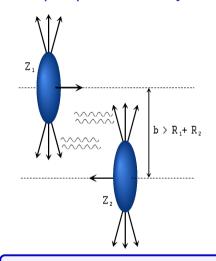
Coherent J/ψ photoproduction in ultra-peripheral collisions at STAR

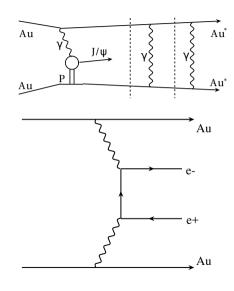
Jaroslav Adam For the STAR Collaboration

Creighton University, Omaha



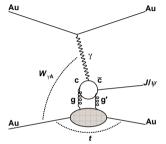
Torino

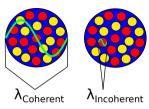
The 27th Workshop on Deep-Inelastic Scattering and Related Subjects


Ultra-peripheral heavy-ion collisions

- An ultra-peripheral collision (UPC) is a collision at impact parameter greater than the sum of the nuclear radii
- Electromagnetic field of protons and ions behaves like a beam of quasi-real photons
- Photon beam intensity is proportional to Z²
- Photoproduction in γp and γA interactions
- ullet QED processes in $\gamma\gamma$ interactions

New STAR results on coherent J/ψ photoproduction in Au+Au UPC at 200 GeV


Physics processes studied in ultra-peripheral collisions



- Lorentz-contracted field in UPC is described as a flux of quasi-real photons
- We can study photon-nucleus and photon-photon interactions
- Vector mesons and e⁺e⁻ pairs are the only produced particles
- Nuclei typically leave intact, but may be excited by electromagnetic field to emit neutrons
- The STAR data for the coherent J/ψ production were taken with the requirement for both nuclei to emit at least one neutron (XnXn)

Photoproduction of heavy vector mesons

• Can be described by perturbative QCD as two-gluon exchange

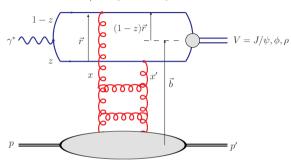
- Photon coupling may be coherent or incoherent
- Momentum fraction of probed gluons is $x = (M_{J/\psi}/W_{\gamma A})^2$
- Cross section in LO is proportional to the square of gluon distribution, $g_A(x, Q^2)$, at the scale of, $Q^2 = M_{L/ab}^2/4$:

$$\left. \frac{\mathrm{d}\sigma(\gamma A \to J/\psi A)}{\mathrm{d}t} \right|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha_{\mathrm{em}} M_{J/\psi}^5} 16\pi^3 \left[x g_A(x, Q^2) \right]^2$$

Coherent cross section is sensitive to nuclear effects of gluon density at low-x

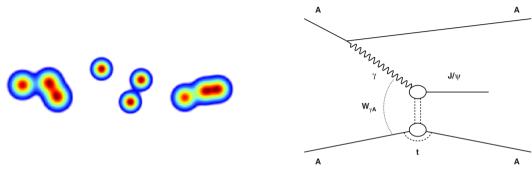
Glauber approach to coherent J/ψ cross section

• Based on the experimental $\gamma p \to J/\psi p$ cross section and nuclear thickness function, $T_A(\vec{r})$, as an input to the Glauber formula:


$$\sigma_{\mathrm{tot}}(J/\psi A) = \int \mathrm{d}^2 \vec{r} \left(1 - \mathrm{e}^{-\sigma_{\mathrm{tot}}(J/\psi p) T_A(\vec{r})}
ight)$$

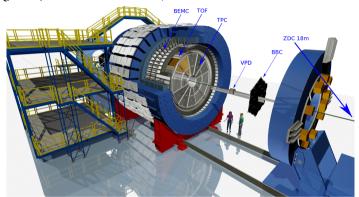
- Implemented in Starlight, Klein et al., Comput. Phys. Commun. 212 (2017) 258-268
- Coherent photon-nucleus cross section is then found by the vector meson dominance and Woods-Saxon nuclear profile
- Cross section in nucleus-nucleus UPC is obtained by convoluting with photon flux, $N_{\gamma}(k)$:

$$\sigma(AA \to J/\psi A) = 2 \int \mathrm{d}k \frac{\mathrm{d}N_{\gamma}(k)}{\mathrm{d}k} \sigma(\gamma A \to J/\psi)$$


 Factor of two in front of the integral accounts for possibility of both nuclei to be a photon source or a target

Dipole model for coherent J/ψ photoproduction

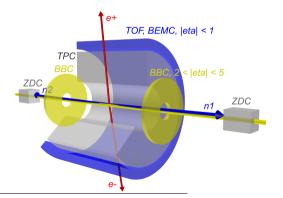
- Allows one to non-linear QCD phenomena via the Color-Glass Condensate
- Used in the model by Mäntysaari, Schenke, Phys.Lett. B772 (2017) 832-838
- Photon fluctuates to quark-antiquark dipole with transverse separation, \vec{r}
- The dipole scatters off the nucleus
- Vector meson is formed out of the dipole


Coherent photoproduction in hot spot model

- Also based on dipole approach to photon-nucleus scattering
- Individual nucleons consist of Gaussian hot spots
- Used in the model by Cepila, Contreras, Krelina, Phys.Rev. C97 (2018) no.2, 024901
- Number of hot spots increases with decreasing x
- Diffractive cross section in *t* is related to transverse distribution of target

The STAR experiment

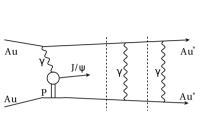
Central tracking and particle identification, forward counters and neutron detection



- Time Projection Chamber: tracking and identification in $|\eta| < 1$
- Time-Of-Flight: multiplicity trigger, identification and pile-up track removal
- Barrel ElectroMagnetic Calorimeter: topology trigger and pile-up track removal
- ullet Beam-Beam Counters: scintillator counters in 2.1 < $|\eta|$ < 5.2, forward veto
- Zero Degree Calorimeters: detection of very forward neutrons, $|\eta| > 6.6$

Trigger and data selection for coherent J/ψ production in UPC

Just two tracks from a low- p_T vector meson, forward neutrons, and nothing else


- Rapidity acceptance for J/ψ is |y| < 1
- Trigger requirements assume two tracks and at least one neutron in each ZDC

- Back-to-back hits in BEMC
- Limited activity in TOF
- Showers in both ZDCs
 - Energy deposition within 1/4 to 4 beam-energy neutrons
 - Full efficiency to a single neutron
- Veto from both BBCs

Detectors are not in scale in the illustration

Very forward neutron emission

 Excited nuclei emit neutrons in a forward direction



Figure: Spectrum of Analog-to-Digital counts from ZDCs

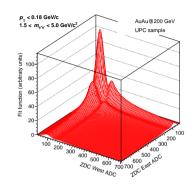
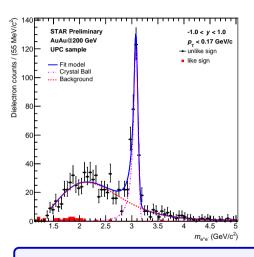
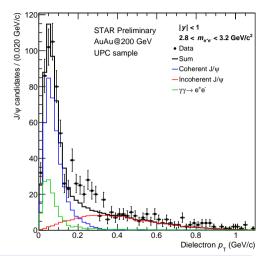



Figure: Two-dimensional fit by a sum of Gaussian and Crystal Ball functions

- ZDC signal shows peak structures for one neutron, two or more neutrons
- The neutrons are a convenient way to tag UPC events at the trigger level

Invariant mass of selected candidates

- Signal of J/ψ and continuum from $\gamma\gamma \to e^+e^-$
- Minimal like-sign background
- Fit by Crystal Ball for ${\it J/\psi}$ and empiric formula for $\gamma\gamma \to e^+e^-$
- Parametrization for $\gamma\gamma \to e^+e^-$ is:

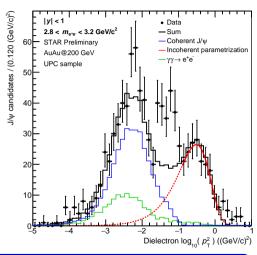

$$f_{\gamma\gamma \to e^+e^-} = (m - c_1)e^{\lambda(m-c_1)^2 + c_2m^3}$$

• The parametrization is effective convolution of $\gamma\gamma\to e^+e^-$ cross section and detector effects

Mass fit is used to account for $\gamma\gamma \to e^+e^-$ contribution in J/ψ signal

Transverse momentum of J/ψ candidates

- Dielectrons within J/ψ mass peak
- Individual components by MC templates:
 - Coherent J/ψ Incoherent J/ψ
 - $\gamma\gamma
 ightarrow e^+e^-$
- MC templates are provided by STARLIGHT
- Contribution of $\gamma\gamma \to e^+e^-$ is normalized using fit to the invariant mass distribution
- Illustrative normalization for coherent and incoherent components

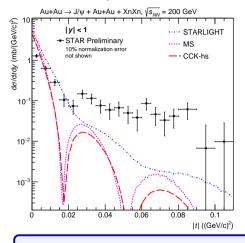

Coherent and incoherent J/ψ have different shapes of p_T spectrum

Fit to transverse momentum in $\log_{10}(p_T^2)$

- Separation of incoherent and coherent components
- Parametrization for incoherent J/ψ :

$$f_{\text{incoherent}} = A \cdot e^{-bp_T^2}$$

- The fit (solid line) is performed over incoherent region
- Contribution of $\gamma\gamma \to e^+e^-$ is normalized from invariant mass fit
- Illustrative normalization for coherent component


Fit to $\log_{10}(p_T^2)$ is used to account for incoherent background in coherent signal

Calculation of coherent cross section in bins of |t|

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|t|\mathrm{d}y} = \frac{N_{J/\psi}^{\mathrm{coh}}}{A \times \varepsilon \cdot B \cdot \mathcal{L}} \cdot \frac{1}{\Delta|t|\Delta y}$$

- $N_{J/\psi}^{coh}$ = yield of coherent J/ψ at a given $|t| = p_T^2$
 - ▶ Background from $\gamma\gamma \to e^+e^-$ is subtracted using invariant mass fit
 - ▶ Incoherent background is subtracted from fit to $log_{10}(p_T^2)$
- $A \times \varepsilon$ = detector acceptance and efficiency
- \mathcal{B} = branching ratio of $J/\psi \rightarrow e^+e^-$ (PDG)
- \mathcal{L} = luminosity of data sample
- $\Delta |t|$ = size of bin in |t|
- Δy = size of bin in rapidity (= 2 for |y| < 1)

Coherent J/ψ cross section as a function of t

- STARLIGHT: Klein, Nystrand, CPC 212 (2017) 258-268
 - Vector meson dominance and Glauber approach
 - Includes effects of photon p_T
- MS: Mäntysaari, Schenke, Phys.Lett. B772 (2017) 832-838
 - Dipole approach with IPsat amplitude
 - ► Scaled to XnXn using STARLIGHT
- CCK: Cepila, Contreras, Krelina, Phys.Rev. C97 (2018) no.2, 024901
 - ▶ Hot spot model for nucleons, dipole approach
 - Scaled to XnXn using STARLIGHT

- Diffractive dip around $|t| = 0.02 \text{ GeV}^2$ is correctly predicted by MS and CCK models
- Slope below first diffractive minimum is consistent with STARLIGHT

Summary

- The first STAR data on coherent J/ψ photoproduction as a function of t
- Trigger by back-to-back topology in the Barrel Electromagnetic Calorimeter
- Requirement for a neutron emission in a forward direction

- Diffractive structure is present in the *t*-dependence of cross section
- Comparison to the Glauber and dipole models

- Diffractive dip is present in dipole calculations
- The slope of *t*-dependence is correct in the Glauber model