

Higgs to Fermion Decays at LHC (ATLAS and CMS)

Christoph Grab (ETH Zurich)
on behalf of the CMS and ATLAS Collaborations

XXVII Workshop on Deep Inelastic Scattering 2019 - Torino

Outline

- Higgs couplings to fermions general introduction
- Dominant decay mode H→bb *
 - Overview strategy for an VH(bb) analysis in CMS and ATLAS
 - ➤ Combination of H→bb results
 - > STXS for H \rightarrow bb and H $\rightarrow \tau\tau$
- Further decay modes of H to fermions status
 - > H→cc
 - » H→ττ
 - > H→μμ
 - > H→ee
 - ttH (fermion coupling in the production) (→ see talks Cruz, Dimitriu)
- First limits on anomalous couplings in H→ bb vertex
- Outlook and conclusions

Higgs couplings to fermions

Higgs couplings to Fermions

 The Higgs field couples to fermions in SM through a Yukawa interaction, proportional to fermion mass m_f

$$L_{Yukawa} = \frac{1}{\sqrt{2}} g_f \left(\overline{f}_L f_R + \overline{f}_R f_L \right) v + \frac{1}{\sqrt{2}} g_f \left(\overline{f}_L f_R + \overline{f}_R f_L \right) h \qquad m_f = \frac{g_f v}{\sqrt{2}}$$
 fermion mass term Higgs coupling

- Still unresolved questions
 - Do all fermion generations interact by Yukawa interaction?
 - > Is there CP violation in the Yukawa coupling?

Higgs Production at the LHC

 Very large datasets at LHC give access to several production modes to search for H→ Fermions

ggF: Gluon fusion (88%): highest cross-section, huge background

Vector-Boson Fusion VBF (7%): large background, but distinctive topology

H-Strahlung: associated production with V (4%), and $V\rightarrow$ leptons, high pt-V topology to suppress background

top fusion ttH (1%): dominant tt +jets background

Higgs boson decays to fermions

Higgs boson BRs depend only on H mass m_H in SM; at $m_H = 125$ GeV:

- bb ~ 58%
 - > Drives the uncertainty of the total Higgs boson width
 - ▶ Use additional objects to tag: VH (V = W, Z), VBF, and t⁻tH
 - Unique final state to measure coupling with down-type quarks
 - Limits the sensitivity to BSM contributions
- ττ~ 6.3%
 - missing energy from neutrinos,
 - \rightarrow advanced m($\tau\tau$) reconstruction
 - \rightarrow background from Z $\rightarrow \tau\tau$ +jets, and jets faking τ
- cc ~2 9%
 - very large backgrounds from multijets
 - strong c -tagging needed
- μμ ~ 0.022%
 - > very rare process, large background from D-Yan
- **ee** ~ **5*10**⁻⁹ : extremely suppressed (hopeless..?)

Analysis Strategy – Example: dominant H → bb Decay

VH(bb): Analysis strategy

Analysis strategy :

- Exemplified with CMS-analysis, similar in ATLAS.
- > Exploit associated V(Z/H) kinematics for BG reduction:
- Use 3 channels with 0, 1, and 2 leptons and 2 b-tagged jets for Z and W decays
- > Signal region designed to increase S/B
 - ◆ Large boost for vector boson
 - Multivariate analysis exploiting the most discriminating variables ($m_{b\bar{b}}$, $\Delta R_{b\bar{b}}$, b-tag)
- > Control regions to validate backgrounds and control/constrain normalizations
- > Perform simultanous fit of signal and control regions

<u>signal</u>

reducible backgrounds

normalization from data, shapes from MC

VH(bb): Analysis strategy

- Analysis strategy :
 - > Exploit associated V(Z/H) kinematics for BG reduction:
 - Use 3 channels with 0, 1, and 2 leptons and 2 b-tagged jets for Z and W decays
 - Signal region designed to increase S/B
 - ◆ Large boost for vector boson
 - Multivariate analysis exploiting the most discriminating variables ($m_{b\bar{b}}$, $\Delta R_{b\bar{b}}$, b-tag)
 - Control regions to validate backgrounds and control/constrain normalizations
 - Perform simultanous fit of signal and control regions

<u>signal</u>

irreducible backgrounds

used to validate the analysis strategy

VH(bb): main features

- Strive to achieve high mass resolution from:
 - > strong **b-jet identification algorithms** (combination of tagging modes)
 - Exploit b-jet energy regression
 - Perform Kinematic fits (in 2-lepton channel)
 - > Apply final state radiation (FSR) jet recovery
- Use of **MVA** (BDT, DNN, ...) to :
 - Discriminate signal from background, and background components from each other
 - > Control large backgrounds from tt, W/Z plus heavy/light flavor jets, + single top
- Results quoted in terms of Signal Strength Modifier defined as: $\mu = (\sigma x BR)_{Obs} / (\sigma x BR)_{SM}$...and in terms of significance of observation "n σ ".
- **Datasets**: Run-1 (7, 8 TeV); CMS~5.1, 18.9 1/fb; ATLAS~4.7, 20.3 1/fb Run-2: 2015, 2016, 2017 sets (no 2018). CMS~ 77.2 1/fb; ATLAS~79.8 1/fb

b-jet identification

- Continuous effort to improve b-tagging algorithms
 - > ATLAS: BDT (MV2c10) algorithm on high-level input variables such as SV, JetFit (excl. decay chain reco), IP-tag, (some versions also use $p_T^{rel}(\mu)$).
 - > CMS: DNN algorithm (DeepCSV) using low level input variables, + per-track info
 - > Achieve low contamination from light (q/g) < 1% for efficiency ~70%
 - Efficiencies derived from data with tt events by: combinatorial likelihood approach and a tag-and-probe (and muon in jets in CMS)
- Good agreement between data and MC verified in all analysis regions

BGND rejection for $\varepsilon_b = 70\%$

b-jet energy regression (CMS)

- Regression mainly recovers missing energy in the jet due to neutrino
 - Boosted Decision Trees in 2016 and DNN algorithm in 2017/18
- Extended set of input variables including lepton flavor (μ /e), jet mass, fragmentation-like variable, energy fractions in ΔR rings
- · Significant m(bb) resolution improvement without sculpting of background
 - $> \sigma/\text{peak down to 11.9}\% \text{ in 2017 wrt 13.2}\% \text{ in 2016}$

CMS: Kinematic fit in 2-lepton channel

- No intrinsic missing energy in the Z(II)H(bb) process
- Improve jet p_T measurement through kinematic fit
 - Constrain dilepton system to Z mass
 - \triangleright Balance the II+bb+j system in the (p_x, p_y) plane
 - > Z+b, Z+bb treated identically
- Improvement up to 36% on m(bb) resolution

b-jets:

standard p_F

regressed

kinem. fit

VH topology

Systematics of VH(bb) results

Systematic uncertainties dominated by:

- b-tagging
- Simulation MC size
- Modelling of background and signal

CMS: Run1 + Run2 combined

Uncertainty source	Δ	μ
Statistical	+0.26	-0.26
Normalization of backgrounds	+0.12	-0.12
Experimental	+0.16	-0.15
b-tagging efficiency and misid	+0.09	-0.08
V + jets modeling	+0.08	-0.07
Jet energy scale and resolution	+0.05	-0.05
Lepton identification	+0.02	-0.01
Luminosity	+0.03	-0.03
Other experimental uncertainties	+0.06	-0.05
MC sample size	+0.12	-0.12
Theory	+0.11	-0.09
Background modeling	+0.08	-0.08
Signal modeling	+0.07	-0.04
Total	+0.35	-0.33

Source of un	certainty	σ_{μ}
Total	Total	
Statistical		0.161
Systematic		0.203
Experimenta	l uncertainties	
Jets		0.035
$E_{ m T}^{ m miss}$		0.014
Leptons		0.009
	b-jets	0.061
b-tagging	c-jets	0.042
	light-flavour jets	0.009
	extrapolation	0.008
Pile-up		0.007
Luminosity		0.023
Theoretical a	and modelling uncer	rtainties
Signal		0.094
Floating nor	malisations	0.035
Z + jets		0.055
W + jets		0.060
$t \overline{t}$		0.050
Single top qu	ıark	0.028
Diboson		0.054
Multi-jet		0.005
MC statistic	al	0.070

Visualizing the excess: m(jj) analysis

- Fit dijet mass m(jj): lower sensitivity but direct visualization of Higgs signal
- a) ATLAS: event preselection tighter than MVA
 b) CMS: categorized in DNN sensitivity after removing correlations with m(jj)
- m(jj) distributions combined and weighted by S/(S + B)
- Signal strengths compatible with main analysis

Results on H→ bb

Signal in VH, H→bb in CMS and ATLAS

Observed significant signal in terms of log₁₀(S/B), here for VH mode alone

Run-2 ('15,'16,'17) results

Run-1 and Run-2 ('15,'16,'17) results

Phys. Lett. B 786 (2018) 59

Phys. Rev. Lett. 121 (2018) 121801

Evidence for VH, H→bb in CMS and ATLAS

Run-1 and Run-2 ('15,'16,'17) combined results based on VH mode alone

Phys. Lett. B 786 (2018) 59

Phys. Rev. Lett. 121 (2018) 121801

Run 1+2	Obs (exp) significance	μ(H→bb)
ATLAS	4.9 (5.1) σ	$0.98 \pm 0.14(stat.) +0.17 -0.16 (syst.)$
CMS	4.8 (4.9) σ	$1.01 \pm 0.17(stat.) \pm 0.14(syst.)$

Observation of H→bb in CMS and ATLAS

- Run-1 and Run-2 (15,16,17) combined: all production modes VBF, ggF, ttH, VH
- Most sources of systematic uncertainty are treated as uncorrelated
- Theory uncertainties are correlated between all processes and data sets

Phys. Lett. B 786 (2018) 59

Phys. Rev. Lett. 121 (2018) 121801

Run 1+2	Obs (exp) significance	μ(H→bb)
ATLAS	5.4 (5.5) σ	$1.01 \pm 0.12(stat.) \begin{array}{l} +0.16 \\ -0.15 \end{array} (syst.)$
CMS	5.6 (5.5) σ	$1.04 \pm 0.14(stat.) \pm 0.14(syst.)$

ATLAS H→bb Simplified Template Cross sections

STXS in VHbb – in short

- STXS is a combination of fully fiducial cross sections and direct fits (a la Run 1)
- Maintain sensitivity while reducing dominant theory dependence
- Phase space divided up into several generator-level bins ($p_T(V)$,#jets) -> get σ/σ_{SM}
- Optimized for analysis sensitivity (here VH), driven by analysis categories; ATLAS paper (ATL-PHYS-PUB-2018-035) used 5 bins due to limited sensitivity.

Inclusions:

- qq→V(qq)H as part of "VBF" bins
- $gg \rightarrow Z(qq)H$ as part of "ggF" bins
- "VH" includes leptonic
 VH(undecayed H)

 see also ATLAS paper ATL-PHYS-PUB-2018-035

ATLAS: STXS in H→bb

ATLAS: $H \rightarrow bb$ (80 1/fb)

- Event classification identical to VHbb inclusive case
- Use BDT to discriminate between pt(V)-regions
- Fit σ *B by unbinned ML-fit (BDT_{VH}, m_{bb} or N_{ev}) per region; MC shape or data templates for SR and CR
- Systematics limited by **BGND** modelling and MC-stat
- Highest sensitivity in pt(V)>250GeV

Good agreement with SM predictions

Sub. to JHEP_119P_0319 ATLAS-Conf-2018-053

ATLAS H→bb Anomalous Coupling

ATLAS: Anom. Hbb coupling in VHbb

- Assume a strongly interacting sector with a light composite Higgs, that causes EW symmetry breaking.
- Consider an effective Langrangian with additional dimension-6 operators.
- STXS results used to extract constraints on anomalous Higgs boson interactions in HEL (Higgs effective Lagrangian) formulation.
- 5 operators (CP-even: O_{HW} , O_{HB} , O_{W} , O_{B} , O_{d}) directly affect the VH xsec and B(H \rightarrow bb), recast in dimensionless coefficients C_{xx} : $O_{HW} = i(D^{\mu}H)^{\dagger} \sigma^{a} (D^{\nu}H) W_{\mu\nu}^{a}$,

$$\bar{c}_{HW} = \frac{m_W^2}{g} \frac{c_{HW}}{\Lambda^2}, \quad \bar{c}_{HB} = \frac{m_W^2}{g'} \frac{c_{HB}}{\Lambda^2}, \quad \bar{c}_W = \frac{m_W^2}{g} \frac{c_W}{\Lambda^2}, \quad \bar{c}_B = \frac{m_W^2}{g'} \frac{c_B}{\Lambda^2}, \quad \bar{c}_d = v^2 \frac{c_d}{\Lambda^2}, \qquad O_W = \frac{i}{2} \left(H^\dagger \sigma^a \overset{\leftrightarrow}{D^\mu} H \right) D^\nu W_{\mu\nu}^a,$$

- Extract constraints on these coefficients C_{xx} by simultanous ML-fit of all 5-POI STXS
- Highest sensitivity from pt(V)>250GeV
- Sensitiv to CP-violation

$$O_{HB} = i (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu},$$

$$O_{W} = \frac{i}{2} \left(H^{\dagger} \sigma^{a} D^{\mu} H \right) D^{\nu} W_{\mu\nu}^{a},$$

$$O_{B} = \frac{i}{2} \left(H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu\nu}.$$

$$O_{d} = y_{d} |H|^{2} \bar{Q}_{L} H d_{R}$$

ATLAS: Anom. Hbb coupling in VHbb

- Results on constraints on coefficients C_{xx} by simultaneous ML-fit (lin. and quad term) of all 5-POI STXS; in fit all but ONE coefficient set := 0.
- Observed and expected profiled neg.LL in one-dimensional projections
- Highest sensitivity stems from pt(V)>250GeV (see STXS above)
- parameters \bar{c}_{HW} and $\bar{c}_W \bar{c}_B$ are constrained at 95% CL to < few percent.
- Expect coefficients C_{xx} = o in SM

H → cc Decays

ATLAS: Search for H→cc

ATLAS

PRL 120 (2018) 211802

- Run2: 36 1/fb
- Use ZH, $H \rightarrow cc$ category
- Charmed hadron-tagging with BDT using lifetime and jet-structure;
 using MV2c1o, optimized for charm tag
- Efficiencies from data in tt and W-decays
- Validation by ZV production
- Profile likelihood fits of M(cc) in four categories in terms of $p_T(Z)$ and # c-tag

Run 2	UL. obs (exp) at 95% CL
ATLAS	$\sigma(pp \to ZH) \cdot \sigma(H \to cc) < 2.7 \ (3.9^{+2.1}_{-1.1}) \text{ pb}$ $\mu(H \to cc) < 110 \ \ (150^{+80}_{-40})$

$H \rightarrow \tau \tau$ Decays

Observation of $H\rightarrow \tau\tau$ in CMS and ATLAS

ATLAS

ATLAS-CONF-2018-21

- 2 categories: VBF and boosted
- Cut-based analysis using fit to m distribution in 13 signal regions
- Run2:Obs. (exp.) sig. of 4.4 (4.1)

CMS

PLB 779 (2018) 283

- 3 categories: o-jet, VBF and boosted
- Extracting the signal in 2D likelihood fit
- Dominant backgrounds : di-boson +fake au
- 2016: Obs. (exp.) signific. of 4.9 (4.7)

Run 1+2	Obs (exp) significance	μ(Η→ττ)
ATLAS	6.4 (5.4) σ	$1.09^{+0.18}_{-0.17}(stat) _{-0.22}^{+0.26}(syst) _{-0.11}^{+0.16}(the)$ (VBF, boosted)
CMS	5.9 (5.9) σ	0.98 ± 0.18 (VH, ggF, VBF)

CMS: Cross section $\sigma_{incl}*B(H\rightarrow \tau\tau)$

- Inclusive production xsec σ *B(H $\rightarrow \tau \tau$) in ggH & VBF production modes, Run-2 (16+17)
- S/B discrimination by Neural Network multi-classifier → pure categories (ggH, VBF, BGN)
- MC for NN training; for signal extraction some 90% of backgrounds are estimated from data (by τ -embedding for genuine taus, and fake rate method for reducible background)
- Tau-pair selection by $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ channels

 $\sigma_{incl} \cdot B(H \to \tau \overline{\tau}) = 2.56 \pm 0.48 (stat) \pm 0.34 (syst) pb$

CMS PAS HIG-18-032

New

CMS: STXS $\sigma_{incl}*B(H\rightarrow \tau\tau)$

- First stage-1 categorisation for tau-tau in many ggF+VBF bins, AND inclusive fit result
- STXS from MLL-fit for 9 categories, extracting signal strength parameters.

gg→H, bbH **▼** Observation **CMS** =0 Jet =1 Jet ≥ 2 Jet VBF^{\dagger} SM expect -tion Preliminary $p_{\rm T}^{\rm Hjj} \, [\ 0, 25]$ $p_{\rm T}^{\rm H} \left[0, 60 \right]$ $p_{\rm T}^{\rm H} [0, 60]$ $p_{\mathrm{T}}^{\mathrm{H}} [60, 120]$ $p_{\mathrm{T}}^{\mathrm{Hjj}}\left[25,\infty\right]$ = 0 JetUsed as class $p_{\mathrm{T}}^{\mathrm{H}}\left[\ 60,120\right]$ & category Together with VBF+V(qq)H Powheg NLO × K-f-ct Not used as $p_{\rm T}^{\rm H}$ [120, 200] $p_{\rm T}^{\rm H}$ [120, 200] category in gg→H, bbH N³LO QCD, NLO EW $e\mu$, $e\tau_h$, $\mu\tau_h$ $^{\dagger} > 2$ Jets = 1 Jet $m_{ii} > 400 \, {\rm GeV}$ Not used as $\Delta \eta_{\rm jj} > 2.8$ $p_{
m T}^{
m H} < 200 \, {
m GeV}$ $p_{\mathrm{T}}^{\mathrm{H}}\left[200, \infty\right]$ $p_{\rm T}^{\rm H} [200, \infty]$ ggH categorisation ≥ 2 Jet VBF+V(qq)HInclusive $p_{\mathrm{T}}^{\mathrm{j}_{1}}\left[0,200\right]$ $p_{\rm T}^{{\rm j}_1} \left[200, \infty \right]$ VBF^{\dagger} $V(qq)H^{\ddagger}$ Rest

VBF categorisation

 $m_{\rm ij} > 400\,{\rm GeV}$

 $\Delta \eta_{\rm ii} > 2.8$

 $^{\ddagger} \ge 2 Jets$

 $60 > m_{\rm ii} < 120 \,{\rm GeV}$

CMS PAS HIG-18-032

77.4 fb⁻¹ (13 TeV)

 $p_{\rm T}^{\rm Hjj} [0, 25]$

 $p_{\mathrm{T}}^{\mathrm{Hjj}}\left[25,\infty\right]$

Together with

ATLAS: STXS in $H \rightarrow \tau \tau$

ATLAS arXiV:1811.08856

ATLAS: $H \rightarrow \tau\tau$ (36 1/fb)

- Analysis identical to inclusive analysis; use 3D fit to measure STXS
 - ggF and VBF production cross sections set to measured values, if outside particle-level range..
 - Cross sections of other H-production processe set to SM values
- Good agreement with SM predictions

Process	Particle-level selection	σ [pb]	$\sigma^{ extsf{SM}}$ [pb]
ggF	$N_{\text{jets}} \ge 1,60 < p_{\text{T}}^{H} < 120 \text{GeV}, y_{H} < 2.5$	1.79 ± 0.53 (stat.) ± 0.74 (syst.)	0.40 ± 0.05
ggF	$N_{\text{jets}} \ge 1, p_{\text{T}}^{H} > 120 \text{GeV}, y_{H} < 2.5$	$0.12 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$	0.14 ± 0.03
VBF	$ y_H < 2.5$	$0.25 \pm 0.08 (\text{stat.}) \pm 0.08 (\text{syst.})$	0.22 ± 0.01

CMS: VVH ($H \rightarrow \tau \tau$): Anomalous couplings on the VVH vertex, not $H \rightarrow \tau \tau$ (see CMS-HIG-17-034) (see talk Donszelmann)

$H \rightarrow \mu\mu$ Decays

Search for $H \rightarrow \mu\mu$ in CMS and ATLAS

- Isolated muons provide clean final state in search for ggH and VBF: but small BR!
- Peak search on smooth background; background shape extracted from sidebands in data
- Good m(μμ) resolution needed for rejection of DY and leptonic tt_{bar} backgrounds
- Use MVA techniques to categorize VBF and ggF enriched regions [in $p_T(\mu)$ resolution]

H → ee Decays

Search for H→ee in CMS

CMS

PLB 744 (2015) 184

- Nearly hopeless: $B_{SM}(H\rightarrow ee)=5*10^{-9}$
- Run1: 8 TeV , 19.7 1/fb
- Search for narrow peak in m(ee) in four categories (o, 1 and 2 jets)
- Setting upper limit (95% cl)on
 BF (H→ee) <0.00019

Run 1	UL. on B(H→ee) / B _{SM}
CMS	$< 3.7 \cdot 10^5 \ (95\% \ CL)$

Signal enhanced by 10⁶!

Outlook and Conclusions

Extrapolation for HL-LHC for H→fermions

- Assume various scenarios on treatment of systematics uncertainties
 - ► H→bb uncertainties dominated by theoretical modelling of signal production xsec. experimentally by b-tagging expect precision on μ ~5-7 % (here CMS)
 - ightharpoonup H
 ightharpoonup τ precision reached similar to theory predict. uncertainties dominated by theoretical errors on signal acceptance and background modelling expect precision on μ ~10 % (here ATLAS)
 - Arr H Arr analysis limited by stat uncertainty; leading systematics is bias of dimuon fit function. expect unc. on μ ~ 15% for ATLAS/CMS observation in reach at HL-LHC
- > **ttH** : Yukawa couplings mostly dominated by tt+bb Xsec uncertainty in ttH \rightarrow bb final state relative precision on μ ~14% (11%) for ATLAS (CMS)

Full coupling combination at HL-LHC

- Coupling combination in ATLAS and CMS for productions and decays in Higgs to fermion decays
 - Assume dedicated scenarios for treatment of systematics uncertainties

Extensive doc in arXiv: 1902-00134v2

Expected relative uncertainty on:

3000 fb⁻¹

production cross sections

branching ratios

Conclusions for H→ fermions

- Standard Model assumption on Yukawa coupling was confirmed within the present O(20%) uncertainty in the
 - > decays of Higgs to b-quarks and tau-leptons,
 - > production process ttH, with H \rightarrow bb/ $\tau\tau$ /ZZ*/WW*/ $\gamma\gamma$
- CMS and ATLAS have independently reached clear observations beyond >5 σ level for combinations of different production channels for the decays H \rightarrow bb and H $\rightarrow \tau\tau$ and in the ttH production process.

- First simplified cross section measurements (STXS) available for Hbb and Hau au,
- First limits on anomalous couplings available for H→bb vertex
- Just started towards measuring Higgs-Yukawa couplings with high precision expect rel. precisions well below the 10% for HL-LHC
- All this only thanks to the fantastic running of LHC, and the ATLAS and CMS detector performances

In case of discussions and questions ...

BACKUP SLIDES

Top-Yukawa coupling in ttH

Results of ttH→bb

Backup

ATLAS

Phys.Rev.D 97, 072016 (2018)

- Analysis in single, dilepton and boosted region
- b-tagging working points and jet multiplicity used to build regions
- Theoretical background uncertainty dominated by tt+heavy flavour process
- Signal: BDT for signal reconstruction; additional BDT for BGND separation (ttH vs ttbb) based on FS-kinematics and b-tagging
- BDT in SR +scalar sum pt(jet) or single bin in CR
- Expected (obs) significance: 1.6σ (1.4 σ)

CMS

PLB 776 (2018) 355

- Large uncertainty on tt+bb BGND driven by modelling of tt+jets process in MC simulation
- Normalisation to NNLO gen; split into tt+b, tt+bb, tt+3b, tt+ light-jets - 50% uncertainty associated
- Signal extraction: matrix-element method (MEM) and MVA approaches (BDT and DNN)
- Fully-hadronic final state also included (main background is QCD multi-jet production)
- Exp (obs) significance: 2.2σ (1.6 σ), exp (obs) UL for full-had xsec: $<3.8\sigma$ (3.1 σ)

Backup

Evidence for ttH \rightarrow ZZ*/WW*/ $\tau\tau$

ATLAS

Phys.Rev.D 97, 072003 (2018)

- Based on lepton and hadronic τ multiplicities
- Background: MC (tt+V and diboson) and validated in data or from data control regions (non prompt leptons, charge mis-id)
- BDT discriminant: event kinematics in signal region - control regions used to constrain background components
- Expected (observed) significance: 2.8σ (4.1σ)

CMS

CMS-HIG-08-19

- Analysis strategy based on combination of simyield, BDT and MEM according to final state
- Categories combined with maximum likelihood fit
- Dominant systematics uncertainties: theoretical modelling of tt+V and diboson backgrounds, lepton reconstruction efficiency
- Expected (observed) significance: 4.0σ (3.2 σ)

Backup

Combination of ttH Results

ATLAS

Phys.Lett. B784 (2018) 173

- Channels: bb, multi-lepton (36.1 /fb), yy and $ZZ*\rightarrow 4l$ (79.8 /fb)
- Dominant systematics → theory and MC model
- Combined significance: **6.3σ obs (5.1σ exp)**

Analysis	Integrated	Expected	Observed
	luminosity $[fb^{-1}]$	significance	significance
$H \to \gamma \gamma$	79.8	3.7σ	4.1σ
$H \to \text{multilepton}$	36.1	2.8σ	4.1σ
$H o b ar{b}$	36.1	1.6σ	1.4σ
$H o ZZ^* o 4\ell$	79.8	1.2σ	0σ
Combined (13 TeV)	36.1 - 79.8	4.9σ	5.8σ
Combined $(7, 8, 13 \text{ TeV})$	4.5, 20.3, 36.1 - 79.8	5.1σ	6.3σ

CMS

CMS_HIG-17-031

- bb, multilepton and vv final states
- Combined significance (7, 8 and 13 TeV datasets)
 5.2σ observed (4.2σ expected)

More backup

Search for boosted resonances $Z' \rightarrow bb + j$

- Search signal = boosted resonance (e.g. Z') decaying to bb and ONE additional jet - in ggF, VBF and VH; using Run-2 (80.5 1/fb)
- > Mass range searched 70-230 GeV for boosted decays $(2m_1/p_T<1)$
- Deduced limits on leptophobic Z' bosons with democratic axial couplings to all quark families are set using Bayesian method
- Combined simultanous LL-fit (V+jets and H+jets) yields signal strengths for standard V + jets and H+jets processes of :

$$\mu_{\text{V+jets}} = \text{1.5 \pm 0.22(stat.) +0.29/-0.25(syst.) \pm 0.18 (th.)}$$
 (>5 s.d.)
$$\mu_{\text{H+jets}} = \text{5.8 \pm 3.1 (stat.) \pm 1.9(syst.) \pm 1.7 (th.)}$$

ATLAS-CONF-2018-052/

CMS-PAS-FTR-18-011

VH, H→bb at HL-LHC

- Consider various scenarios for uncertainties:
 - With Run-2 systematic uncertainties: uncertainties as in Run 2 (S1)
 - With YR18 systematic uncertainties: most experimental uncertainties scale down with sqrt(L), until a lower limit is reached. Theoretical uncertainties are assumed halved. (S2)
 - Stat. Only.: No systematic uncertainties considered
- At 3 ab⁻¹, measurement will be driven by theoretical uncertainties, ggZH QCD scale uncertainty becomes important.
- All channels contribute ~equally: challenge experimentally to maintain trigger thresholds.
- Effect of changing b-tagging efficiency is non-negligible.

	S1	S2
Total uncertainty	7.3%	5.1%
Signal theory uncertainty	5.4%	2.6%
Inclusive	4.6%	2.2%
Acceptance	2.7%	1.3%
Background theory uncertainty	2.8%	2.3%
Experimental uncertainty	2.6%	2.2%
b-tagging	2.2%	2.0%
JES and JER	0.7%	0.6%
Statistical uncertainty	3.2%	3.2%

