Introduction

Theoretical framework

Numerical results

Summary 0

Production of J/ψ quarkonia in color evaporation model based on k_T -factorization

Rafał Maciuła

Institute of Nuclear Physics PAN, Kraków, Poland

in collaboration with A. Szczurek and A. Cisek based on Phys. Rev. D99, 054014 (2019)

The 27th Workshop on Deep-Inelastic Scattering and Related Subjects - DIS2019, 8-12 April 2019, Turin, Italy

Production of quarkonia is one of the most actively studied topics at the LHC

- the J/ ψ , Ψ' , Υ , Υ' and Υ'' are the usually measured quarkonia
- the production of $J\!/\!\psi$ is a model case
- there was (still is) a disagreement related to the underlying production mechanism

There are essentially two theoretical approaches:

- non-relativistic QCD (NRQCD) approach based on collinear and/or k_T-factorization
- the color evaporation model (CEM)

Introduction ○●	Theoretical framework	Numerical results	Summary O
Motivation behind			
Color Evapor	ation Model (CEM)		

Why CEM?

 a lack of a complete NLO NRQCD computation unsolved problems:

- simultaneous description of small and large p_T 's and size of color-octet contributions
- description of quarkonium-associated-production channels and polarisation observables

the useful alternative:

main advantages:

- simplicity of the model
- possible full NLO collinear computations
- useful application of k_T-factorization approach

- in this approach one is using the perturbative calculation of *cc*-pair production
- the *cc*-pair by emitting a soft radiation goes to the color singlet state of a given spin and parity
- the emission is not explicit and everything is contained in a suitable renormalization of the $c\bar{c}$ cross section

Introduction	Theoretical framework	Numerical results	Summary
00	•000	000000	0

Color Evaporation Model (CEM)

The cross section for J/ψ production \Rightarrow the $c\bar{c}$ -pair cross section integrated over an invariant-mass region where its hadronization into a quarkonium is likely:

$$\frac{d\sigma_{J/\psi}(P_{J/\psi})}{d^3 P_{J/\psi}} = F_{J/\psi} \int_{M_{J/\psi}}^{2M_D} d^3 P_{c\bar{c}} \, dM_{c\bar{c}} \frac{d\sigma_{c\bar{c}}(M_{c\bar{c}}, P_{c\bar{c}})}{dM_{c\bar{c}}d^3 P_{c\bar{c}}} \delta^3(\vec{P}_{J/\psi} - \frac{M_{J/\psi}}{M_{c\bar{c}}}\vec{P}_{c\bar{c}})$$

• $F_{J/\psi}$ is the probability of the $c\bar{c} \rightarrow J/\psi$ which is fitted to the experimental data

• $M_{J/\psi}$ (or M_D) is the mass of J/ψ (or D) and $M_{c\bar{c}}$ is the invariant mass of $c\bar{c}$ -system

Improved version of the CEM:

- lower integration limit: $M_{J/\psi}$ instead of $2m_c$ momentum relation: $\vec{P}_{J/\psi} = \frac{M_{J/\psi}}{M_{c\bar{c}}} \vec{P}_{c\bar{c}}$, where $\vec{P}_{c\bar{c}} = \vec{p}_c + \vec{p}_{\bar{c}}$

THEORY vs. DATA on prompt J/ψ :

- p_T of J/ψ -meson directly calculated from the transverse momentum of the $c\bar{c}$ -pair
- one can easily calculate also rapidity of J/ψ -meson ۰
- numerical results corrected by the direct-to-prompt ratio equal to 0.62 ۲
- the two pQCD approaches available:
 - NLO collinear approximation
 - k_{T} -factorization approach

Introduction	Theoretical framework	Numerical results	Summary
00	0000	000000	0

Charm cross section at high energies

• The leading-order (LO) partonic processes for $Q\overline{Q}$ production \Rightarrow gluon-gluon fusion dominant at high energies

• Main classes of the next-to-leading order (NLO) diagrams:

the NLO corrections of a special importance for charm production!

the observable of the interest \Rightarrow transverse momentum of the $c\bar{c}$ -pair

collinear approach:

- cc̄-pair transverse momentum is equal to zero at the LO
- the NLO diagrams are the LO for this quantity

 k_T -factorizaton:

- nonzero cc̄-pair transverse momentum can be obtained already at the LO
- some contributions beyond the NLO available

k_T -factorization (high-energy factorization) approach

off-shell initial state partons \Rightarrow

initial transverse momenta explicitly included $k_{1,t}$, $k_{2,t} \neq 0$

- exact kinematics from the very beginning and additional hard dynamics coming from transverse momenta of incident partons
- very efficient for less inclusive studies of kinematical correlations
- more exclusive observables, e.g. pair transverse momentum or

azimuthal angle very sensitive to the incident transverse momenta

multi-differential cross section

, with aluon emission

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \int \frac{d^2 k_{1,t}}{\pi} \frac{d^2 k_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \overline{|\mathcal{M}_{g^*g^* \to Q\bar{Q}}|^2} \\ \times \delta^2 \left(\vec{k}_{1,t} + \vec{k}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_g(x_1, k_{1,t}^2, \mu) \mathcal{F}_g(x_2, k_{2,t}^2, \mu)$$

- $\mathcal{F}_{g}(x, k_{t}^{2}, \mu)$ (unintegrated) transverse momentum dependent PDFs
- the LO off-shell matrix elements $\overline{|\mathcal{M}_{\sigma^*\sigma^*} \rightarrow Q\bar{Q}|^2}$ available (analytic form)
- the higher-order matrix elements only at tree-level (KaTie Monte Carlo generator)
- part of higher-order (real) corrections effectively included in uPDF ٩ pair creation

aluon splittina

Unintegrated parton distribution functions (uPDFs)

Most popular models:

- H. Jung et al. (CCFM, broad range of x)
- H. Jung et al. (DGLAP + Parton-Branching, broad range of x)
- Kimber-Martin-Ryskin (DGLAP-BFKL, broad range of x)
- Kwieciński-Martin-Staśto (BFKL-DGLAP, rather small x-values)
- Kutak-Staśto, Kutak-Sapeta (BK+saturation, only small x-values)

As a default set: Kimber-Martin-Ryskin (KMR) approach:

- calculated from collinear PDFs (most up-to-date PDF sets can be used)
- the unique feature: $k_t > \mu$ included \Rightarrow hard emissions from the uPDF

 k_{T} -factorization + KMR uPDF works very well for inclusive charm and bottom at the LHC (including correlation observables)

For comparison: JH2013 uPDF (Jung-Hautmann, CCFM fits to HERA precision data) $k_t > \mu$ strongly suppressed (only soft extra emissions)

 a model that provides a good description of charm cross section beyond the single-particle spectra is crucial (especially in the region of small invariant masses)

Introduction 00	Theoretical framework	Numerical results •000000	Summary O
Open charn	n meson	LH	Cb data
Theoretical comp k_{\pm} -factorization:	utations: $a^*a^* \rightarrow c\bar{c} + \mu PDEs + Peterson$	EF for $c \rightarrow D^{\pm}$ transition	

- some sensitivity to the choice of the collinear PDF in the KMR calculations but only at small transverse momenta (CT14lo vs. MMHT2014lo)
- the JH-2013-set2 uPDF noticeably overestimates the data points at small p_T's
- first two bins in $p_T \Rightarrow$ uncertain region \Rightarrow crucial for the rapidity distribution
- the LHCb open charm data well described with the KMR uPDF

Introduction 00	Theoretical framework	Numerical results 000000	Summary O
Prompt J/ψ	meson	LHC	Cb data
$\frac{\text{Theoretical computed}}{\text{ICEM} + k_T - \text{factor}}$	utations: rization: $g^*g^* o car c + { t uPDFs} +$	$P_{J\!/\psi}$ for $car{c} o J\!/\psi$ transition	
$10^{2} \text{ pp } \rightarrow \text{J/}\psi_{p}$	$rompt + X \qquad VS = 7 TeV$ $ICEM$ $g'g' \to cc$ c_{S}^{LO}	$ \begin{array}{c} 12\\ p \ p \rightarrow J/\psi_{prompt} + X\\ 10\\ -\text{KMR-CT14lo with } P_{J:\psi} = 0.018 \text{ (solid)}\\ JH-2013-\text{set2 with } P_{J:\psi} = 0.0065 \text{ (dashed)}\\ 8\\ -\\ \end{array} $	$\sqrt{s} = 7 \text{ TeV}$

- the $P_{J/\psi}$ transition probability fitted to the J/ψ p_T -dsitribution
- p_T of $J/\psi \Rightarrow p_T$ of the $c\bar{c}$ -pair \Rightarrow very sensitive to the k_t -dependence of the uPDF • very different results for the two uPDFs
- the JH-2013set2 uPDF completely fails for larger p_T 's of the J/ψ -meson
- the LHCb prompt J/ψ data reasonably well described with the KMR uPDF

Theoretical computations:

ICEM + k_T -factorization: $g^*g^* \rightarrow c\bar{c}$ + KMR uPDFs + $P_{J/\psi}$ for $c\bar{c} \rightarrow J/\psi$ transition

the improved CEM (our default) leads to the p_T-slope more supported by the data

• the p_T -slope sensitive to the choice of the renormalizaton/factorization scale \Rightarrow the default set $\mu^2 = \frac{m_{t1}^2 + m_{2t}^2}{2}$ is the most favourable one

Introduction 00	Theoretical framework	Numerical results	Summary O
Prompt J/ų	meson	LHC	Cb data
Theoretical comp	utations:		

ICEM + k_T -factorization: $g^*g^* \rightarrow c\bar{c}$ + KMR uPDFs + $P_{J/\psi}$ for $c\bar{c} \rightarrow J/\psi$ transition

the typical uncertainty bands:

• charm quark mass $\Rightarrow 1.2 < m_c < 1.5$ GeV

• scales
$$\Rightarrow 0.5 < \frac{\mu}{m_T} < 2$$

 the LHCb data described in the whole considered p_T region with the KMR uPDF within the theoretical uncertainties

• we keep the $P_{J/\psi} = 0.018$ from the fits to the LHCb forward data

the theoretical model reasonably works also when we go to

• the midrapidity regime \Rightarrow |y| < 0.9 ALICE, CMS and |y| < 0.75 ATLAS

• the lower collision energy $\Rightarrow \sqrt{s} = 1.96$ TeV at Tevatron

• very large p_T 's slightly overestimated

Prompt J/ψ meson

CCFM uPDFs

Why the JH-2013 uPDF does not work here?

- the observable very sensitive to the k_t-dependence in uPDFs
- this model does not allow for hard extra emissions during the uPDF evolution
- only soft emissions $k_t < \mu$ are included
- the KMR uPDF has long tails in kt's and is able to produce large transverse momenta of the cc-pair

Our idea to improve the data description:

 $(2 \rightarrow 2) + (2 \rightarrow 3)$ extra hard emission at the level of hard matrix elements

we explicitly include the g*g* → gc̄c mechanism at tree-level
 the calculations are done with the KaTie Monte Carlo generator

- the description of the data of the same quality as for the KMR uPDF with the $2 \rightarrow 2$ calculations
- the 2 → 3 contribution is crucial for the calculations with the JH-2013 uPDF
- this conclusion may be important for the recent studies ⇒ V.Cheung, and R.Vogt, Phys.Rev.D98, 114029 (2018)

Introduction	Theoretical framework	Numerical results	Summary
00		0000000	●
Conclusions			

We have discussed how to extend the improved color evaporation model for production of J/ψ meson to be used in the framework of k_T -factorization approach:

- rapidity and transverse momentum distributions of J/ψ mesons have been calculated and the normalization factors $P_{J/\psi}$, being a probability of $c\bar{c}$ soft transition to color singlet S wave quarkonium, have been obtained
- different models of unintegrated PDFs have been used
- for the first time, the higher-order contribution $g^*g^* \to gc\bar{c}$ with off-shell initial state partons has been included
- ullet a reasonable description of the prompt J/ ψ world data have been obtained

Thank You for attention!

