underbrace{}_{\left.\left.\hat{S}_{x \bar{x}}\right\rangle\left._{Y-Y_{A}}\right|_{\bar{U}_{A}=U_{A}}\right\rangle_{Y_{A}}} \\
\langle\hat{\mathcal{O}}\rangle_{Y-Y_{A}} & \equiv \int[D U D \bar{U}] W_{Y-Y_{A}}\left[U, \bar{U} \mid U_{A}, \bar{U}_{A}\right] \hat{\mathcal{O}}
\end{aligned}
$$

- Hamiltonian produces gluon (Wilson lines and derivatives do not evolve, but remain at $Y_{A}=Y_{0}$)

$$
H_{\mathrm{prod}}(\boldsymbol{k})=\frac{1}{4 \pi^{3}} \int_{\boldsymbol{y} \overline{\boldsymbol{y}}} e^{-i \boldsymbol{k} \cdot(\boldsymbol{y}-\overline{\boldsymbol{y}})} \int_{\boldsymbol{u} \overline{\boldsymbol{u}}} \mathcal{K}_{\boldsymbol{y} \boldsymbol{u}}^{i} \mathcal{K}_{\overline{\boldsymbol{y}} \overline{\boldsymbol{u}}}^{i}\left(L_{\boldsymbol{u}, 0}^{a}-U_{\boldsymbol{y}, 0}^{\dagger a b} R_{\boldsymbol{u}, 0}^{b}\right)\left(\bar{L}_{\overline{\boldsymbol{u}}, 0}^{a}-\bar{U}_{\overline{\boldsymbol{y}}, 0}^{\dagger a c} \bar{R}_{\overline{\boldsymbol{u}}, 0}^{c}\right)
$$

\rightarrow need Lie differentiated Langevin equations

Bilocal Langevin Equation

- Full (unexpanded) bilocal evolution equation for Wilson line

$$
R_{u, 0}^{a} U_{\boldsymbol{x}, n+1}^{\dagger}=\exp \left\{i \epsilon g \alpha_{\boldsymbol{x}, n}^{L}\right\} R_{u, 0}^{a} U_{\boldsymbol{x}, n}^{\dagger} \exp \left\{-i \epsilon g \alpha_{\boldsymbol{x}, n}^{R}\right\}-\frac{i \epsilon g}{\sqrt{4 \pi^{3}}} \exp \left\{i \epsilon g \alpha_{x, n}^{L}\right\} U_{\boldsymbol{x}, n}^{\dagger} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i} \times\left[U_{z, n} \nu_{z, n}^{i} U_{z, n}^{\dagger}, U_{z, n} R_{u, 0}^{a} U_{z, n}^{\dagger}\right]
$$

- Define $R_{u x, n}^{a} \equiv U_{\boldsymbol{x}, n} R_{u, 0}^{a} U_{\boldsymbol{x}, n}^{\dagger}$ to write linear equation with no explicit Wilson lines

$$
\frac{1}{\epsilon}\left(R_{u x, n+1}^{a}-R_{u x, n}^{a}\right)=\frac{i g}{\sqrt{4 \pi^{3}}} \int_{z} \mathcal{K}_{x z}^{i}\left[\tilde{z}_{z, n}^{i}, R_{u x, n}^{a}-R_{u z, n}^{a}\right]-\frac{N_{c}}{2} \frac{g^{2}}{4 \pi^{3}} \int_{z} \mathcal{K}_{x x z}\left(R_{u x, n}^{a}-R_{u z, n}^{a}\right)+\mathcal{O}\left(\epsilon^{3 / 2}\right)
$$

\rightarrow no need for full nonlinear numerics

- But cross section still needs full nonlinear evolution for explicit Wilson lines

Bilocal Equation - One Step

- Epsilon-expanded Lie differentiated evolution equation for Wilson line

Bilocal Equation - Dilute Limit

- Expand in lambda

$$
L_{u, 0}^{a}=g\left(\delta^{a c}-\frac{1}{2} f^{a b c} \lambda_{u, 0}^{b}+\mathcal{O}\left(\lambda^{2}\right)\right) \frac{\delta}{\delta \lambda_{u, 0}^{c}} \quad R_{u, 0}^{a}=g\left(\delta^{a c}+\frac{1}{2} f^{a b c} \lambda_{u, 0}^{b}+\mathcal{O}\left(\lambda^{2}\right)\right) \frac{\delta}{\delta \lambda_{u, 0}^{c}}
$$

- Evolution equation

$$
R_{\boldsymbol{u}, 0}^{a} \lambda_{\boldsymbol{x}, n+1}=R_{u, 0}^{a} \lambda_{\boldsymbol{x}, n}+\int_{\boldsymbol{z}}\left(\frac{i \epsilon g}{\sqrt{4 \pi^{3}}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{x}}^{i} z_{z, n}^{i, d}-\frac{\epsilon g^{2}}{4 \pi^{3}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{x} z} t^{d}\right) i f^{d b c} t^{c} R_{\boldsymbol{u}, 0}^{a}\left(\lambda_{\boldsymbol{x}, n}^{b}-\lambda_{\boldsymbol{z}, n}^{b}\right)+\mathcal{O}\left(\epsilon^{3 / 2}, \lambda^{2}\right)
$$

- Production Hamiltonian

$$
\begin{aligned}
& H_{\mathrm{prod}}(\boldsymbol{k})=\frac{1}{4 \pi^{3}} \int_{\boldsymbol{y} \overline{\boldsymbol{y}}} e^{-i \boldsymbol{k} \cdot(\boldsymbol{y}-\overline{\boldsymbol{y}})} \int_{\boldsymbol{u} \overline{\boldsymbol{u}}} \mathcal{K}_{\boldsymbol{y} \boldsymbol{u}}^{i} \mathcal{K}_{\overline{\boldsymbol{y}} \overline{\boldsymbol{u}}}^{i}(\underbrace{\left.L_{\boldsymbol{u}, 0}^{a}-U_{\boldsymbol{y}, 0}^{\dagger a b} R_{\boldsymbol{u}, 0}^{b}\right)\left(\bar{L}_{\overline{\boldsymbol{u}}, 0}^{a}-\bar{U}_{\overline{\boldsymbol{y}}, 0}^{\dagger a c} \bar{R}_{\overline{\boldsymbol{u}}, 0}^{c}\right.}_{\text {dilute limit }}) \\
&=g^{2}\left[f^{a b c} f^{a d e}\left(\bar{\lambda}_{\overline{\boldsymbol{u}}, 0}^{e}-\bar{\lambda}_{\overline{\boldsymbol{y}}, 0}^{e}\right)\left(\lambda_{\boldsymbol{u}, 0}^{c}-\lambda_{\boldsymbol{y}, 0}^{c}\right)+\mathcal{O}\left(\lambda^{3}\right)\right] \frac{\delta}{\delta \bar{\lambda}_{\bar{u}, 0}^{d}} \frac{\delta}{\delta \lambda_{u, 0}^{b}}
\end{aligned}
$$

Cross Section - Dilute Limit

- Dipole $\frac{\operatorname{tr}\left\{U_{x}^{\dagger} U_{y}\right\}}{N_{c}}=1-\frac{1}{4 N_{c}}\left(\lambda_{x}^{a}-\lambda_{y}^{a}\right)\left(\lambda_{x}^{a}-\lambda_{y}^{a}\right)+\mathcal{O}\left(\lambda^{3}\right)$
- Cross section

$$
\begin{aligned}
& \frac{d \sigma_{q g}}{d Y d^{2} \boldsymbol{p} d Y_{A} d^{2} \boldsymbol{k}_{A}}=\frac{1}{(2 \pi)^{4}} \frac{1}{2 N_{\mathrm{c}}} \frac{\alpha_{s}}{\pi^{2}} \int_{x \bar{x} y \bar{y} u \bar{u}} \mathcal{K}_{\boldsymbol{y} u}^{i} \mathcal{K}_{\overline{\boldsymbol{y}} \bar{u}}^{i} e^{-i \boldsymbol{p} \cdot(\boldsymbol{x}-\overline{\boldsymbol{x}})-i \boldsymbol{k}_{A} \cdot(\boldsymbol{y}-\overline{\boldsymbol{y}})}\left(\phi_{\bar{u} u}^{0}-\phi_{\bar{u} y}^{0}-\phi_{\overline{\boldsymbol{y}} u}^{0}+\phi_{\bar{y} y}^{0}\right) \underbrace{\mathcal{F}_{x, \bar{x}, u, \bar{u}}^{N}}+\mathcal{O}\left(\phi^{3 / 2}\right) \\
& \mathcal{F}_{x, \bar{x}, u, \bar{u}}^{n} \equiv \frac{\delta}{\delta \bar{\lambda}_{u, 0}^{a}} \frac{\delta}{\delta \lambda_{u, 0}^{a}} \bar{\lambda}_{\bar{x}, n}^{b} \lambda_{x, n}^{b}
\end{aligned}
$$

BFKL Green's function (satisfies BFKL equation)

- Final k_{T}-factorized cross section for quark-gluon production at unequal rapidity

$$
\frac{d \sigma_{q g}}{d Y d^{2} \boldsymbol{p} d Y_{A} d^{2} \boldsymbol{k}_{A}}=-\frac{\alpha_{s}}{N_{\mathrm{c}}} \int_{\boldsymbol{q}} \frac{\boldsymbol{q}^{2}}{\left(\boldsymbol{q}-\boldsymbol{k}_{A}\right)^{2} \boldsymbol{k}_{A}^{2}} \mathcal{F}^{N}\left(-\boldsymbol{p}, \boldsymbol{p}, \boldsymbol{q}-\boldsymbol{k}_{A},-\boldsymbol{q}+\boldsymbol{k}_{A}\right) \phi^{0}(-\boldsymbol{q})+\mathcal{O}\left(\varphi^{3 / 2}\right)
$$

BFKL Ladders

$$
\frac{d \sigma_{q g}}{d Y d^{2} \boldsymbol{p} d Y_{A} d^{2} \boldsymbol{k}_{A}}=-\frac{\alpha_{s}}{N_{\mathrm{c}}} \int_{\boldsymbol{q}} \frac{\boldsymbol{q}^{2}}{\left(\boldsymbol{q}-\boldsymbol{k}_{A}\right)^{2} \boldsymbol{k}_{A}^{2}} \mathcal{F}^{N}\left(-\boldsymbol{p}, \boldsymbol{p}, \boldsymbol{q}-\boldsymbol{k}_{A},-\boldsymbol{q}+\boldsymbol{k}_{A}\right) \phi^{0}(-\boldsymbol{q})+\mathcal{O}\left(\varphi^{3 / 2}\right)
$$

Summary

- Studied Langevin picture of JIMWLK evolution \rightarrow alternative formulation of evolution as stochastic diffusion
- Two expansions \rightarrow epsilon (rapidity step), lambda (group algebra element)
- Bilocal Langevin evolution equation is linear (full dense case)
- BFKL dynamics emerge in dilute limit
- Particle production cross section simplifies somewhat \rightarrow no need for full nonlinear numerics

Backup: Reggeization

- Evolution equation in dilute limit

$$
\frac{1}{\epsilon}\left(\lambda_{\boldsymbol{x}, n+1}-\lambda_{\boldsymbol{x}, n}\right)=\int_{\boldsymbol{y}}\left(\frac{i g}{\sqrt{4 \pi^{3}}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{y}}^{i} \nu_{\boldsymbol{y}, n}^{i, a}-\frac{g^{2}}{4 \pi^{3}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{x} \boldsymbol{y}} t^{a}\right) i f^{a b c} t^{c}\left(\lambda_{\boldsymbol{x}, n}^{b}-\lambda_{\boldsymbol{y}, n}^{b}\right)+\mathcal{O}\left(\epsilon^{3 / 2}, \lambda^{2}\right)
$$

- Expectation value

$$
\frac{1}{\epsilon}\left\langle\lambda_{\boldsymbol{x}, n+1}-\lambda_{\boldsymbol{x}, n}\right\rangle=-\frac{N_{\mathrm{c}}}{2} \frac{g^{2}}{4 \pi^{3}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{x} \boldsymbol{z}}\left\langle\lambda_{\boldsymbol{x}, n}-\lambda_{\boldsymbol{z}, n}\right\rangle+\mathcal{O}\left(\epsilon^{2}, \lambda^{2}\right)
$$

- Fourier transform

$$
\begin{aligned}
& \left\langle\frac{d}{d Y} \lambda^{a}(\boldsymbol{p})\right\rangle=\underbrace{\left\langle\alpha_{g}(\boldsymbol{p}) \lambda_{n}^{a}(\boldsymbol{p})\right\rangle+\mathcal{O}\left(\epsilon^{2}, \lambda^{2}\right)} \\
& \alpha_{g}(\boldsymbol{p}) \equiv \frac{N_{\mathrm{c}}}{2} \frac{\alpha_{s}}{\pi^{2}} \int_{z} \frac{1}{\boldsymbol{z}^{2}}\left(e^{i \boldsymbol{p} \cdot \boldsymbol{z}}-1\right) \quad \text { Regge trajectory }
\end{aligned}
$$

\rightarrow amplitude has power law behavior $\propto s^{\alpha_{s}}$

Backup: Mueller's BFKL

- Expand dipole in dilute limit

$$
\frac{\operatorname{tr}\left\{U_{x}^{\dagger} U_{y}\right\}}{N_{\mathrm{c}}}=1-\frac{1}{4 N_{\mathrm{c}}}\left(\lambda_{x}^{a}-\lambda_{y}^{a}\right)\left(\lambda_{x}^{a}-\lambda_{y}^{a}\right)+\mathcal{O}\left(\lambda^{3}\right)
$$

- Define "BFKL pomeron"

$$
\varphi_{x y} \equiv\left\langle\left(\lambda_{x}^{a}-\lambda_{y}^{a}\right)\left(\lambda_{x}^{a}-\lambda_{y}^{a}\right)\right\rangle
$$

- Evolution equation for lambda gives

$$
\varphi_{\boldsymbol{x} \boldsymbol{y}}^{n+1}-\varphi_{\boldsymbol{x} \boldsymbol{y}}^{n}=-\frac{N_{\mathrm{c}}}{2} \frac{\epsilon \alpha_{s}}{\pi^{2}} \int_{\boldsymbol{z}} \tilde{\mathcal{K}}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}}\left(\varphi_{\boldsymbol{x} \boldsymbol{y}}^{n}-\varphi_{\boldsymbol{x} \boldsymbol{z}}^{n}-\varphi_{\boldsymbol{z} \boldsymbol{y}}^{n}\right)
$$

\rightarrow "Mueller's BFKL equation"

