

New CTEQ Global Analysis with High Precision Data from the LHC

C.-P. Yuan
Michigan State University
Wu-Ki Tung Endowed Professor

April 9, 2019

WG1 @ DIS2019

CTEQ – Tung et al. (TEA) in memory of Prof. Wu-Ki Tung

CTEQ-TEA group

- CTEQ Tung et al. (TEA)
 in memory of Prof. Wu-Ki Tung,
 who co-established CTEQ Collaboration in early 90's
- Current members:

Tie-Jiun Hou (Northeastern U., China), Sayipjamal Dulat, Ibrahim Sitiwaldi (Xinjiang U.), Jun Gao (Shanghai Jiaotong U.), Marco Guzzi (Kennesaw State U.), Tim Hobbs, Pavel Nadolsky, Bo-Ting Wang, Keping Xie (Southern Methodist U.), Joey Huston, Jon Pumplin, Dan Stump, Carl Schmidt, Jan Winter, CPY (Michigan State U.)

Outline

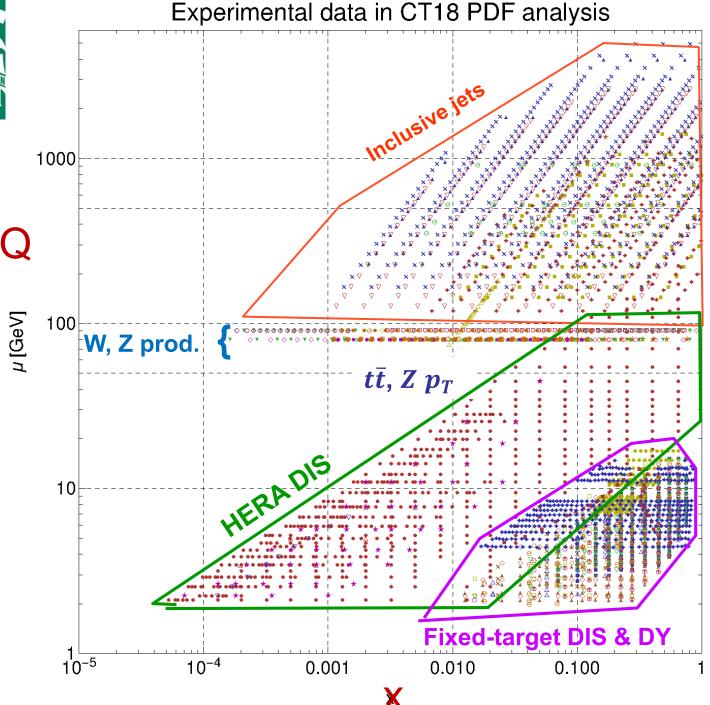
- CT18 in a nutshell
- LHC data set included after CT14
- Theory calculations @ NNLO
- Explore non-perturbative function forms
- Preview of CT18 PDFs
- α_s in CT18
- $gg \rightarrow H$ cross section
- Parton luminosities at the LHC
- CT18Z
- Impact of LHC top quark data (See talk by T.-J. Hou at WG1)
- PDFsense and ePump (See talk by P. Nadolsky at WG1)
- Summary

CT18 in a nutshell

- Start with CT14-HERAII (HERAII combined data released after publication of CT14)
- Examine a wide range of non-perturbative PDF parameterizations
- Use as much relevant LHC data as possible; using applgrid/fastNLO interfaces to data sets, with NNLO/NLO K-factors, or fastNNLO tables in the case of top pair (single and double differential) data compared to NNLO theory predictions.
- PDFSense (arXiv:1803.02777) to determine quantitatively which data will have impact on global PDF fit
- ePump (arXiv:1806.07950) on quickly exploring the impact of data prior to global fit within the Hessian approximation
 - good agreement between PDFSense, ePump results and global fit
- Implement a parallelization of the global PDF fitting to allow for faster turn-around time (X10)
- Lagrange Multiplier studies to examine constraints of specific data sets on PDF distributions, or on $\alpha_s(m_7)$ and (in some cases) the tensions (useful information)

LHC data sets included in CT18

```
245 1505.07024 LHCb Z (W) muon rapidity at 7 TeV(applgrid)
246 1503.00963 LHCb 8 TeV Z rapidity (applgrid);
249 1603.01803 CMS W lepton asymmetry at 8 TeV (applgrid)
250 1511.08039 LHCb Z (W) muon rapidity at 8 TeV(applgrid)
253 1512.02192 ATLAS 7 TeV Z pT (applgrid)
542 1406.0324 CMS incl. jet at 7 TeV with R=0.7 (fastNLO)
544 1410.8857 ATLAS incl. jet at 7 TeV with R=0.6 (applgrid)
545 1609.05331 CMS incl. jet at 8 TeV with R=0.7 (fastNLO)
```


```
565 1511.04716 ATLAS 8 TeV tT pT diff. distributions (fastNNLO) 567 1511.04716 ATLAS 8 TeV tT mtT diff. distributions (fastNNLO) 573 1703.01630 CMS 8 TeV tT (pT, yt) double diff. distributions (fastNNLO)
```

248 1612.03016 ATLAS 7 TeV Z and W rapidity (applgrid)

CT18Z PDFs

● HERAI+II'15 ♦ ZyCDF2'10 ■ BCDMSp'89 △ HERAB'06 ◆ BCDMSp'90 ▼ HERA-FL'11 ▲ NMCRAT97 × CMS7Easy'12 → ATL7WZ'12 ▼ CDHSW-F2'91 ○ CDHSW-F3'91 ★ D02Easy2'15 □ CCFR-F2'01 CMS7Masy2'14 ♦ CCFR-F3'97 ■ CDF2jets'09 △ NuTeV-Nu'06 ◆ D02jets'08 ∇ NuTeV-nub'06 ▲ ATLAS7jets'15 ★ CCFR SI NU'01 ▼ LHCB7ZWRAP'15 ⊖ CCFR SI NUB'01 ○ LHCB8ZEE'15 ★ HERAC'13 □ CMS8Wasy'16 ● E605'91 ♦ LHCB8WZ'16 ■ E866rat'01 △ ATL8ZPT'16 ◆ E866pp'03 ▼ CMS7jets'14 ▲ CDF1Wasy '96 x CMS8jets'17 ▼ CDF2Wasy'05 ⊖ CMS8TTB-PTTYT'17 O D02Masy'08 ★ ATL8TTB-PTT-MTT'15

● ATL7ZW'16

□ ZyD02'08

CT18 LHC data treatment

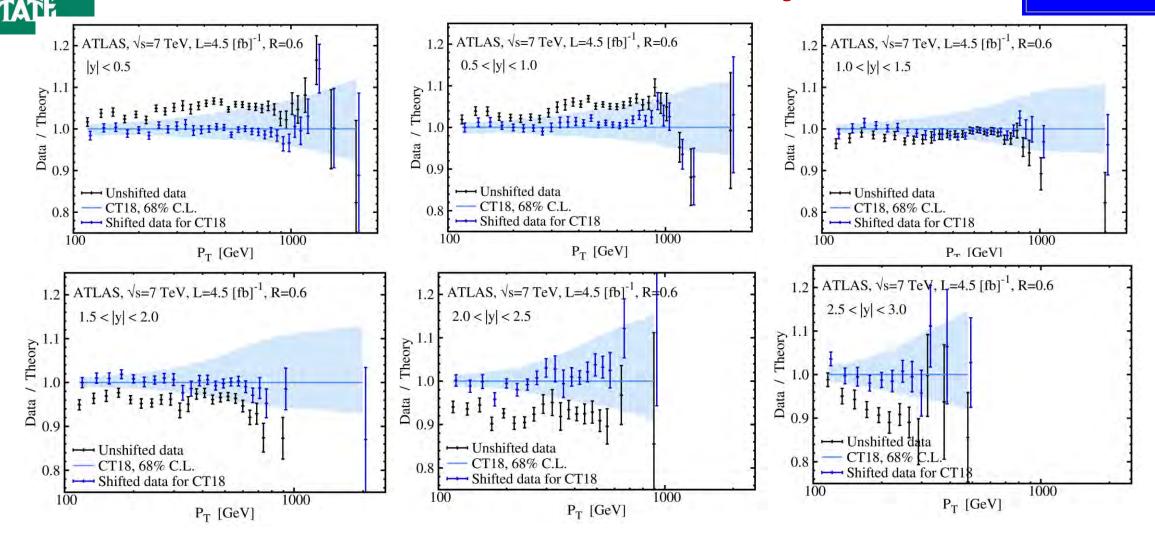
- CT18 analysis includes new LHC experiments on W/Z, high- p_T Z, jet, $t\bar{t}$ production; up to 30 candidate LHC data sets available
- The challenge is to select and implement relevant and consistent experiments
- We include as large a rapidity interval for the ATLAS jet data as we can, using the ATLAS de-correlation model, rather than using a single rapidity interval. Using a single rapidity interval may result in selection bias.
- We use two $t\bar{t}$ single differential observables from ATLAS (using statistical correlations) and double differential measurement from CMS in order to include as much information as possible. Again, there is a risk of bias, as some of the observables are in tension with each other.
- Previous data continue having an impact on global fits and tend to dilute the impact of new data

LHC inclusive jet production data – systematic error sources and de-correlations

CTEQ

 \blacksquare CMS 7 TeV jet production (ID 542) $N_{pt}=158$

We de-correlate a Jet Energy Correction, JEC2 (`e05') according to arXiv:1410.6765 and implement an additional, CMS-advocated de-correlation for |y| > 2.5 (private communication with Voutilainen)


- \blacksquare CMS 8 TeV jet production (ID 545) $N_{pt}=185$ arXiv:1609.05331
- → systematics treated as in xFITTER per CMS literature, <u>arXiv:1607.03663</u>
- \blacksquare ATLAS 7 TeV jet production (ID 544) $N_{pt}=140$

following ATLAS recommendations, de-correlate two Jet Energy Scale (JES) uncertainties, MJB fragm. ('jes16') and flavor response ('jes62'), according to arXiv:1706.03192

e.g.,
$$\delta_{16} \to \delta_{16}^a$$
, δ_{16}^b , δ_{16}^c \to de-correlation improves χ^2 by **~92 units**; inclusion of a 0.5% theory error, another **~52**

	evaluated, CT14 HERA2 NNLO			fitted, CT18 prel. NNLO
χ^2/N_{pt}	original data	+ decorr.	+0.5% MC unc.	with decorr./MC unc.
CMS, 7 TeV	1.58	1.45	1.35	1.29
CMS, 8 TeV	1.90	1.34	1.23	1.38
ATLAS, 7 TeV	2.34	1.68	1.31	1.46

De-correlation for incl. jet

• The corr. error "jes16" and "jes62" of ATLAS 7 TeV incl. jet data are decorrelated according to Table 6 of 1706.03192. Its chi^2/Npt reduces from 2.34 to 1.68 for CT14HREA2NNLO.

Selected Top Quark Pair Observables from ATLAS and CMS

- Modest effect observed if t-tbar data are included together with the Tevatron and LHC jet production data.
- Its impact on gluon PDF is consistent with jet data, though jet data provide stronger constraint.
- For ATLAS 8 TeV, select the pT and mtT distributions that directly probes large-x region; statistical
 correlations are included in order to fit pT and mtT simultaneously; fully correlated for experimental
 systematics except for decorrelation of PS sys. error.

ATLAS 8 TeV 1511.04716

> CMS 8 TeV 1703.01630

χ^2/N_{pt} (with CT18 PDFs)	nominal	w/o PS decorrelation	w/o statistical correlation
ATLAS 8 TeV abs. dσ/d pT & dσ/d mtt (Npts=15)	0.62	3.55	0.51
CMS 8 TeV nor. d ² σ/(d pT d yt) (Npts=16)	1.18		

Resources from xFitter

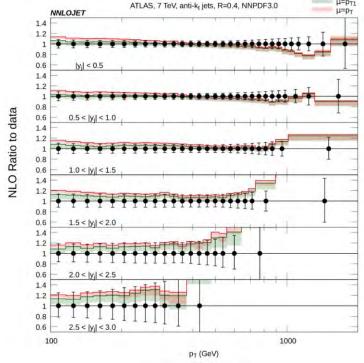
- Correlated systematic uncertainties are implemented using the covariance matrices from xFitter in the following experiments
- > ATLAS 7 TeV WZ cross sections 4.6 fb^{-1} (ID 248) arXiv:1612.03016
- > CMS 8 TeV W($\rightarrow \mu \nu$) Asymmetry 18.8 fb^{-1} (ID 249) arXiv:1603.01803
- \triangleright LHCb (7,8) TeV WZ (μ-chan.) (1,2) fb^{-1} (ID 245,250) arXiv:1505.07024, 1511.08039
- \succ CMS 8 TeV Jet 19.7 fb^{-1} (ID 545) arXiv: 1609.05331 xFitter is the only resource to get its corr. sys. errors.

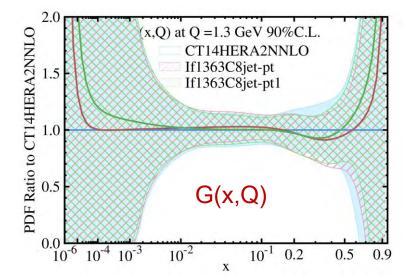
CT18:

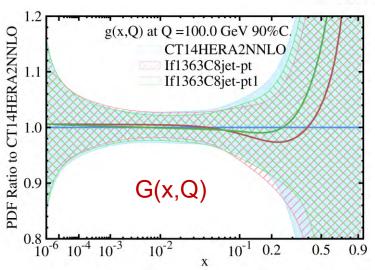
advancements in theoretical and statistical methodology

- In-house development of fast ApplGrid/FastNLO calculations
- Parallelization of CTEQ fitting code
- Studies of QCD scale dependence and other theory uncertainties for DIS, high- $p_T\ Z$, jet production
- Studies of non-perturbative PDF functional forms
- > An uncorrelated error of 0.5% is included for
- ATLAS 7 TeV and CMS 7/8 TeV jet production, and
- ightharpoonup ATLAS 8 TeV high- p_T Z production to account for numerical uncertainties in the MC integration of NNLO cross sections.
- \succ Alternative renormalization/factorization scale choices were examined in high- p_T Z production, do not significantly alter the conclusions.

Theory calculations @NNLO

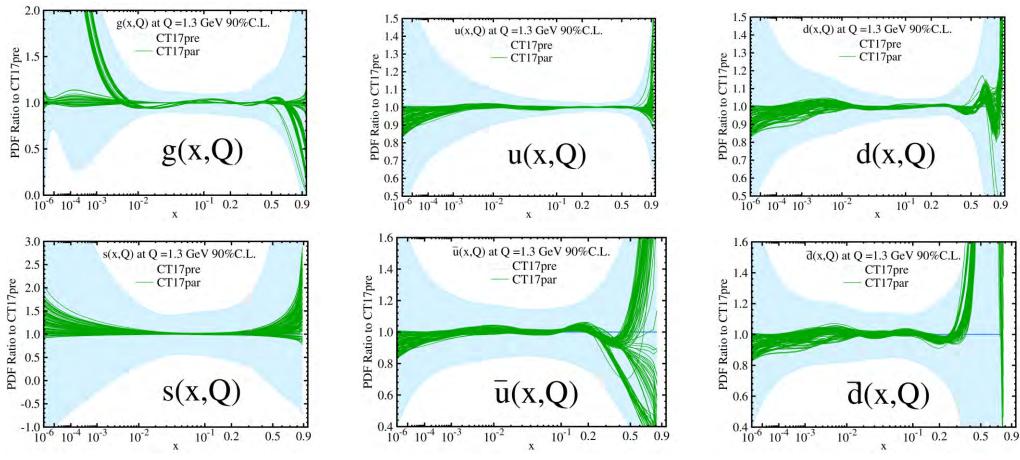

Jet pT, (W,Z) rapidity, Z pT, t-tbar

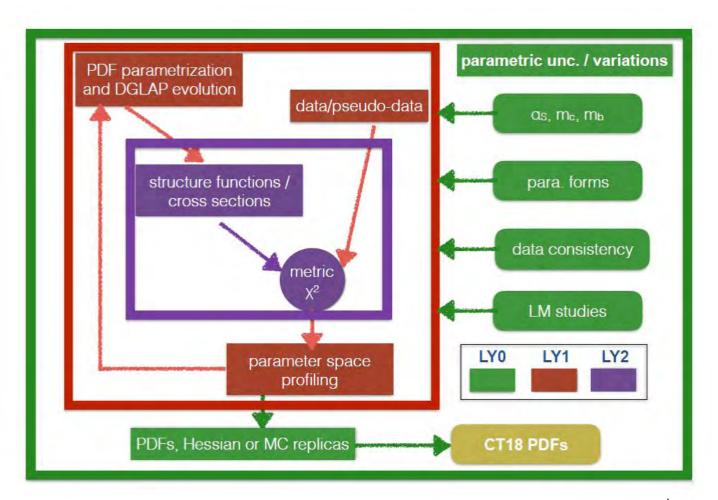

Obs.	Expt.	fast table	NLO code	K-factors	R,F scales
Inclusive jet	ATL 7 CMS 7/8	APPLgrid fastNLO	NLOJet++	NNLOJet	p_T, p_T^1
$ m p_T^Z$	ATL 8	APPLgrid	MCFM	NNLOJet	$\sqrt{\mathrm{Q}^2+\mathrm{p}_{\mathrm{T,Z}}^2}$
W/Z rapidity W asymmetry	LHCb 7/8 ATL 7 CMS 8	APPLgrid	MCFM/aMCfast	FEWZ/MCFM	$ m M_{W,Z}$
DY	ATL 7/8				
(low,high mass)	CMS 8	APPLgrid	MCFM/aMCfast	FEWZ/MCFM	Q_{ll}
tī	ATL 8 CMS 8		fastNNLO		$\frac{\mathrm{H_T}}{4}$, $\frac{\mathrm{m_T}}{2}$



pT v.s. pT1

- Non-negligible difference between scale choice of pT (inclusive jet pT) and lead jet pT (pT1) for NNLO predictions
- Nominal choice by CTEQ-TEA is pT
- In fact, fitted gluon is almost exactly the same in kinematic region where difference is important.
- There is a resilience in the global fit due to other data present in this kinematic region (and evolution)

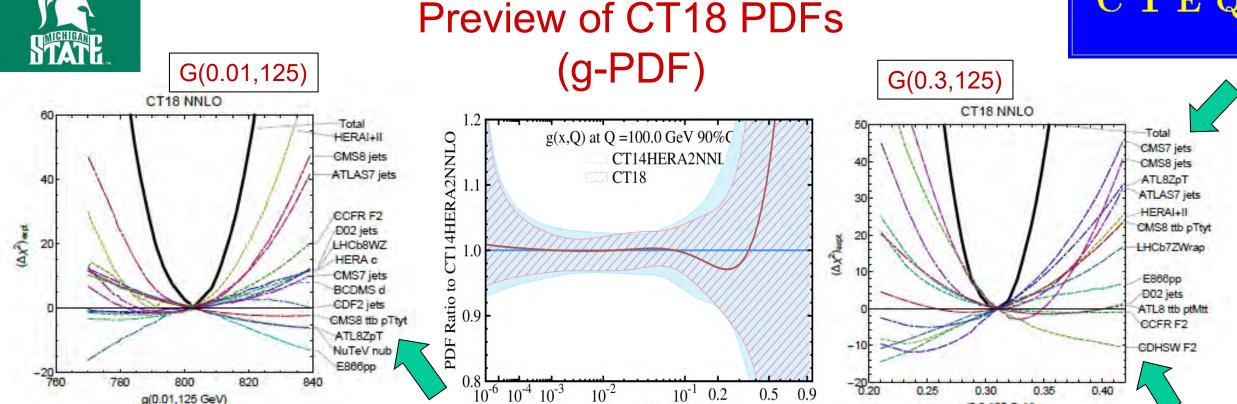



Explore various non-perturbative parametrization forms of PDFs

- CT18 sample result of exploring various non-perturbative parametrization forms.
- There is no data to constrain very large or very small x region.

Fitting code parallelization with multi-threads

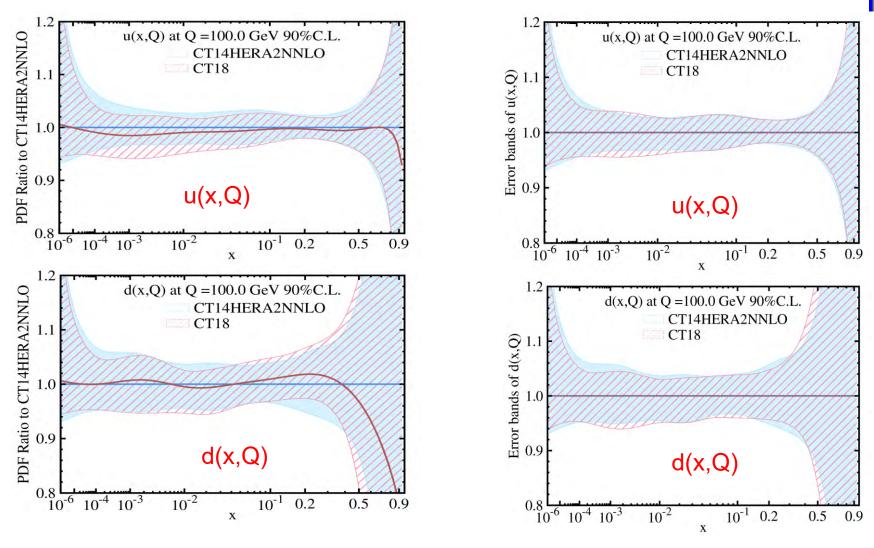
Typical 3-layer structure of the CT18 global analysis, from various scans to global minimization, then to the chi2 calculations


upgrade to a parallelized version of the fitting code, two-layer parallelization:

- LY1, through rearrangement of the minimization algorithm, a factor of 4~5 improvement on speed;
- 2. LY2, via redistribution of the data sets, further improved by a factor of 2

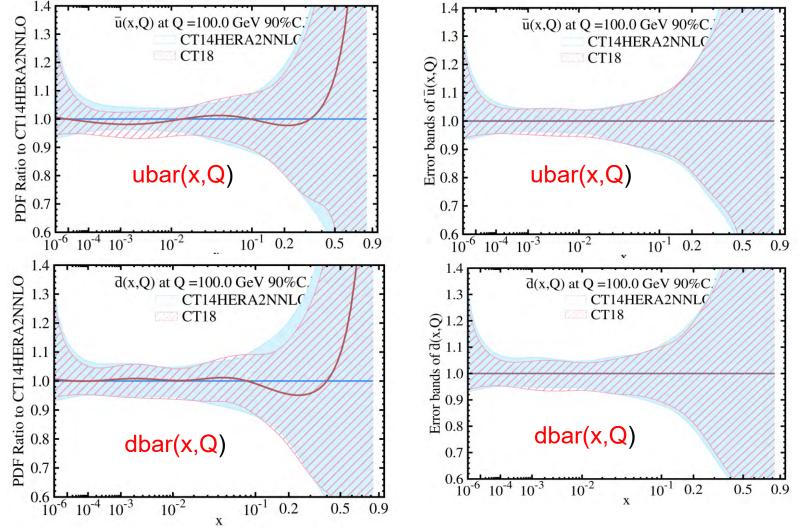
About a factor of 10 improvement in speed

g(0.3,125 GeV)

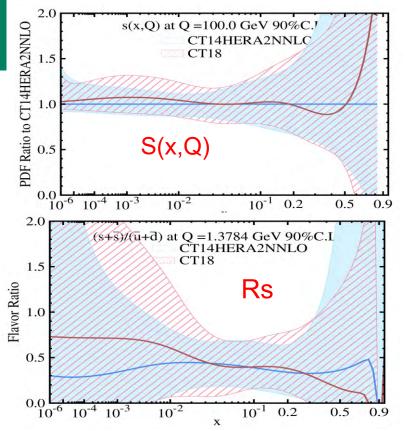


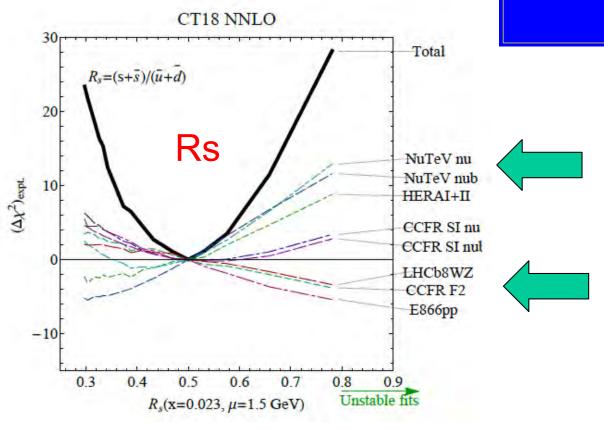
Lagrange Multiplier Scans

- At x around 0.01, ATLAS8 Z pT data prefer a slightly larger gluon PDF.
- At x around 0.3, competing with the CDHSW F2 and Tevatron jet data, which prefer larger gluon, the ATLAS7 jet, CMS7 jet and ATLAS8 Z pT data prefer a smaller gluon; some tension found in CMS7 and CMS8 jet data.
- The gluon PDF as $x \rightarrow 1$ is parametrization form dependent.


Preview of CT18 (u-PDF and d-PDF)

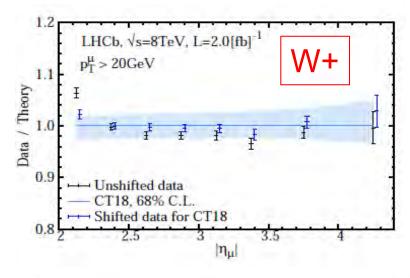
 Some changes on u and d at small x, and d around 0.2; mainly come from LHCb W and Z rapidity data, at 7 and 8 TeV.

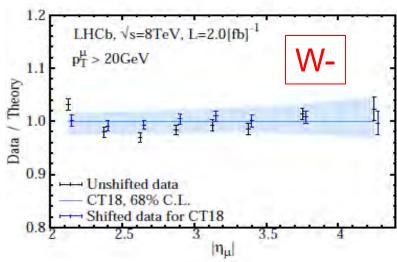

Preview of CT18 (ubar and dbar PDF)

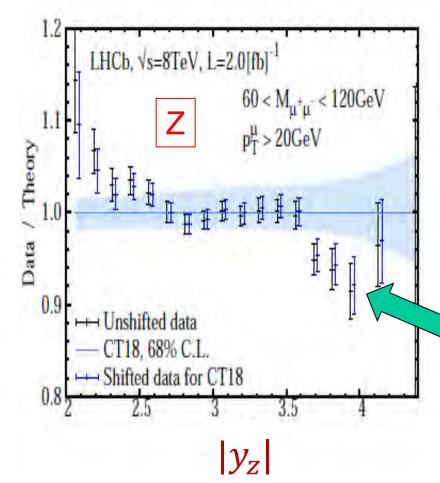


- Minor changes on ubar and dbar PDFs at small x region mainly come from LHCb W and Z rapidity data, at 7 and 8 TeV.
- The behavior of ubar and dbar PDFs, as $x \to 1$, is parametrization form dependent.

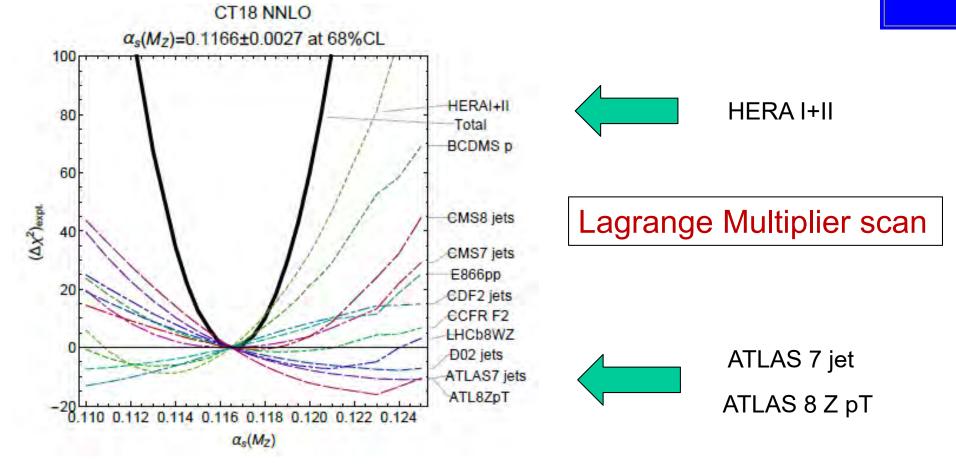
Rs=(s+sbar)/(ubar+dbar)





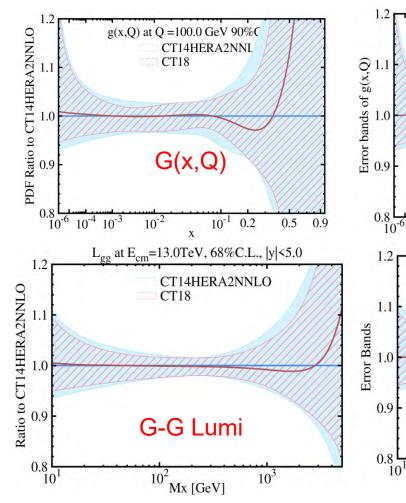

- LHCb W and Z (7,8 TeV) data prefer a larger s-PDF in the small-x region.
- NuTeV dimuon data strongly prefer a smaller Rs value, while the LHCb WZ data prefer a slightly larger Rs value.
- Rs (CT18)= 0.5 \pm 0.3 for x = 0.023 and Q² = 1.9 GeV². (preliminary) (Compare to ATLAS with $R_s = 1.13^{+0.08}_{-0.13}$)

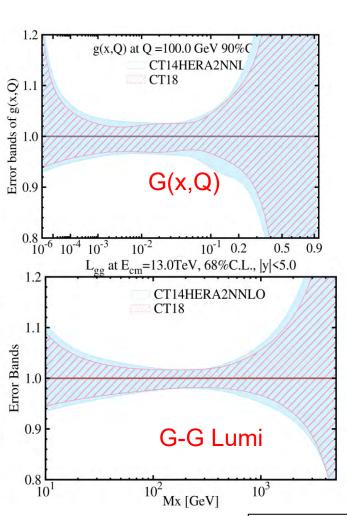
LHCb 8 TeV W and Z data in CT18 fit



arXiv:1511.08039

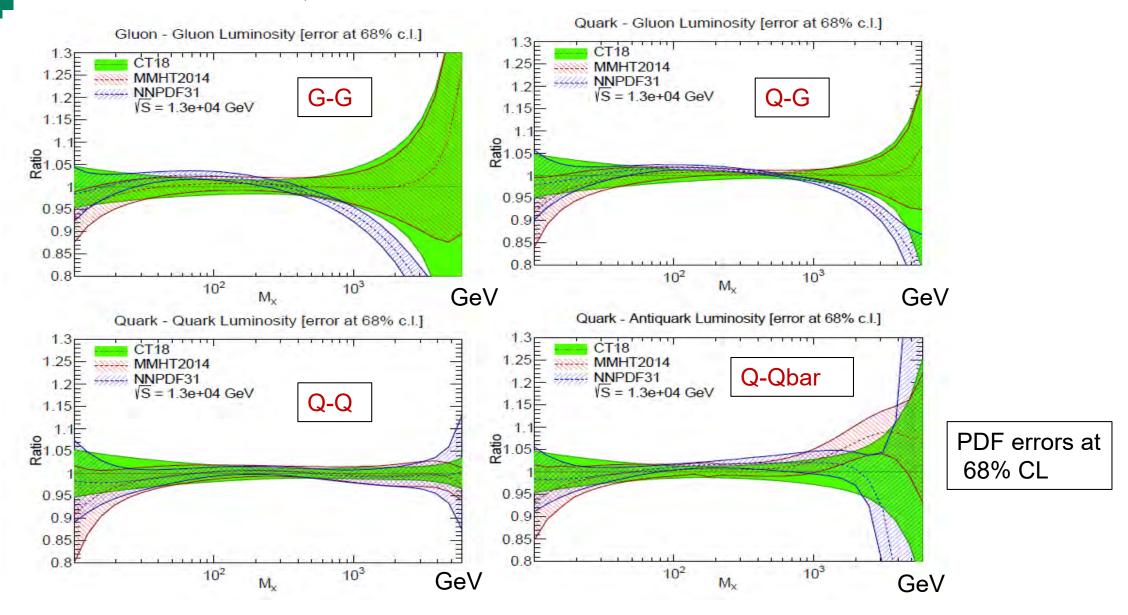
- Z data dominate the fit
- not able to fit some large Z rapidity
- show slight tension with CCFR F2 and CMS 7 TeV W-lepton asymmetry data


α_s (Mz) for CT18



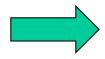
- The fixed target F2 data and HERA DIS data prefer smaller αs value.
- The ATLAS 8TeV Z pT and ATLAS 7 TeV incl. jet data, bring the central value of αs (Mz) from $0.115^{+0.006}_{-0.004}$ (CT14) to 0.1166 ± 0.0027 (CT18).

$\sigma(gg \to H)$ CT18 vs. CT14



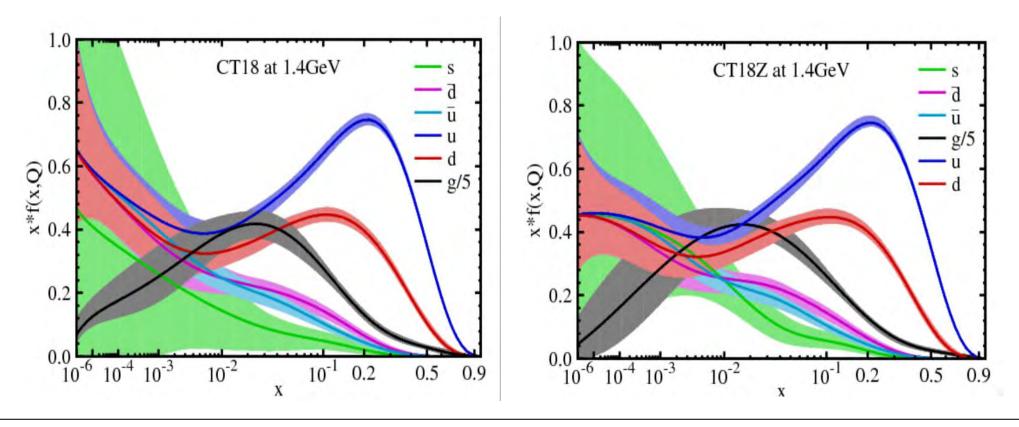
	7 TeV	
	$\sigma({ m gg-h})$	$\delta\sigma$ sym(90%C.L.)
CT14NNLO	14.67	0.46
CT18	14.57	0.44
	8 TeV	
	$\sigma(\text{gg-h})$	$\delta\sigma$ sym(90%C.L.)
CT14NNLO	18.70	0.57
CT18	18.45	0.55
	13 TeV	
	$\sigma(\text{gg-h})$	$\delta\sigma$ sym(90%C.L.)
CT14NNLO	42.78	1.32
CT18	42.43	1.26
	14 TeV	
	$\sigma(\text{gg-h})$	$\delta\sigma$ sym(90%C.L.)
CT14NNLO	48.23	1.50
CT18	47.91	1.42

PDF induced errors (at 90% CL) are reduced by about 5% as compared to CT14 predictions.


PDF Luminosities at 13 TeV LHC CT18, MMHT14 and NNPDF3.1

CT18Z LHC data treatment

- Start with CT18 data set
- Add in ATLAS 7 TeV W and Z rapidity data (arXiv:1612.03016; 4.6 1/fb); large chi^2/d.o.f ~ 2.1
- Remove CDHSW data
- Use a special x-dependent factorization scale μ_{DIS,x} at NNLO calculation (See talk by P. Nadolsky at WG1)
- CT18Z uses a combination of $\mu_{DIS,x}$ (preferred by DIS) and an increased $m_c^{\text{pole}} = 1.4$ GeV (preferred by LHC vector boson production, disfavored by DIS)



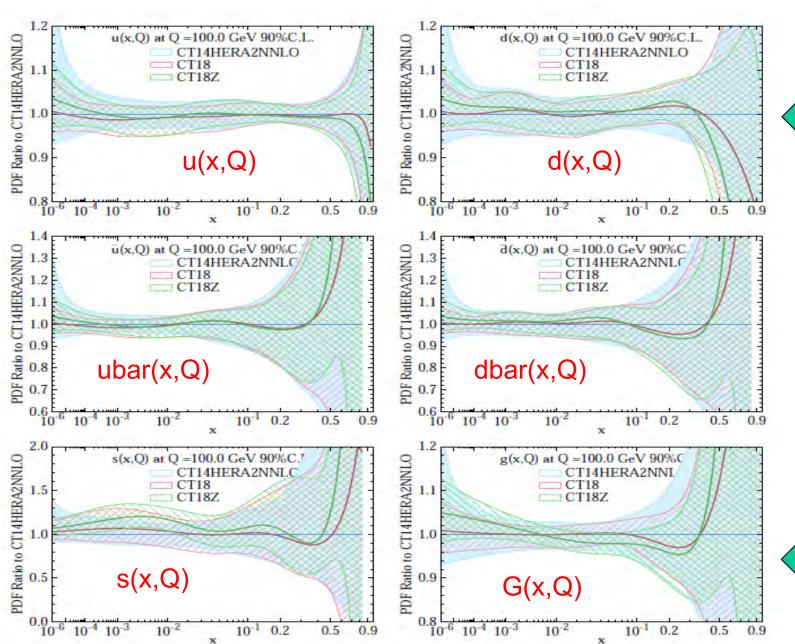
CT18Z PDFs

PDF uncertainty bands CT18 vs. CT18Z

Two PDF ensembles: CT18 and CT18Z

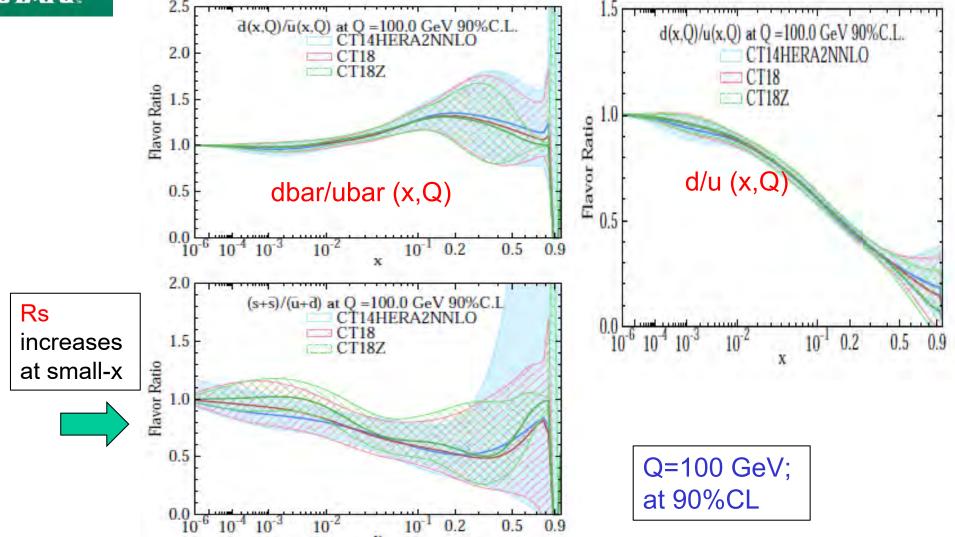
CT18Z has enhanced gluon, u-, d- and s-PDFs at $x \sim 10^{-4}$, and reduced g-PDFs at $x > 10^{-2}$. The CT18Z fit is performed so as to maximize the differences from CT18 PDFs, while preserving about the same goodness-of-fit as for CT18 analysis.

CT18Z vs.CT18 PDFs


CTEQ

U and d increase at small-x

S increases at small-x


d increases at $x \sim 0.2 - 0.3$

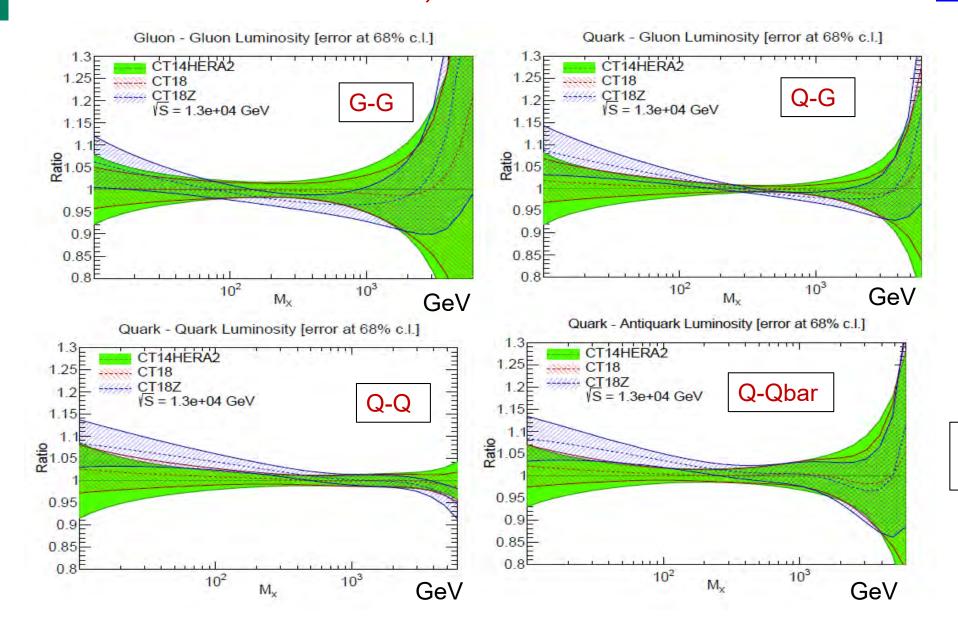
Q=100 GeV; at 90%CL

G increases at small-x, and decreases at $x \sim 0.01 - 0.3$

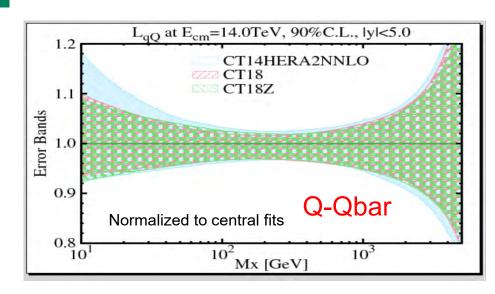
CT18Z vs.CT18 PDFs

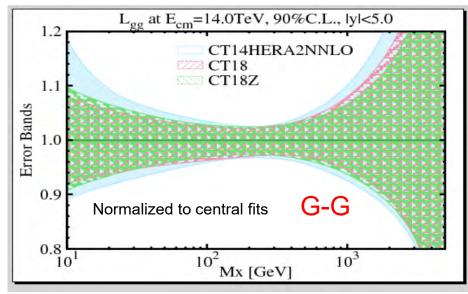
(s+sbar)/(ubar+dbar) (x,Q)

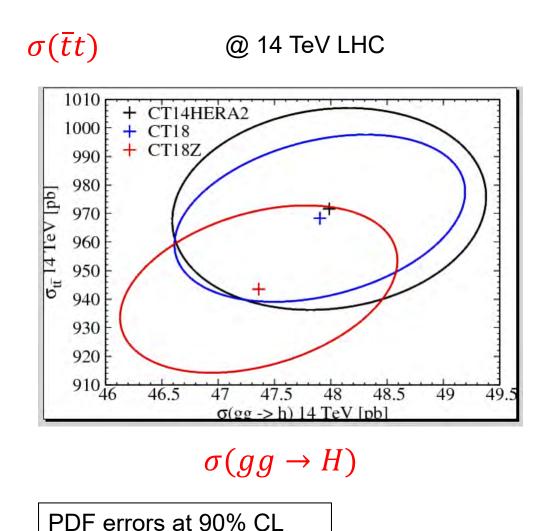
d/u
decreases
at large-x


CT18Z fit

➤ ATLAS 7 TeV W and Z rapidity data have obvious tensions with NuTeV di-muon data; and some tension with HERA I+II data.


PDF Luminosities at 13 TeV LHC CT14HERA2, CT18 and CT18Z




PDF errors at 68% CL

Mild reduction in nominal PDF error bands and cross section uncertainties

Summary

- A new CT18 PDF analysis is ready for its public release.
- The CT18 PDF uncertainty is mildly reduced at NNLO compared to the CT14 PDF uncertainty.
- 700+ data points from 12 new LHC data sets. The LHC constraints on the CT18
 PDFs are weaken by some inconsistencies between the LHC data sets and the
 pre-LHC data sets.
- HERA DIS and fixed-target experiments deliver key constraints on CT18 PDFs.
- We observe some impact on PDFs from ATLAS and CMS incl. jet data, ATLAS, CMS, LHCb W/Z data and ATLAS 8 TeV Z pT data. LHC top quark pair data provides a similar impact to g-PDF as incl. jet data, but cannot reduce g-PDF errors as strong as incl. jet data due to its much smaller number of data points.
- ATLAS 7 TeV W and Z rapidity data is included in the CT18Z PDF analysis.