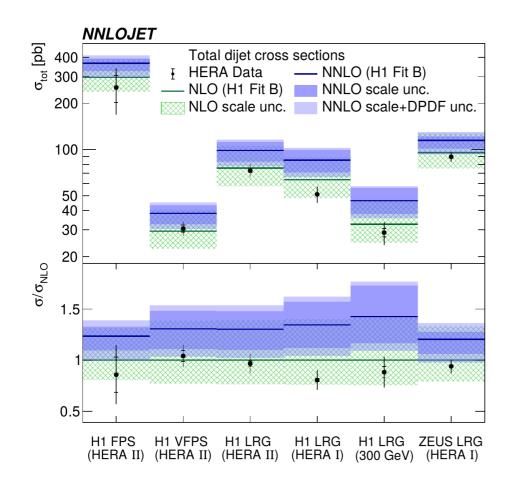
Diffractive PDF determination from HERA incl. and jet data at NNLO

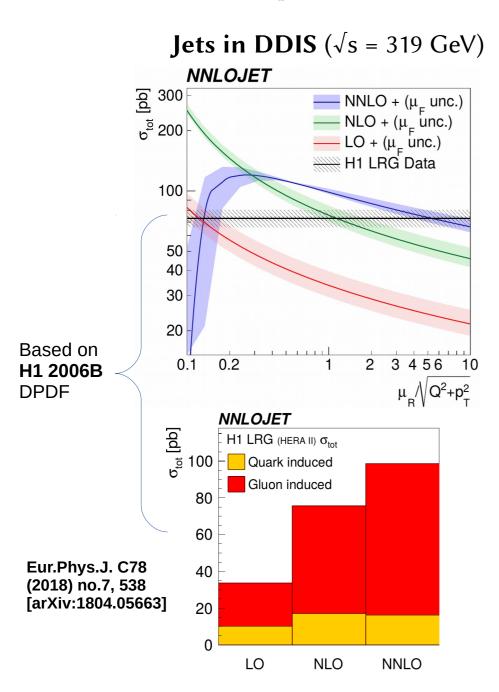
Radek Žlebčík on behalf of the H1 Collaboration *Torino* **DIS 2019, April 9**



Why new DPDFs?

Motivation 1: Progress in theory

- Compared to 2006 or 2007 the NNLO predictions are currently available for both, the inclusive production and jet production
- Large NNLO/NLO k-factors observed for dijet production


The NNLO prediction based on H1 Fit2006B NLO DPDF overestimates the data **by ~30%** With much lower scale unc. for NNLO

Eur.Phys.J. C78 (2018) no.7, 538 [arXiv:1804.05663]

Are inclusive and jet data compatible at NNLO?

3

Scale dependence of dijet cross section

Higgs production in pp ($\sqrt{s} = 8$ TeV) JHEP 1204 (2012) 004 σ (pb) NNLO NLO 30 LO 25 20 15 10 4 5 μ/m 0.1 0.2 0.3 0.4 0.06 2 3

- The gluon-DPDF induced cross section rises gradually with order
- The quark-Induced cross section stagnates at NLO
- At NNLO 84% of the cross section is from gluon DPDF

Motivation 2: Progress in data

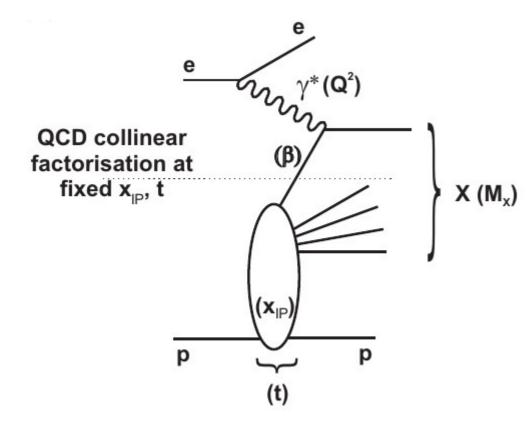
• Compared to last diffractive fits from 2006 or 2007 the HERA II data of much higher luminosity available

Inclusive DDIS data:

Data Set	Q^2 range	Proton Energy	Luminosity	
	(GeV^2)	E_p (GeV)	(pb^{-1})	
New data samples				
1999 MB	$3 < Q^2 < 25$	920	3.5	
1999-2000	$10 < Q^2 < 105$	920	34.3	
2004-2007	$10 < Q^2 < 105$	920	336.6	
Previously published data samples				
1997 MB	$3 < Q^2 < 13.5$	820	2.0	
1997	$13.5 < Q^2 < 105$	820	10.6	
1999-2000	$133 < Q^2 < 1600$	920	61.6	

The jet data:

New data sample					
2005-2007	920 + 27.6	290 pb ⁻¹			
Previously published					
1999-2000	920 + 27.5	51.5 pb ⁻¹			


~40 times higher luminosity

Eur.Phys.J. C72 (2012) 2074 [arXiv:1203.4495] + data at lower energies 225, 252 GeV

~6 times higher luminosity
 JHEP 1503 (2015) 092
 [arXiv:1412.0928]:
 With proper treatment of
 correlations between bins 5

Diffractive Production in ep

In diffractive events the beam proton stays intact or dissociates into low mass hadronic system Y

At HERA about 10% of low-x events are diffractive

DIS variables: $Q^2 = -(k - k')^2$ $y = \frac{p \cdot q}{p \cdot k}$

Diffractive variables: $x_{I\!P} = 1 - \frac{E'_p}{E_p}$ $t = (p - p')^2$

Mass:
$$M_X^2 = Q^2 \left(\frac{1}{\beta} - 1\right)$$

At LO: The momentum fraction entering the hard subprocess with respect to the diffractive exchange

$$\beta = \frac{x_{Bj}}{x_{I\!P}} = \frac{Q^2}{syx_{I\!P}}$$

6

Collinear QCD factorization theorem in hard diffraction

- For diffractive events with a **hard scale** (e.g Q^2 or jets p_T)
- Factorization of the diffractive cross section into process independent DPDFs and partonic cross sections

$$d\sigma(ep \to epX) = \sum_{i} f_{i}^{D}(x, Q^{2}, x_{IP}, t) \otimes d\sigma^{ie}(x, Q^{2})$$

 For diffractive processes (including dijets) with high enough Q² factorization proven by Collins within perturbative QCD, for low Q² factorization breaking suggested

Factorization of Hard Processes in QCD F John C. Collins (IIT, Chicago & SUNY, Stony Brook), Davison E. Soper (Oregon U.), J George F. Sterman (SUNY, Stony Brook). May 30, 1989. 91 pp. F Published in Adv.Ser.Direct.High Energy Phys. 5 (1989) 1-91 0 ITP-SB-89-31 F DOI: 10.1142/9789814503266_0001 E e-Print: hep-ph/0409313 | PDF e References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service Detailed record - Cited by 812 records 500+

Proof of factorization for diffractive hard scattering

John C. Collins (Penn State U.). Sep 1997. 12 pp. Published in Phys.Rev. D57 (1998) 3051-3056, Erratum: Phys.Rev. D61 (2000) 019902 PSU-TH-189 DOI: <u>10.1103/PhysRevD.57.3051</u>, <u>10.1103/PhysRevD.61.019902</u> e-Print: <u>hep-ph/9709499</u> | PDF

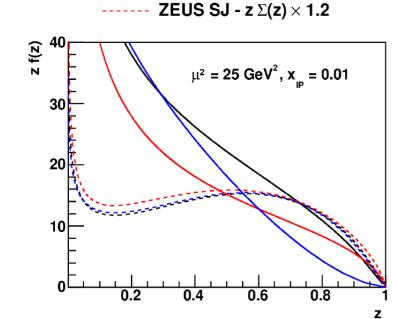
<u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>ADS Abstract Service; OSTI.gov Server</u>

Detailed record - Cited by 404 records 250+

NLO DPDFs

Gluon Densities

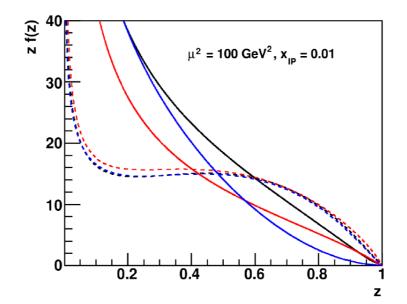
- DPDF sets differ mainly in gluon component which is weekly constrain from inclusive diffractive data
- For gluon dominated diffractive dijet production we have sizable DPDF uncertainty
- DPDFs obey standard DGLAP evolution equation


MRW DPDF

GKG18

Combined **inclusive** + **dijets** data fits

H1 2007 Fit Jets ZEUS 2009 Fit SJ



Quark Singlet Densities

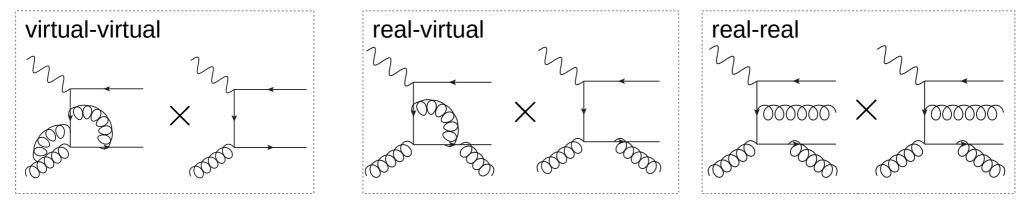
----- H1 Fit B - z Σ(z)

----- H1 Fit Jets - $z \Sigma(z)$

– H1 Fit B - z G(z)

H1 Fit Jets - z G(z)

ZEUS SJ - z G(z) × 1.2


8

Overview of the new fit

Theory

- NNLO accuracy for both inclusive and jet production
- Using FONLL-C GM-VFNS (by APFEL) for inclusive production, \rightarrow default QCD scale for inc. production: $\mu_R^2 = \mu_F^2 = Q^2$
- Using NNLOJET (massles quarks) + fastNLO for dijets, \rightarrow default QCD scale for dijets: $\mu_R^2 = \mu_F^2 = Q^2 + \langle p_T^{*jets} \rangle^2$
- Scale unc. by simultaneous (for all processes) $\mu_F = \mu_R x^2$, x0.5 variation

Examples of α_S^3 diagrams contributing to dijet production

DPDF Parametrization

• Regge factorisation ansatz

 $f_i^D(z,\mu^2,x_{I\!\!P},t) = f_{I\!\!P/p}(x_{I\!\!P},t) f_{i/I\!\!P}(z,\mu^2) + n_{I\!\!R} f_{I\!\!R/p}(x_{I\!\!P},t) f_{i/I\!\!R}(z,\mu^2)$

• Pomeron PDF $f_{i/\mathbb{P}}(z, \mu^2)$

times z=1 regulator: $\exp\left(-\frac{0.01}{1-z}\right)$

	Gluon	Singlet($u=d=s=u=d=s$)
H1 Fit2006A	$A_g (1-z)^{C_g}$	
H1 Fit2006B	A_g	$A_q z^{B_q} (1-z)^{C_q}$
H1 Fit2007Jets ZEUS SJ H1 Fit2019 NNLO	$A_g z^{B_g} (1-z)^{C_g}$	

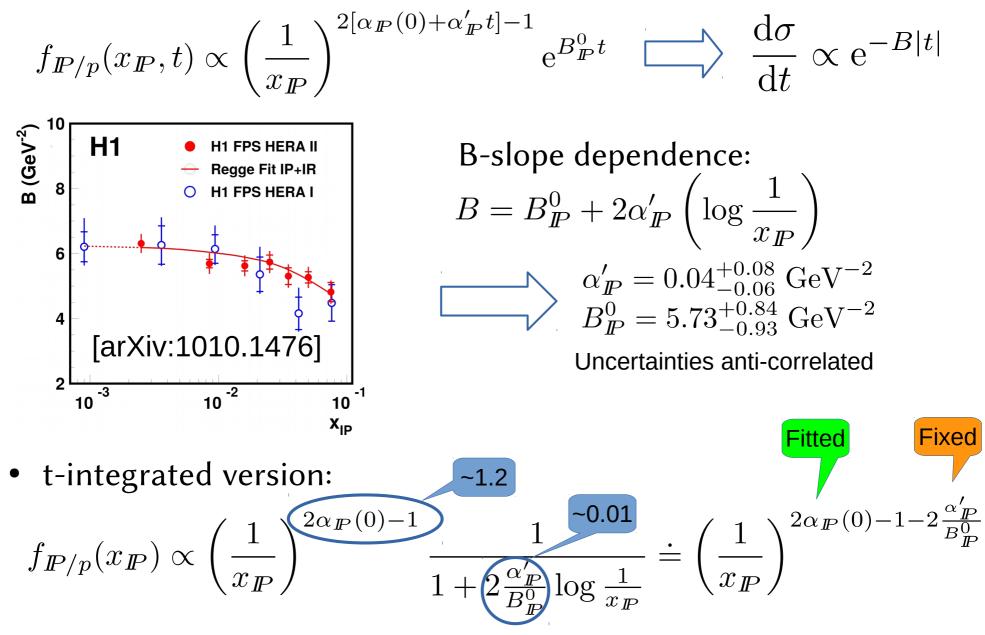
- Reggeon PDF $f_{i/I\!\!R}(z,\mu^2)$
 - \rightarrow only few % at $x_{IP} = 0.03$
 - \rightarrow Fixed to the pion PDF (GRV NLO as default)
 - \rightarrow The overall normalization $n_{I\!\!R}$ taken as free parameter

Collinear QCD factorization in inclusive DDIS

The reduced diffractive cross section:

$$\frac{\mathrm{d}^{3}\sigma^{ep\to eXY}}{\mathrm{d}Q^{2}\mathrm{d}\beta\mathrm{d}x_{I\!P}} = \frac{4\pi\alpha_{em}^{2}}{\beta Q^{4}} \left(1 - y + \frac{y^{2}}{2}\right) \left(F_{2} - \frac{y^{2}}{1 + (1 - y)^{2}}F_{L}\right)$$
$$\sigma_{r}^{D(3)}(\beta, Q^{2}, x_{I\!P})$$

• Regge factorization ansatz $F_{2/L}^{D(3)}(\beta, Q^2, x_{I\!\!P}) = f_{I\!\!P/p}(x_{I\!\!P}) F_{2/L}^{I\!\!P}(\beta, Q^2) + n_{I\!\!R} f_{I\!\!R/p}(x_{I\!\!P}) F_{2/L}^{I\!\!R}(\beta, Q^2)$ Fixed


$$F_{2/L}^{I\!\!P}(\beta,Q^2) = C_{2/L}^i(\beta/z,Q^2,\mu^2) \otimes f_{i/I\!\!P}(z,\mu^2)$$

Up to NNLO
Standard DIS
coef. functions
Obeys DGLAP

Both coef. functions and DGLAP evolution depend on α_s and m_c , m_b

 $\alpha_{em} \stackrel{\text{def}}{=} \frac{1}{107}$

Flux Parametrization

• Param. inspired by Regge theory (Streng and Berger):

Parameters & Model Unc.

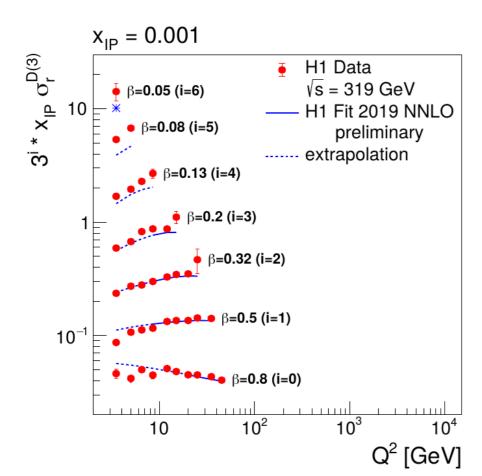
• Fixed params. mostly identical with H1 2006 & 2007 fits

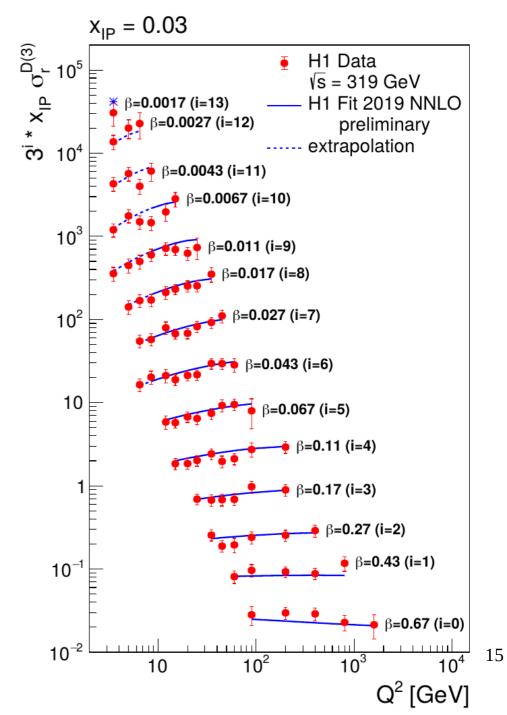
	Parameter	Value	Source
Pomeron slope	$\alpha'_{I\!\!P}$	$0.04^{+0.08}_{-0.06}~{ m GeV}^{-2}$	H1 FPS HII [arXiv:1010.1476]
Pomeron B-slope	$B^0_{I\!\!P}$	$5.73^{+0.84}_{-0.93}~{ m GeV}^{-2}$	H1 FPS HII [arXiv:1010.1476]
Reggeon intercept	$\alpha_{I\!\!R}(0)$	0.5 ± 0.1	H1 LRG HI [hep-ex/9708016]
Reggeon slope	$\alpha'_{I\!\!R}$	$0.3^{+0.6}_{-0.3}~{ m GeV}^{-2}$	H1 FPS HI [hep-ex/0606003]
Reggeon B-slope	$B_{I\!\!R}^{0}$	$1.6^{+0.4}_{-1.6}~{ m GeV}^{-2}$	H1 FPS HI [hep-ex/0606003]
charm mass	m_c	$1.4\pm0.2~{\rm GeV}$	PDG2004
bottom mass	m_b	$4.5\pm0.5~{\rm GeV}$	PDG2004
strong coupling	$\alpha_S(M_Z^2)$	0.118 ± 0.002	PDG2004
staring scale of ev.	μ_0	$1.15^{+0.24}_{-0.15}~{ m GeV}$	

- Parameters $\alpha'_{I\!\!P}, B_{I\!\!P}$ ($\alpha'_{I\!\!P}, B_{I\!\!P}$) strongly anti-correlated \rightarrow Varied simultaneously as (up,down) & (down,up)
- The QCD scale varied by a factor of 2 (dominant unc. together with μ_0 variation)
- 8 parameters fitted: 6 of pomeron PDF + $\alpha_{I\!P}(0)$ & $n_{I\!R}$

Fitted data sets

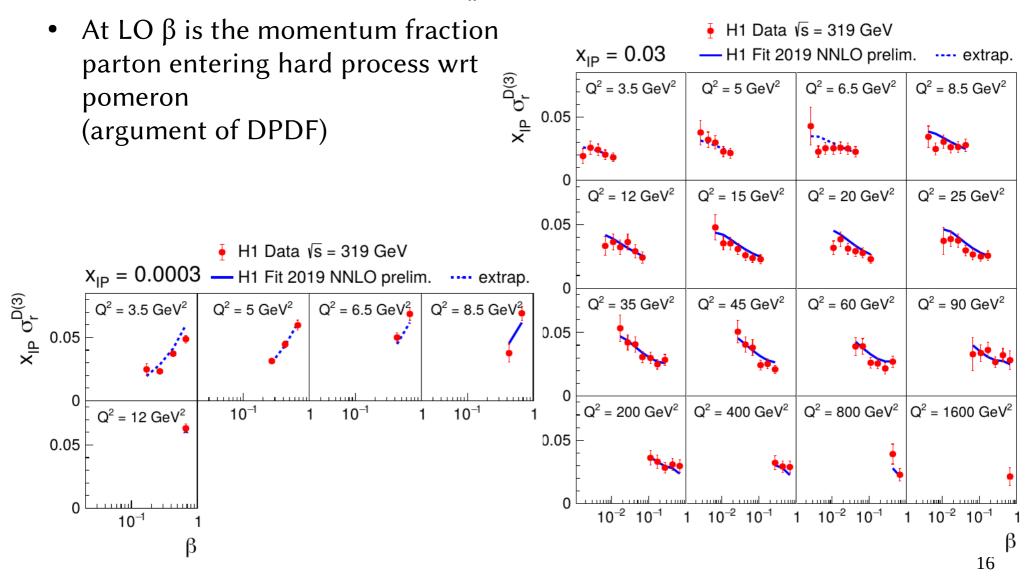
Data

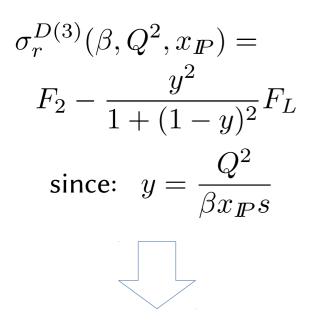

- Combined H1 HERA-I + HERA-II LRG inc. data [arXiv:1203.4495]
- H1 LowE HERA-II LRG inc. data $\sqrt{s} = 225 \text{ GeV}, \sqrt{s} = 252 \text{ GeV}$ [arXiv:1107.3420]
- H1 HERA-II dijets LRG data, p_T^{jet1} vs Q² dist. [arXiv:1412.0928]


Data Set	Phase-Space	$\sqrt{s}~[{ m GeV}]$	$Lumi\;[pb^{-1}]$	$\chi^2/N_{ m pts}$
H1 LRG HERA-I+II inc. combined	$\begin{array}{l} 8.5 < Q^2 < 1600 \ {\rm GeV}^2 \\ 0.0003 < x_{I\!\!P} < 0.03 \end{array}$	319 + 300	up to 336.6	192/191
H1 LRG HERA-II inc. lowE252	$8.5 < Q^2 < 44 \mathrm{GeV}^2$	252	5.2	19/12
H1 LRG HERA-II inc. lowE225	$0.0005 < x_{I\!\!P} < 0.003$	225	8.5	10/13
H1 LRG HERA-II dijets $p_T^{ m jet1}$ vs Q^2 distr.	$\begin{array}{c} 4 < Q^2 < 100 {\rm GeV}^2 \\ p_T^{\rm jet1(2)} > 5.5(4) {\rm GeV} \\ x_{I\!\!P} < 0.03 \end{array}$	319	290	12/15
+ always: $ t < 1 \text{ GeV}^2, M_Y < 1.6 \text{ GeV}$				235/231 ndf = 223

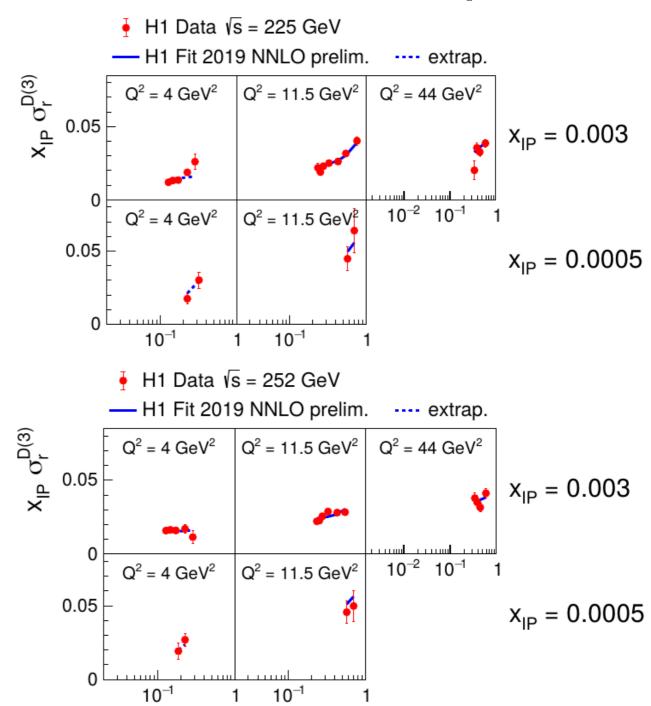
Fit gives reasonable chi2/ndf, both the "total" and partial data set

Fitted data – Inclusive Sample (Q² dep.)


- At the nominal HERA energy ($\sqrt{s}=319$ GeV) fitted combined H1 HERA I+HERA-II data $x_{IP}=0.0003, 0.001, 0.003, 0.01, 0.03$
- Description in "extrapolated" region Q² < 8.5 sometimes worse

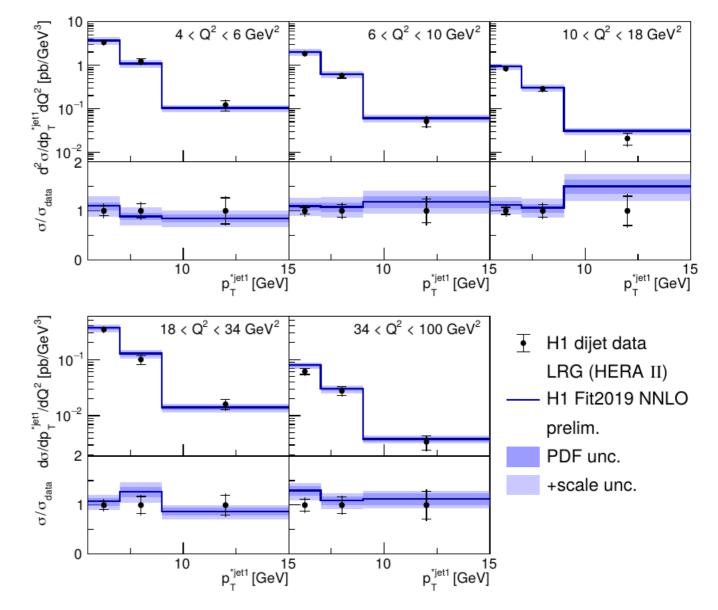

Fitted data - Inclusive Sample (ß dep.)

• Good description by NNLO QCD predictions over wide range of x_{IP} and β

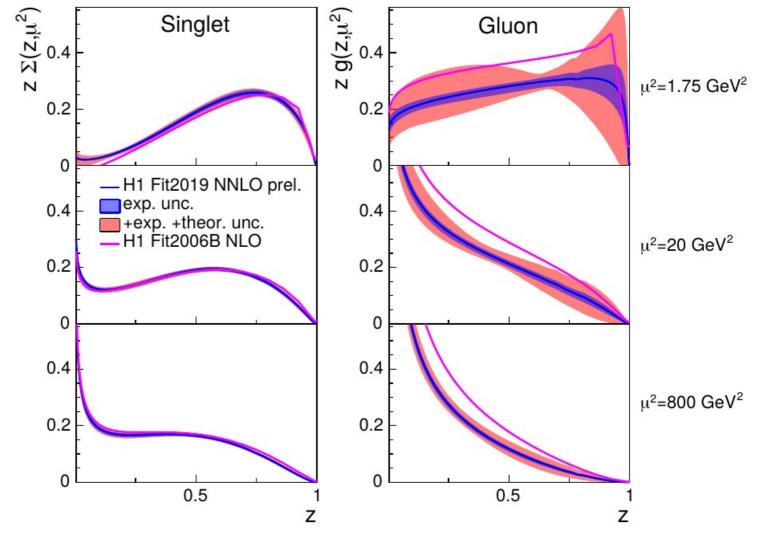


Fitted data - LowE Inclusive Sample

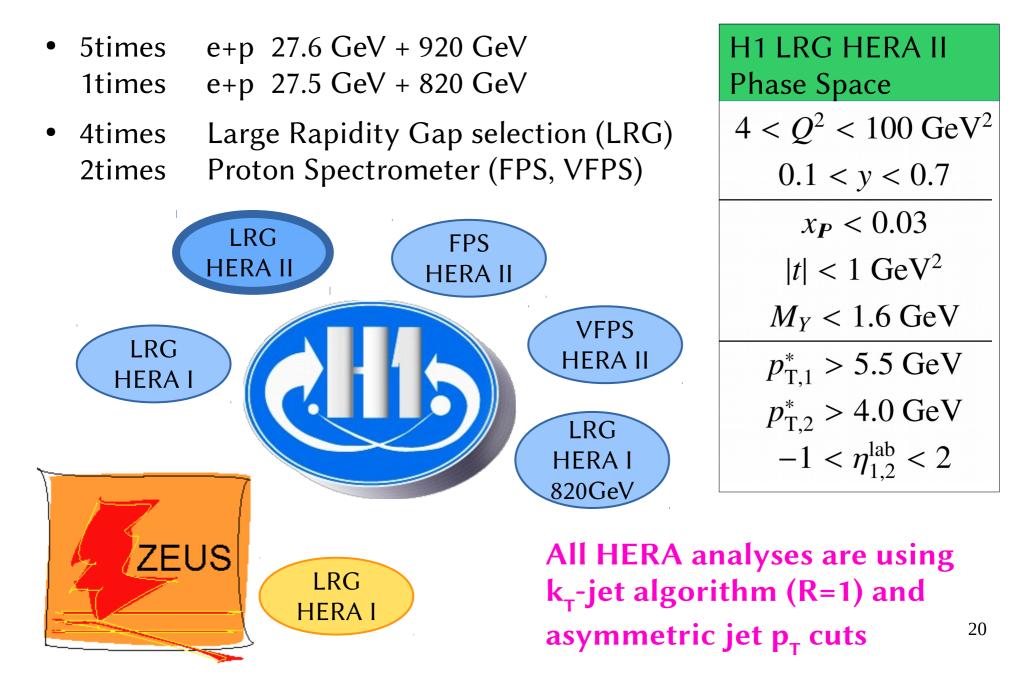
- The F₂ & F_L beam energy independent
- The reduced cross section predicted to be energy dependent:



To disentangle $F_2 \& F_L$ the σ_r must be measured for several beam energies

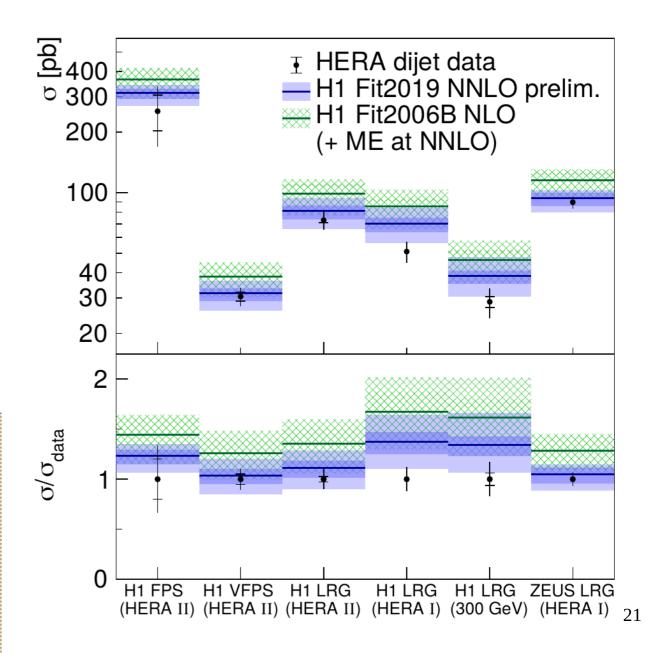

Fitted data - Jet Data

- Currently only the 2D p_T^{jet1} vs Q²
 H1 HERA-II cross sections fitted
- Shown PDF & scale uncertainty of the fit
- Good fit quality $\chi^2/ndf = 12/15$

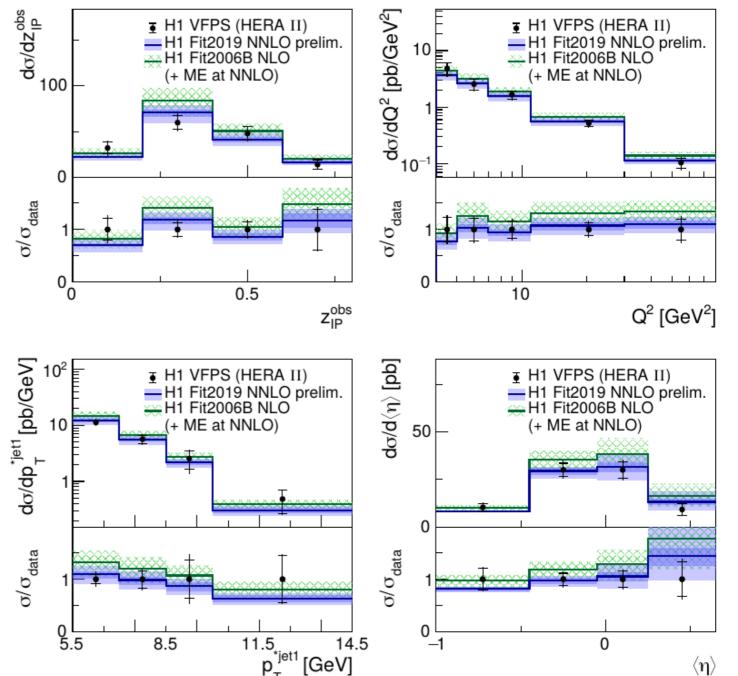


The DPDF Comparison (H1 Fit2019 NNLO vs H1 Fit2006B NLO)

- The old and new DPDFs in different QCD order & flavour scheme
 → comparison problematic!
 Singlet = u + d + s (+anti-q)
- The quark single component comparable for both fits
- Gluon component of the newer fit ~25% lower

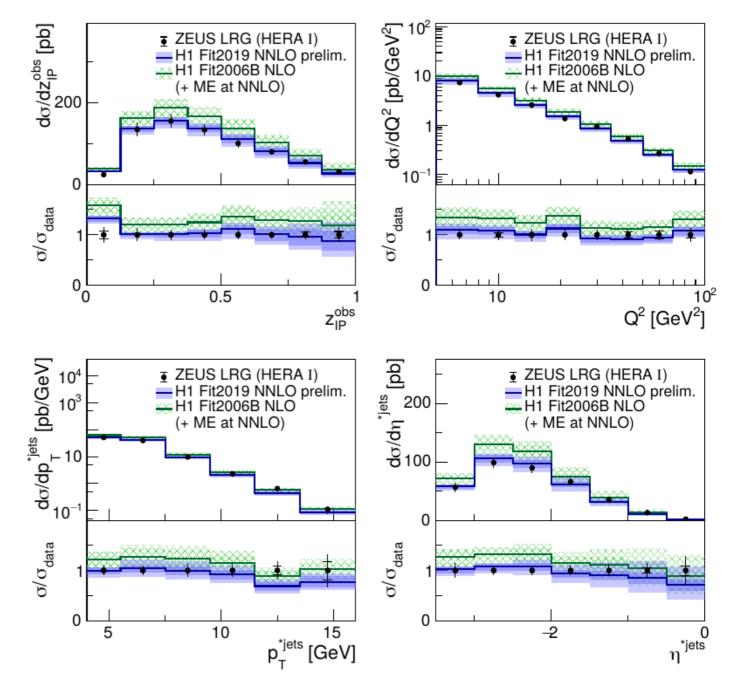

The DDIS HERA dijets measurements

Total Dijet Cross Sections


- H1 Fit2019 NNLO

 → describes well
 the H1 HERA-II data
 + ZEUS HERA-I
 → H1 HERA-I data
 slightly below
- H1 Fit2006B NLO with NNLO ME overestimates all the cross sections
 - In addition to the total cross sections we analyzed 39 single-differential and 4 double-differential distributions

Dijet cross sections (H1 VFPS)


- The data based on Very Forward Proton
 Spectrometer (VFPS) do not
 contain any proton
 dissociation and are
 in many ways
 systematically
 independent to the
 LRG-based data
- Good description of the kinamatic variables z_{IP}, Q², p_T^{jet1}, <η>

Dijet cross sections (ZEUS LRG)

- The H1 Fit2019 NNLO based predictions agree well with the ZEUS dijet data [arXiv:0708.1415]
- At LO the z^{obs}_{IP} directly related to the pomeron momentum fraction entering ME

$$z_{I\!\!P}^{\rm obs} = \frac{Q^2 + M_{12}^2}{Q^2 + M_X^2}$$

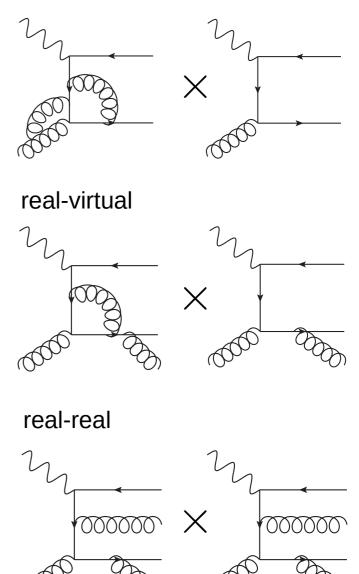
Conclusions

- First combined fit to the inclusive+jet DDiS DATA at NNLO
- The NNLO DPDF has lower gluon contribution compared to NLO version
- The jet data compatible with new inclusive data (at both NNLO and NLO)
 - \rightarrow Factorization in diffractive DDIS up to NNLO established

Outlook:

- Release the fit at LO, NLO & NNLO
- Include possible extra jet observables to the fit
- FPS data?

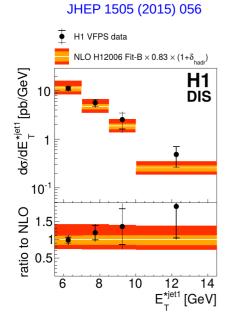
Backup


NNLO QCD Predictions

• **NNLOJET** program based on antenna subtraction

J. Currie, T. Gehrmann, A. Huss and J. Niehues, JHEP 07 (2017) 018, [1703.05977]

$$d\sigma(ep \to epX) = \sum_{i,n} d\sigma^{ie(n)}(x,Q^2) \otimes$$
$$\alpha_S^n \otimes f_i^D(x,Q^2,x_{IP},t)$$


virtual-virtual

Cookbook

- 1) The matrix element tables precalculated by **NNLOJET** program (~1M CPU hours)
- 2) Then convoluted with DPDFs and α_S using **fastNLO** (<1s)
- The NLO 2jet and 3jet contributions verified against Sherpa and NLOJET++

The HERA DDIS jets Legacy

NLO \otimes H12006 Fit-B \times (1+ δ dơ/p*_{T,1} [pb/GeV] **H1** 10² 10 1 10⁻¹

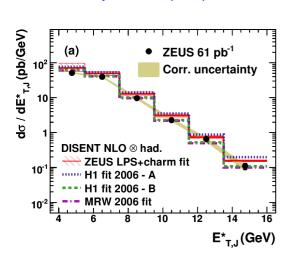
JHEP 1503 (2015) 092

H1 Data

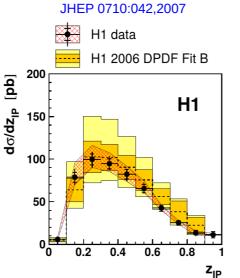
Data/NLO

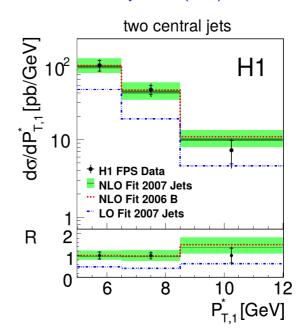
2

0^E

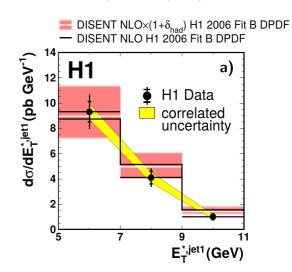

6

8


10


12

14 p*___[GeV]


Eur. Phys. J. C 52 (2007) 813-832

Eur.Phys.J.C72 (2012) 1970

Eur.Phys.J.C 51 (2007) 549

Backup

Data Set	${\cal L} \ [{ m pb}^{-1}]$	DIS range	Dijet range	Diffractive range
H1 FPS (HERA II) $[53]$	$\begin{array}{c} 156.6 \\ (581 \mathrm{ev}) \end{array}$	$\begin{array}{l} 4 < Q^2 < 110 {\rm GeV}^2 \\ 0.05 < y < 0.7 \end{array}$	$\begin{array}{l} p_{\rm T}^{*,{\rm jet1}} > 5{\rm GeV} \\ p_{\rm T}^{*,{\rm jet2}} > 4.0{\rm GeV} \\ -1 < \eta_{\rm lab}^{\rm jet} < 2.5 \end{array}$	$x_{I\!\!P} < 0.1$ $ t < 1 \mathrm{GeV}^2$ $M_{\mathrm{Y}} = m_P$
H1 VFPS (HERA II) [54]	50 $(550\mathrm{ev})$	$\begin{array}{l} 4 < Q^2 < 80 {\rm GeV}^2 \\ 0.2 < y < 0.7 \end{array}$	$\begin{array}{l} p_{\rm T}^{*,{\rm jet1}} > 5.5{\rm GeV} \\ p_{\rm T}^{*,{\rm jet2}} > 4.0{\rm GeV} \\ -1 < \eta_{\rm lab}^{\rm jet} < 2.5 \end{array}$	$0.010 < x_{I\!\!P} < 0.024$ $ t < 0.6 \mathrm{GeV}^2$ $M_{\mathrm{Y}} = m_P$
H1 LRG (HERA II) [3]	$290 \ (\sim 15000 ev)$	$\begin{array}{l} 4 < Q^2 < 100 {\rm GeV^2} \\ 0.1 < y < 0.7 \end{array}$	$\begin{array}{l} p_{\rm T}^{*,{\rm jet1}} > 5.5{\rm GeV} \\ p_{\rm T}^{*,{\rm jet2}} > 4.0{\rm GeV} \\ -1 < \eta_{\rm lab}^{\rm jet} < 2 \end{array}$	$x_{I\!\!P} < 0.03$ $ t < 1 \mathrm{GeV}^2$ $M_{\mathrm{Y}} < 1.6 \mathrm{GeV}$
H1 LRG (HERA I) [37]	51.5 (2723ev)	$4 < Q^2 < 80 \mathrm{GeV}^2$ 0.1 < y < 0.7	$\begin{array}{l} p_{\rm T}^{*,{\rm jet1}} > 5.5{\rm GeV} \\ p_{\rm T}^{*,{\rm jet2}} > 4.0{\rm GeV} \\ -3 < \eta^{*{\rm jet}} < 0 \end{array}$	$x_{I\!\!P} < 0.03$ $ t < 1 \mathrm{GeV}^2$ $M_{\mathrm{Y}} < 1.6 \mathrm{GeV}$
H1 LRG (300GeV) [55]	$\frac{18}{(322\mathrm{ev})}$	$4 < Q^{2} < 80 \text{GeV}^{2}$ 165 < W < 242 GeV (0.30 < y < 0.65)	$\begin{array}{l} p_{\rm T}^{*,{\rm jet1}} > 5{\rm GeV} \\ p_{\rm T}^{*,{\rm jet2}} > 4.0{\rm GeV} \\ -1 < \eta_{\rm lab}^{\rm jet} < 2 \\ -3 < \eta^{*{\rm jet}} < 0 \end{array}$	$x_{I\!\!P} < 0.03$ $ t < 1 { m GeV}^2$ $M_{ m Y} < 1.6 { m GeV}$
ZEUS LRG (HERA I) [56]	$\begin{array}{c} 61 \\ (5539 \mathrm{ev}) \end{array}$	$5 < Q^2 < 100 \mathrm{GeV}^2$ $100 < W < 250 \mathrm{GeV}$ (0.10 < y < 0.62)	$\begin{array}{l} p_{\rm T}^{*,{\rm jet1}} > 5{\rm GeV} \\ p_{\rm T}^{*,{\rm jet2}} > 4.0{\rm GeV} \\ -3.5 < \eta^{*{\rm jet}} < 0 \end{array}$	$\begin{aligned} x_{I\!\!P} &< 0.03 \\ t &< 1 {\rm GeV}^2 \\ M_{\rm Y} &= m_P \end{aligned}$