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Parton model Color confinement
« Based on “quasi-free” partons that are + Partons are not just correlated, they
frozen in the Infinite momentum frame. cannot exist as free particles in nature

One conceptual question arises:

One set of incoherent partons * Protonis a pure quantumé
corresponds to a non-zero How to understand? mechanical state, its
von Neumann entropy S # 0 entropy is zero S = 0
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1. Definition:

\\If> is a pure quantum state, density matrix is therefore Ptot — ‘\I’> <\Ij‘
Entanglement Entropy (EE) is defined:

Sa = —Trpalnpa

,where A = TI“B (,Otot) , A and B are two complementary parts of \\If>

2. Take-home messages: pure quantum state

1) For the whole system Ptot, von Neumann
entropy is zero by definition (i.e., proton)

2) When measuring A only:
i. Sge > 0if Aand B are entangled.
ii. Sgg=0if Aand B are independent.
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“EE is a measure of how much a given state is quantum mechanically entangled”

Taken from a lecture note of Tadashi Takayanagi, http://www2.yukawa.kyoto-u.ac.jp/~tadashi.takayanagi/CERNEE.pdf
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X

=>

« Many modern experiments have seen evidence of EPR paradox
(e.g., in cold atom experiments) 12



Experiments at Colliders
(a)

before collision

Proton: a pure quantum
state (by definition)

SEE:O



Experiments at Colliders
(b)

hard collision

electron

Hard interaction, fast enough
to test entanglement, e.g.,

1
— ~1GeV ! ~0.2fm

Q



Experiments at Colliders
(©)

after collision

Hadronization and if A,B
are entangled, entropy:

A _ B
SEE_SEE
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electron

In principle

Measure S, and Sg independently,
and directly test against each other.

But partons don't live ®.
Need all hadrons from A and B

In practice

* Theorists! made a prediction

SEE — |n [XG]

at small x, e.g., x < 103

 \We have well constrained PDFs

1. D. Kharzeev and E.Levin, Phys. Rev. D 95, 114008 (2017)
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For example,

A well-defined test

At similar kinematics in x and Q2 (region A), the Sge can be checked from
the entropy of finite-state hadron around region A

prediction experiment
Sep = [xG] W) Shadron = — y_ P(N) In [P(N)

Assuming entropy doesn’t grow much

The event kinematics define the region of interest, using relation
between x and rapidity,

— I —_ .o
111 N ~ ybeam yha dron (arXiv:hep-ph/9903536)

fixed Q2, and x, e.g., X € (X4,X2) E> Final-state hadrons y € (y4,y2)

prediction 7 experiment

(x1 <x<x2) *

SEE _ ln [XG] — S(y1 <y<y2) _ Z P(N) In [P(N)]

hadron




SEE

xG(x) is from LO MSTW, no substantial difference from using other PDFs
Other models, DJANGO, PYTHIAG, and PYTHIAS8, same conclusion
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No indication of entanglement in simulation
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High energy pp collisions

« At high energy, dominated by gluon-gluon
interactions, pp collisions could be tested
using similar idea.

* Get the x value from y,..m aNd Yy a4rons

1
ln - ~ ybeam o yhadron
X

« Saturation scale Qg is used from NLO
BK model [see backup for other models]




High energy pp collisions

« At high energy, dominated by gluon-gluon
interactions, pp collisions could be tested
using similar idea.

Get the x value from y, .., and Yhadron

1
ln - ~ ybeam o yhadron
X

R « Saturation scale Qg is used from NLO

| 2/ndf=09 — gNBD FitcMS pp i <20 BK model [see backup for other models]

&, N = 20.1 o Extrapolated ep ]

* A negative binomial distribution
(NBD) is used to extrapolate P(N)
distribution per nucleon, assuming

] (N) is half.
107~ ‘1(‘,0‘ e 200 (different fit ranges, double NBDs are used and
N included as systematics)

CMS published data JHEP 1101 (2011) 079
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PP
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A strong indication of quantum entanglement

EE and its dependence on x are well predicted, e.g., expected only for x < 10-3
Similar at all rapidity ranges. Compatible with different PDFs.

Entanglement provides a new perspective on understanding the proton

25



Summary and outlook

 First indication of quantum entanglement at sub-
nucleonic scales, encountered EPR paradox using high
energy particle colliders

 Resolved an “apparent paradox” between the Parton
model and quantum mechanics.

* Opened a new perspective on studying the proton.

« Entanglement as a probe of confinement
(Nucl.Phys.B796:274-293,2008)

« Thermalization through entanglement in pp collisions
(Phys. Rev. D 98, 054007 (2018))

« What else can be done?

» DIS experiment using ep data, e.g., HERA (published data does not
go down to low x)

* LHC pp data with a different scale?
» Electron-lon Collider in the future
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Saturation scales
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ee, ep, and pp multiplicities
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