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1. Introduction

• The Colour Glass Condensate e�ective field theory is a framework to study
ultra-relativistic heavy ion collisions.

• Particle production cross sections contain rapidity correlators. These contain
Wilson lines œ SU(Nc): Wilson lines:
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• x is a two-dimensional transverse coordinate
• g is the coupling constant
• –a

x

is the colour field generated by the target nucleus
• ta’s are the generators of SU(Nc).

• JIMWLK evolution describes the change in the target field as a function of
rapidity. It is typically formulated as a Fokker-Planck functional di�erential
equation, equivalent to the Balitsky hierarchy.

• An alternative formulation is a Langevin equation, especially useful for
numerical computations of unequal rapidity correlators.

2. Inclusive Two-gluon Production

• Inclusive two-gluon production at unequal rapiditiesa:
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ŪA=UA

L

YA

H(kA) :=

1

4fi3

⁄

yȳ
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⁄

uv

Ki
yu

Ki
ȳv
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• Gluon 1 has rapidity Y and transverse momentum p

• Gluon 2 has rapidity YA < Y and transverse momentum kA

• Subscripts “A” label quantities at rapidity YA

• Bars denote quantities in the complex conjugate amplitude (CCA), as
opposed to the direct amplitude (DA).
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• ˆO is some observable local in rapidity YA

• [DU ] is the functional de Haar measure on SU(Nc)

• WYA
[U ] is the weight function describing the density distribution of the

Wilson lines in the target at rapidity YA; it evolves according to the JIMWLK
Hamilton.

• WY ≠YA
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is now a conditional weight function, accounting for

evolution from YA to Y described by the Langevin equation.
aIancu & Triantafyllopoulos [JHEP 1311 (2013) 067]

3. Definitions
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4. JIMWLK Evolution

• Fokker-Planck dynamics ¡ Langevin dynamics (better suited to numerics)

• Discretise rapidity di�erence: Y ≠ YA = ‘N with Z – N æ Œ, ‘ æ 0

• JIMWLK Langevin equation for a Wilson line
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The second rapidity interval is discretised as Y ≠ YA = ‘N with Z – N æ
Œ, ‘ æ 0; each evolution step is labelled by n œ {0, 1, ..., N}.
The expectation value of an observable is then calculated as an average over ‹
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5. The Dilute Limit

We expand the Wilson lines as
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6. BFKL

• Expand known BK equation in ⁄:
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• Unequal rapidity correlation æ need Langevin equations for RU†, RU, LU†,
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• Understand QCD dynamics of particle correlations with large rapidity separation, in saturation regime 

• Within Color Glass Condensate framework → find equivalence between two descriptions of 

• Go to dilute limit → describe emergence of BFKL dynamics  

2

Motivation

Fokker-Planck Langevin

JIMWLK evolution

- stochastic interpretation  
- good for numerics

(Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner)
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Wilson line describes interaction (eikonal approximation)
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The dependence of the target color field on rapidity is
described by JIMWLK evolution. Here the CGC weight
function evolves from an initial condition Y

in
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• Wilson lines appear in cross sections inside correlators e.g. dipole operator 

• JIMWLK equation describes rapidity evolution of correlators  

• Lie derivatives

4

Wilson Line Correlators
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 Fokker-Planck
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• Discretize rapidity 

• Langevin equation for Wilson line 

• Color rotations

Langevin Picture
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• Expand Langevin equation in rapidity step epsilon     
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• Expand in elements of group algebra 

• Evolution equation 

(this Reggeizes - backup slide)

8

Second Expansion - Dilute Limit
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• Define unintegrated gluon distribution 

• Evolution equation for lambda gives 

• Fourier transform 

→ well-known color singlet, zero momentum transfer BFKL equation (not “Mueller’s BFKL” - backup slide)
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BFKL Equation
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• Double inclusive quark-gluon production at unequal rapidities 

• Modified expectation value 

• Modified evolution equation

10

Two-Particle Production
Iancu & Triantafyllopoulos 
[JHEP 1311 (2013) 067]
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• Cross section 

• Hamiltonian produces gluon (Wilson lines and derivatives do not evolve, but remain at YA = Y0) 

→ need Lie differentiated Langevin equations  

11

Two-Particle Cross Section
Iancu & Triantafyllopoulos 
[JHEP 1311 (2013) 067]
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• Full (unexpanded) bilocal evolution equation for Wilson line 

• Define                           to write linear equation with no explicit Wilson lines   

→ no need for full nonlinear numerics 

• But cross section still needs full nonlinear evolution for explicit Wilson lines

12

Bilocal Langevin Equation 
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• Epsilon-expanded Lie differentiated evolution equation for Wilson line

13

Bilocal Equation - One Step 
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• Expand in lambda 

• Evolution equation  

• Production Hamiltonian 

14

Bilocal Equation - Dilute Limit 
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• Dipole 

• Cross section 

• Final kT-factorized cross section for quark-gluon production at unequal rapidity  
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Cross Section - Dilute Limit
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BFKL Green’s function (satisfies BFKL equation)
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BFKL Ladders 
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• Studied Langevin picture of JIMWLK evolution → alternative formulation of evolution as stochastic 
diffusion 

• Two expansions → epsilon (rapidity step), lambda (group algebra element) 

• Bilocal Langevin evolution equation is linear (full dense case)  

• BFKL dynamics emerge in dilute limit 

• Particle production cross section simplifies somewhat → no need for full nonlinear numerics

17

Summary 
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• Evolution equation in dilute limit 

• Expectation value 

• Fourier transform 

→ amplitude has power law behavior  

18

Backup: Reggeization
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• Expand dipole in dilute limit 

• Define “BFKL pomeron” 

• Evolution equation for lambda gives 

→ “Mueller’s BFKL equation” 
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Backup: Mueller’s BFKL
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