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1. Introduction

• The Colour Glass Condensate e�ective field theory is a framework to study
ultra-relativistic heavy ion collisions.

• Particle production cross sections contain rapidity correlators. These contain
Wilson lines œ SU(Nc): Wilson lines:
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• x is a two-dimensional transverse coordinate
• g is the coupling constant
• –a

x

is the colour field generated by the target nucleus
• ta’s are the generators of SU(Nc).

• JIMWLK evolution describes the change in the target field as a function of
rapidity. It is typically formulated as a Fokker-Planck functional di�erential
equation, equivalent to the Balitsky hierarchy.

• An alternative formulation is a Langevin equation, especially useful for
numerical computations of unequal rapidity correlators.

2. Inclusive Two-gluon Production

• Inclusive two-gluon production at unequal rapiditiesa:
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• Gluon 1 has rapidity Y and transverse momentum p

• Gluon 2 has rapidity YA < Y and transverse momentum kA

• Subscripts “A” label quantities at rapidity YA

• Bars denote quantities in the complex conjugate amplitude (CCA), as
opposed to the direct amplitude (DA).
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• ˆO is some observable local in rapidity YA

• [DU ] is the functional de Haar measure on SU(Nc)

• WYA
[U ] is the weight function describing the density distribution of the

Wilson lines in the target at rapidity YA; it evolves according to the JIMWLK
Hamilton.

• WY ≠YA
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is now a conditional weight function, accounting for

evolution from YA to Y described by the Langevin equation.
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3. Definitions
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4. JIMWLK Evolution

• Fokker-Planck dynamics ¡ Langevin dynamics (better suited to numerics)

• Discretise rapidity di�erence: Y ≠ YA = ‘N with Z – N æ Œ, ‘ æ 0

• JIMWLK Langevin equation for a Wilson line
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The second rapidity interval is discretised as Y ≠ YA = ‘N with Z – N æ
Œ, ‘ æ 0; each evolution step is labelled by n œ {0, 1, ..., N}.
The expectation value of an observable is then calculated as an average over ‹
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5. The Dilute Limit

We expand the Wilson lines as
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6. BFKL

• Expand known BK equation in ⁄:
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• Unequal rapidity correlation æ need Langevin equations for RU†, RU, LU†,
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• Understand QCD dynamics of particle correlations with large rapidity separation, in saturation regime 

• Within Color Glass Condensate framework → find equivalence between two descriptions of 

• Go to dilute limit → describe emergence of BFKL dynamics  

2

Motivation

Fokker-Planck Langevin

JIMWLK evolution

- stochastic interpretation  
- good for numerics

(Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner)
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Wilson line describes interaction (eikonal approximation)
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The dependence of the target color field on rapidity is
described by JIMWLK evolution. Here the CGC weight
function evolves from an initial condition Y
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The naming of the derivatives may seem counter-intuitive, but

they appear on the opposite side to what is expected due to the

lightcone time axis running from right to left in our diagrammatic
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• Wilson lines appear in cross sections inside correlators e.g. dipole operator 

• JIMWLK equation describes rapidity evolution of correlators  

• Lie derivatives

4

Wilson Line Correlators
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 Fokker-Planck
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• Discretize rapidity 

• Langevin equation for Wilson line 

• Color rotations

Langevin Picture
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• Expand Langevin equation in rapidity step epsilon     
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• Expand in elements of group algebra 

• Evolution equation 

(this Reggeizes - backup slide)

8

Second Expansion - Dilute Limit

 

↵L
x,nU †

x,n =

1p
4⇡3

Z

z

Ki
xz

⌫i,a
z,n

a
x

↵R
x,nU †

x,n =

1p
4⇡3

Z

z

Ki
xz

⌫i,a
z,n

b

a

x

z

U†
x,n+1

= U†
x,n +

Z

z

✓
i✏gp
4⇡3

Ki
xz

⌫i,a
z,n � ✏g2

4⇡3

K
xxz

ta
◆

(taU†
x,n � U†

x,nU†ab
z,n tb) + O(✏3/2

)

=

x

+

i✏gp
4⇡3

Z

z

Ki
xz

⌫i,a
z,n

0

BBB@

a
x

�

b

a

x

z

1

CCCA

� ✏g2

4⇡3

Z

z

K
xxz

0

BBB@

a a
x

�

b a
x

z

1

CCCA
+ O(✏3/2

)

ˆS
x

¯

x

⌘ tr

�
U†

x

¯U
¯

x

 

N
c

=

1

N
c

tr

8
><

>:

x

x̄

9
>=

>;

d�qg

d⌘pd2

p d⌘kd2

k

=

1

(2⇡)

4

Z

x

¯

x

e�ip·(x�¯

x)

D
H

prod

(k)

ˆS
x

¯

x

���
¯U=U

E

Y

H
prod

(k) =

1

4⇡3

Z

y

¯

y

e�ik·(y�¯

y)

Z

u

¯

u

Ki
yu

Ki
¯

y

¯

u

(La
u

� U †ab
y

Rb
u

)(

¯La
¯

u

� ¯U†ac
¯

y

¯Rc
¯

u

)

U†
x,n ⌘ ei�

x,n
= 1 + i�

x,n � 1

2

�2

x,n + O(�3

)

3

U†
x,n = + i � 1

2

+ O(�3

)

�
x,n+1

= �
x,n +

Z

z

✓
i✏gp
4⇡3

Ki
xz

⌫i,a
z,n � ✏g2

4⇡3

K
xxz

ta
◆

ifabctc(�b
x,n � �b

z,n) + O(✏3/2, �2

)

=

x

+

i✏gp
4⇡3

Z

z

Ki
xz

⌫i,a
z,ni

0

BBB@

c

b
x

a �

c

b
z

a

1

CCCA

� ✏g2

4⇡3

Z

z

K
xxz

0

BBB@

c

b
x

a

�

c

b
z

a 1

CCCA
+ O(✏3/2, �2

)

Mab
xw,n ⌘ �

xw

�ab
+

Z

z

✓
✏gp
4⇡3

Ki
xz

⌫i,c
z,nfabc � ✏g2

4⇡3

N
c

2

K
xxz

�ab

◆
(�

xw

� �
zw

)

�a
x,n+1

=

Z

w

n

Mabn
xw

n

,n

n�1Y

j=0

 Z

w

j

Mbj+1bj
w

j+1

w

j

,j

!
�b0

w0,0

1

✏
h�

x,n+1

� �
x,ni = �N

c

2

g2

4⇡3

Z

z

K
xxz

h�
x,n � �

z,ni + O(✏2, �2

)

⌧
d

dY
�a

(p)

�
= h↵g(p)�a

n(p)i + O(✏2, �2

)

↵g(p) ⌘ N
c

2

↵s

⇡2

Z

z

1

z

2

(eip·z � 1)

4

H
prod

(k) =

1

4⇡3

Z

y

¯

y

e�ik·(y�¯

y)

Z

u

¯

u

Ki
yu

Ki
¯

y

¯

u

(La
u

� U†ab
y

Rb
u

)(

¯La
¯

u

� ¯U †ac
¯

y

¯Rc
¯

u

)

U†
x,n ⌘ ei�

x,n
= 1 + i�

x,n � 1

2

�2

x,n + O(�3

) = + i � 1

2

+ O(�3

)

�
x,n+1

= �
x,n +

i✏gp
4⇡3

Z

y

Ki
xy

⌫i,a
y,nifabctc(�b

x,n � �b
y,n) � ✏g2

4⇡3

Z

y

K
xxy

taifabctc(�b
x,n � �b

y,n) +O(✏3/2, �2

)

=

x

+

i✏gp
4⇡3

Z

y

Ki
xy

⌫i,a
y,ni

0

BBBB@

c

b
x

a �

c

b
y

a

1

CCCCA
� ✏g2

4⇡3

Z

y

K
xxy

0

BBBB@

c

b
x

a

�

c

b
y

a
1

CCCCA
+O(✏3/2, �2

)

Mab
xw,n ⌘ �

xw

�ab
+

Z

z

✓
✏gp
4⇡3

Ki
xz

⌫i,c
z,nfabc � ✏g2

4⇡3

N
c

2

K
xxz

�ab

◆
(�

xw

� �
zw

)

�a
x,n+1

=

Z

w

n

Mabn
xw

n

,n

n�1Y

j=0

 Z

w

j

Mbj+1bj
w

j+1

w

j

,j

!
�b0

w0,0

1

✏
h�

x,n+1

� �
x,ni = �N

c

2

g2

4⇡3

Z

z

K
xxz

h�
x,n � �

z,ni + O(✏2, �2

)

5

H
prod

(k) =

1

4⇡3

Z

y

¯

y

e�ik·(y�¯

y)

Z

u

¯

u

Ki
yu

Ki
¯

y

¯

u

(La
u

� U†ab
y

Rb
u

)(

¯La
¯

u

� ¯U †ac
¯

y

¯Rc
¯

u

)

U†
x,n ⌘ ei�

x,n
= 1 + i�

x,n � 1

2

�2

x,n + O(�3

) = + i � 1

2

+ O(�3

)

�
x,n+1

= �
x,n +

i✏gp
4⇡3

Z

y

Ki
xy

⌫i,a
y,nifabctc(�b

x,n � �b
y,n) � ✏g2

4⇡3

Z

y

K
xxy

taifabctc(�b
x,n � �b

y,n) +O(✏3/2, �2

)

=

x

+

i✏gp
4⇡3

Z

y

Ki
xy

⌫i,a
y,ni

0

BBBB@

c

b
x

a �

c

b
y

a

1

CCCCA
� ✏g2

4⇡3

Z

y

K
xxy

0

BBBB@

c

b
x

a

�

c

b
y

a
1

CCCCA
+O(✏3/2, �2

)

Mab
xw,n ⌘ �

xw

�ab
+

Z

z

✓
✏gp
4⇡3

Ki
xz

⌫i,c
z,nfabc � ✏g2

4⇡3

N
c

2

K
xxz

�ab

◆
(�

xw

� �
zw

)

�a
x,n+1

=

Z

w

n

Mabn
xw

n

,n

n�1Y

j=0

 Z

w

j

Mbj+1bj
w

j+1

w

j

,j

!
�b0

w0,0

1

✏
h�

x,n+1

� �
x,ni = �N

c

2

g2

4⇡3

Z

z

K
xxz

h�
x,n � �

z,ni + O(✏2, �2

)

5

H
prod

(k) =

1

4⇡3

Z

y

¯

y

e�ik·(y�¯

y)

Z

u

¯

u

Ki
yu

Ki
¯

y

¯

u

(La
u

� U†ab
y

Rb
u

)(

¯La
¯

u

� ¯U †ac
¯

y

¯Rc
¯

u

)

U†
x,n ⌘ ei�

x,n
= 1 + i�

x,n � 1

2

�2

x,n + O(�3

) = + i � 1

2

+ O(�3

)

�
x,n+1

= �
x,n +

i✏gp
4⇡3

Z

y

Ki
xy

⌫i,a
y,nifabctc(�b

x,n � �b
y,n) � ✏g2

4⇡3

Z

y

K
xxy

taifabctc(�b
x,n � �b

y,n) +O(✏3/2, �2

)

=

x

+

i✏gp
4⇡3

Z

y

Ki
xy

⌫i,a
y,ni

0

BBBB@

c

b
x

a �

c

b
y

a

1

CCCCA
� ✏g2

4⇡3

Z

y

K
xxy

0

BBBB@

c

b
x

a

�

c

b
y

a
1

CCCCA
+O(✏3/2, �2

)

Mab
xw,n ⌘ �

xw

�ab
+

Z

z

✓
✏gp
4⇡3

Ki
xz

⌫i,c
z,nfabc � ✏g2

4⇡3

N
c

2

K
xxz

�ab

◆
(�

xw

� �
zw

)

�a
x,n+1

=

Z

w

n

Mabn
xw

n

,n

n�1Y

j=0

 Z

w

j

Mbj+1bj
w

j+1

w

j

,j

!
�b0

w0,0

1

✏
h�

x,n+1

� �
x,ni = �N

c

2

g2

4⇡3

Z

z

K
xxz

h�
x,n � �

z,ni + O(✏2, �2

)

5

H
prod

(k) =

1

4⇡3

Z

y

¯

y

e�ik·(y�¯

y)

Z

u

¯

u

Ki
yu

Ki
¯

y

¯

u

(La
u

� U†ab
y

Rb
u

)(

¯La
¯

u

� ¯U †ac
¯

y

¯Rc
¯

u

)

U†
x,n ⌘ ei�

x,n
= 1 + i�

x,n � 1

2

�2

x,n + O(�3

) = + i � 1

2

+ O(�3

)

�
x,n+1

= �
x,n +

i✏gp
4⇡3

Z

y

Ki
xy

⌫i,a
y,nifabctc(�b

x,n � �b
y,n) � ✏g2

4⇡3

Z

y

K
xxy

taifabctc(�b
x,n � �b

y,n) +O(✏3/2, �2

)

=

x

+

i✏gp
4⇡3

Z

y

Ki
xy

⌫i,a
y,ni

0

BBBB@

c

b
x

a �

c

b
y

a

1

CCCCA
� ✏g2

4⇡3

Z

y

K
xxy

0

BBBB@

c

b
x

a

�

c

b
y

a
1

CCCCA
+O(✏3/2, �2

)

Mab
xw,n ⌘ �

xw

�ab
+

Z

z

✓
✏gp
4⇡3

Ki
xz

⌫i,c
z,nfabc � ✏g2

4⇡3

N
c

2

K
xxz

�ab

◆
(�

xw

� �
zw

)

�a
x,n+1

=

Z

w

n

Mabn
xw

n

,n

n�1Y

j=0

 Z

w

j

Mbj+1bj
w

j+1

w

j

,j

!
�b0

w0,0

1

✏
h�

x,n+1

� �
x,ni = �N

c

2

g2

4⇡3

Z

z

K
xxz

h�
x,n � �

z,ni + O(✏2, �2

)

5



DIS 2019 Torino, ItalyA. Ramnath /17

• Define unintegrated gluon distribution 

• Evolution equation for lambda gives 

• Fourier transform 

→ well-known color singlet, zero momentum transfer BFKL equation (not “Mueller’s BFKL” - backup slide)
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BFKL Equation
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• Double inclusive quark-gluon production at unequal rapidities 

• Modified expectation value 

• Modified evolution equation

10

Two-Particle Production
Iancu & Triantafyllopoulos 
[JHEP 1311 (2013) 067]
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• Cross section 

• Hamiltonian produces gluon (Wilson lines and derivatives do not evolve, but remain at YA = Y0) 

→ need Lie differentiated Langevin equations  

11

Two-Particle Cross Section
Iancu & Triantafyllopoulos 
[JHEP 1311 (2013) 067]
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• Full (unexpanded) bilocal evolution equation for Wilson line 

• Define                           to write linear equation with no explicit Wilson lines   

→ no need for full nonlinear numerics 

• But cross section still needs full nonlinear evolution for explicit Wilson lines

12

Bilocal Langevin Equation 
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• Epsilon-expanded Lie differentiated evolution equation for Wilson line

13

Bilocal Equation - One Step 
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• Expand in lambda 

• Evolution equation  

• Production Hamiltonian 

14

Bilocal Equation - Dilute Limit 
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• Dipole 

• Cross section 

• Final kT-factorized cross section for quark-gluon production at unequal rapidity  
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Cross Section - Dilute Limit
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BFKL Green’s function (satisfies BFKL equation)
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BFKL Ladders 
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• Studied Langevin picture of JIMWLK evolution → alternative formulation of evolution as stochastic 
diffusion 

• Two expansions → epsilon (rapidity step), lambda (group algebra element) 

• Bilocal Langevin evolution equation is linear (full dense case)  

• BFKL dynamics emerge in dilute limit 

• Particle production cross section simplifies somewhat → no need for full nonlinear numerics

17

Summary 
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• Evolution equation in dilute limit 

• Expectation value 

• Fourier transform 

→ amplitude has power law behavior  

18

Backup: Reggeization
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• Expand dipole in dilute limit 

• Define “BFKL pomeron” 

• Evolution equation for lambda gives 

→ “Mueller’s BFKL equation” 
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Backup: Mueller’s BFKL
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