ABM update

S.Alekhin (Univ. of Hamburg & IHEP Protvino)

(in collaboration with J.Blümlein and S.Moch)
PDF fit framework

QCD evolution
massless NNLO, massive NLO OMEs
(OPENQCDRAD)

3-flavour PDFs

- DIS inclusive
 - NNLO (OPENQCDRAD)
 - Power corr. (TMC+higher-twist)

- DIS heavy quark
 - NNLO (approx.) (OPENQCDRAD)

5-flavour PDFs

- Drell-Yan (W,Z,γ)
 - NNLO (DYrap,FEWZ-grids)

- t-quark
 - (Hathor, fasttop)
Higher twists: generalities

Operator product expansion:

\[F_{2,T} = F_{2,T}^{(\text{leading twist})} + H_{2,T}(x)/Q^2 + \ldots \quad \text{– additive} \]

\[F_{2,T} = F_{2,T}^{(\text{leading twist})} (1 + h_{2,T}(x)/Q^2 + \ldots) \quad \text{– multiplicative} \]

- The only one in accordance with QCD
- For multiplicative form the LT anomalous dimensions strongly affect the HT terms at small \(x \)

High twists appear in the DIS data at large \(x \) (equiv. \(W \)) and/or small \(Q^2 \)

Virchaux, Milsztajn PLB 274, 221 (1992)
Higher twists: small and moderate x

$$F_{2,T} = F_{2,T}^{(\text{leading twist})} + \frac{H_{2,T}(x)}{Q^2} \quad \text{H}(x) = x^{h_T}P(x)$$

- $H_{T}(x)$ continues a trend observed at larger x; $H_2(x)$ is comparable to 0 at small x
- $h_T = 0.05\pm 0.07 \rightarrow$ slow vanishing at $x \to 0$

- No dramatic increase of F_L at small x: different from the study with multiplicative form of HTs

 Abt et. al. hep-ph/1604.02229

- Alternative explanations are available in literature: resummation, saturation, etc.
Higher twists: correlation with α_s

- The value of α_s and twist-4 terms are strongly correlated

- With HT=0 the errors are reduced → no uncertainty due to HTs

- With account of the HT terms the value of α_s is stable with respect to the cuts

<table>
<thead>
<tr>
<th>fit ansatz</th>
<th>cuts on DIS data</th>
<th>$\alpha_s(M_Z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>higher twist modeling</td>
<td></td>
<td>NLO</td>
</tr>
<tr>
<td>higher twist fitted</td>
<td>$Q^2 > 2.5 \text{ GeV}^2$, $W > 1.8 \text{ GeV}$</td>
<td>0.1191(11)</td>
</tr>
<tr>
<td>higher twist fixed at 0</td>
<td>$Q^2 > 10 \text{ GeV}^2$, $W^2 > 12.5 \text{ GeV}^2$</td>
<td>0.1212(9)</td>
</tr>
<tr>
<td></td>
<td>$Q^2 > 15 \text{ GeV}^2$, $W^2 > 12.5 \text{ GeV}^2$</td>
<td>0.1201(11)</td>
</tr>
<tr>
<td></td>
<td>$Q^2 > 25 \text{ GeV}^2$, $W^2 > 12.5 \text{ GeV}^2$</td>
<td>0.1208(13)</td>
</tr>
</tbody>
</table>

$\alpha_s(M_Z) = 0.1153(20)$ (NNLO)
($W^2 > 15 \text{ GeV}^2$, $Q^2 > 10 \text{ GeV}^2$)

A stringent cut on Q is necessary for the fit with HT=0

Moch et al. hep-ph/1405.4781
Higher twists: fit with stringent cut on Q,W

χ^2/NDP

<table>
<thead>
<tr>
<th></th>
<th>HT fitted $Q^2>2.5 \text{ GeV}^2$, $W>1.8 \text{ GeV}$</th>
<th>HT=0, $Q^2>10 \text{ GeV}^2$, $W^2>12.5 \text{ GeV}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERA</td>
<td>1510/1168</td>
<td>1220/1007</td>
</tr>
<tr>
<td>Fixed target: SLAC, NMC, BCDMS</td>
<td>1145/1008</td>
<td>498/444</td>
</tr>
</tbody>
</table>

Value of χ^2 is stable w.r.t. to cuts

Stringent cut affects high-x data, however, the large-x PDF uncertainties remain stable
HERA charm data and m_c

H1, ZEUS EPJC 78, 473 (2018)

Theory: FFN scheme, running mass definition (cf. talk afternoon)

$m_c (m_c) = 1.245 \pm 0.019 \text{(exp.)} \text{ GeV}$

present analysis

$m_c (m_c) = 1.252 \pm 0.018 \text{(exp.)} \text{ GeV}$

ABMP16

$m_c (\text{pole}) \sim 1.9 \text{ GeV (NNLO)}$

Marquard et al. PRL 114, 142002 (2015)

$m_c (m_c) = 1.246 \pm 0.023 \text{ (h.o.)} \text{ GeV} \text{ NNLO}$

Kiyo, Mishima, Sumino PLB 752, 122 (2016)

$m_c (m_c) = 1.279 \pm 0.008 \text{ GeV}$

Kühn, LoopsLegs2018

Good consistency with the earlier results and other determinations → further confirmation of the FFN scheme relevance for the HERA kinematics
HERA beauty data and m_b

\[m_b(m_b) = 3.96 \pm 0.10 \text{(exp.) GeV} \]

present analysis

\[m_b(m_b) = 3.84 \pm 0.13 \text{(exp.) GeV} \]

ABMP16

\[m_b(m_b) = 4.18 \pm 0.04 - 0.03 \text{ GeV} \]

PDG 2018

Improved agreement with other determinations, evidently due to data purification

$X^2/\text{NDP} = 36/27$
Impact of stringent cut on PDFs at small x

Gluon goes higher, consistent with the constraint from charm/beauty

Strange sea goes lower at small x, consistent with 1 within errors → SU(3) symmetry
Running t-quark mass can be determined simultaneously**

\[m_t(m_t) = 160.8 \pm 1.1 \text{ GeV} \]

\[m_t(\text{pole}) = 170.4 \pm 1.2 \text{ GeV} \]

\[m_t(\text{MC}) \approx 172.5 \text{ GeV from LHC} \]

(Hoang et al. try to quantify the difference)

** Running-mass definition provides better perturbative stability (Extras)
t-quark: single production (mass determination)

$m_t(m_t) = 161.1 \pm 3.8 \text{GeV}$ (single-top only)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>158.6 ± 0.6</td>
<td>158.4 ± 0.6</td>
<td>164.7 ± 0.6</td>
<td>164.6 ± 0.6</td>
<td>164.3 ± 0.6</td>
</tr>
<tr>
<td>t-channel</td>
<td>158.7 ± 3.7</td>
<td>158.0 ± 3.7</td>
<td>160.1 ± 3.8</td>
<td>160.5 ± 3.8</td>
<td>164.0 ± 3.8</td>
</tr>
<tr>
<td>s- & t-channel</td>
<td>158.4 ± 3.3</td>
<td>157.7 ± 3.3</td>
<td>159.1 ± 3.4</td>
<td>159.6 ± 3.4</td>
<td>162.4 ± 3.5</td>
</tr>
</tbody>
</table>
Small errors due to cancellation of theor. unc. in case the MC version is fixed; they are much larger if different MCs are considered.

The single-top data are sensitive to the u/d ratio, however in general they are not competitive with the DY constraints.

The only window opens when the hadronization MC is fixed and the modeling errors cancel in the ratio → model dependent result.

The comparison can be also inverted in order to discriminate hadronization models.
Data set used for study of impact PDF shape on α_s

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Process</th>
<th>NPDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HERA I+II</td>
<td>$e^\pm p \rightarrow e^\pm X$</td>
<td>1168</td>
</tr>
<tr>
<td></td>
<td>$e^\pm p \rightarrow (\nu) X$</td>
<td></td>
</tr>
<tr>
<td>Fixed-target (BCDMS, NMC, SLAC)</td>
<td>$t^\pm p \rightarrow t^\pm X$</td>
<td>1935</td>
</tr>
</tbody>
</table>

DIS heavy-quark production		
HERA I+II	$e^\pm p \rightarrow e^\pm cX$	52
H1, ZEUS	$e^\pm p \rightarrow e^\pm bX$	29
Fixed-target (CCFR, CHORUS, NOMAD, NuTeV)	$(\nu) N \rightarrow \mu^\pm cX$	232

| **DY** | | |
| Fixed-target (FNAL-605, FNAL-866) | $pN \rightarrow \mu^+\mu^- X$ | 158 |

The ABMP16 framework with:

- DY data replaced by the deuteron ones \Rightarrow comparable quark disentangling at moderate and large x

- t-quark data excluded (no relevance for the first round of estimates)
Checking styles of PDF shape

<table>
<thead>
<tr>
<th></th>
<th>ABMP16</th>
<th>CJ15</th>
<th>CT10</th>
<th>CT14</th>
<th>epWZ16</th>
<th>MMHT14</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{PDF}</td>
<td>28</td>
<td>21</td>
<td>26</td>
<td>26</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>μ_0^2 (GeV2)</td>
<td>9</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
<td>1.9</td>
<td>1</td>
</tr>
<tr>
<td>χ^2</td>
<td>4065</td>
<td>4108</td>
<td>4148</td>
<td>4153</td>
<td>4336</td>
<td>4048</td>
</tr>
<tr>
<td>PDF shape</td>
<td>$x^a(1-x)^b \exp[P(x,\ln(x))]$</td>
<td>$x^a(1-x)^b \exp[P(x,\sqrt{x})]$</td>
<td>$x^a(1-x)^b \exp[P(x,\sqrt{x})]$</td>
<td>$x^a(1-x)^b \exp[P(x,\sqrt{x})]$</td>
<td>$x^a(1-x)^b \exp[P(x,\sqrt{x})]$</td>
<td>$x^a(1-x)^b \exp[P(x,\sqrt{x})]$</td>
</tr>
<tr>
<td>Constraints</td>
<td>$\bar{u} = \bar{d}$ ($x \to 0$)</td>
<td>$\alpha_{uv} = \alpha_{dv}$</td>
<td>$\alpha_{u} = \alpha_{d}$</td>
<td>$\alpha_{u} = \alpha_{d}$</td>
<td>$\alpha_{u} = \alpha_{d}$</td>
<td>$\alpha_{u} = \alpha_{d} = \alpha_{s}$</td>
</tr>
<tr>
<td>$\alpha_s(M_Z)$</td>
<td>0.1153</td>
<td>0.1147</td>
<td>0.1150</td>
<td>0.1160</td>
<td>0.1162</td>
<td>0.1158</td>
</tr>
</tbody>
</table>

- Various PDF-shape modifications provide comparable description with $N_{PDF} \sim 30$

- Some deterioration, which happens in cases is apparently due to constraints on large(small)-x exponents

Conservative estimate of uncertainty in $\alpha_s(M_Z)$: 0.0007, more optimistic: 0.0003
DY: data used in the ABMP16 fit

<table>
<thead>
<tr>
<th>Experiment</th>
<th>ATLAS</th>
<th>CMS</th>
<th>DØ</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sqrt{s} (TeV)</td>
<td>7</td>
<td>13</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Final states</td>
<td>$W^+ \to l^+\nu$</td>
<td>$W^+ \to l^+\nu$</td>
<td>$W^+ \to l^+\nu$</td>
<td>$W^+ \to l^+\nu$</td>
</tr>
<tr>
<td>Luminosity (1/fb)</td>
<td>0.035</td>
<td>0.081</td>
<td>4.7</td>
<td>18.8</td>
</tr>
<tr>
<td>N_{DP}</td>
<td>30</td>
<td>6</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>ABMP16</td>
<td>31.0</td>
<td>9.2</td>
<td>22.4</td>
<td>16.5</td>
</tr>
<tr>
<td>CJ15</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CT14</td>
<td>42</td>
<td>–</td>
<td>– b</td>
<td>–</td>
</tr>
<tr>
<td>HERAFitter</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MMHT16</td>
<td>39 c</td>
<td>–</td>
<td>–</td>
<td>21</td>
</tr>
<tr>
<td>NNPDF3.1</td>
<td>29</td>
<td>–</td>
<td>–</td>
<td>19</td>
</tr>
</tbody>
</table>

a The values of NDP and χ^2 correspond to the unfiltered samples.

b For the statistically less significant data with the cut of $p_T^{l^+} > 35$ GeV the value of $\chi^2 = 12.1$ was obtained.

c The value obtained in MMHT14 fit.

Good overall agreement in NNLO with some tension between DØ and LHCb data

<table>
<thead>
<tr>
<th>Experiment</th>
<th>NDP</th>
<th>χ^2 after the data sets excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>– ATLAS CMS DØ LHCb</td>
</tr>
<tr>
<td>ATLAS</td>
<td>36</td>
<td>37.7 – 37.0 38.3 39.6</td>
</tr>
<tr>
<td>CMS</td>
<td>33</td>
<td>26.6 25.6 – 26.0 23.5</td>
</tr>
<tr>
<td>DØ</td>
<td>23</td>
<td>48.5 48.1 47.7 – 44.2</td>
</tr>
<tr>
<td>LHCb</td>
<td>80</td>
<td>98.2 100.2 97.4 78.8 –</td>
</tr>
</tbody>
</table>
New input: ATLAS at 7 TeV

Good agreement with W data

Undershooting Z-boson data

Different trends for the central and forward Z-boson data

<table>
<thead>
<tr>
<th>ATLAS data set</th>
<th>χ^2/NDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^\pm, Z(central)</td>
<td>43/34</td>
</tr>
<tr>
<td>W^\pm, Z(central), Z(forward)</td>
<td>84/43</td>
</tr>
</tbody>
</table>
DY: impact of the recent data (ATLAS, 5 TeV)

PRELIMINARY: Uncertainty correlations are not taken into account (still unpublished); smaller impact on fit is expected when they are included.
DY: towards double differential distributions

- Reasonable agreement with the ABMP16 predictions
- Complimentary constraint on PDFs → improved quark disentangling
- Other CMS and ATLAS data in progress; the bottleneck is NNLO computations with the fiducial-volume cuts
Summary

- The fit with stringent cuts, $W^2 > 12.5 \text{ GeV}^2$, $Q^2 > 10 \text{ GeV}^2$, on the DIS data is considered

 - impact of the higher-twist terms is minimized

 - small-x gluon goes higher, consistent with the constraint from charm/beauty; small-x strange sea goes lower at small x, consistent with 1 within errors; valence quarks stable

 - reasonable description of the recent charm/beauty HERA data with

 $m_c(m_c) = 1.245 \pm 0.019(\text{exp.}) \text{ GeV}$

 $m_b(m_b) = 3.96 \pm 0.10(\text{exp.}) \text{ GeV}$

- Update of the pair- and single-top production with

 $m_t(m_t) = 160.8 \pm 1.1 \text{ GeV}$

 $m_t(m_t) = 161.1 \pm 3.8 \text{GeV}$ \hspace{1cm} (single-top only)

- potential impact on the d/u ratio form $t/t\overline{t}$, however validation of MC tools is still needed

- Steady progress with accommodating more DY data into the fit

 - recent ATLAS data at 5 and 7 Tev

 - double differential data on Z-boson production from CMS and ATLAS
EXTRAS
Impact of high twists on SLAC data

Power-like terms affect comparison even with a cut $W^2 \geq 12.5 \text{ GeV}^2$
Impact of the t-quark data on the ABMP16 fit

HATHOR (NNLO terms are checked with TOP++)

Running mass definition provides nice perturbative stability

Langenfeld, Moch, Uwer PRD 80, 054009 (2009)

Czakon, Fiedler, Mitov PRL 110, 252004 (2013)
DYNNLO-FEWZ difference not fully understood; further benchmarking is needed
Closure test of the NNPDF3.1 fit

Different trend for W and Z data ⇒ χ²/NDP= 400/34; problems with the flavor disentangling

● Suppressed (fitted) charm distribution requires corresponding enhancement of strangeness sur to constraint from W data

Thorne QCD@LHC2018
DY: ATLAS versus CMS

Different trends for ATLAS and CMS Z-production data: ATLAS seems to go higher than CMS with a different trend w.r.t. rapidity; however the errors are still large
NNLO DY corrections in the fit

The existing NNLO codes (DYNNLO, FEWZ) are quite time-consuming → fast tools are employed (FASTNLO, Applgrid,.....)

– the corrections for certain basis of PDFs are stored in the grid
– the fitted PDFs are expanded over the basis
– the NNLO c.s. in the PDF fit is calculated as a combination of
 expansion coefficients with the pre-prepared grids

The general PDF basis is not necessary since the PDFs are already constrained by the data, which do not require involved computations → use as a PDF basis the eigenvalue PDF sets obtained in the earlier version of the fit

\[\mathbf{P}_0 \pm \Delta \mathbf{P}_0 \] – vector of PDF parameters with errors obtained in the earlier fit
\[\mathbf{E} \] – error matrix
\[\mathbf{P} \] – current value of the PDF parameters in the fit

– store the DY NNLO c.s. for all PDF sets defined by the eigenvectors of \(\mathbf{E} \)
– the variation of the fitted PDF parameters \((\mathbf{P} - \mathbf{P}_0)\) is transformed into this eigenvector basis
– the NNLO c.s. in the PDF fit is calculated as a combination of transformed \((\mathbf{P} - \mathbf{P}_0)\) with the stored eigenvector values
DY: tool benchmarking

A variety of tools/methods employed in the PDF fits: DYNNO/FEWZ/ResBos, NLO combined with NNLO K-factors, etc. → a consolidation is required for using potential of the existing data.
Test fit with the neural network shape

Valence u-quark is modeled by $x^\alpha (1-x)^\beta \text{NN}(x)$, where NN is neural network with 37 parameters (NNPDF3.0 ansatz), other PDFs use MMHT14 shape

Result is in quite agreement with the MMHT14 shape $x^\alpha (1-x)^\beta \text{P}(x)$ with 4 parameters in $\text{P}(x) \Rightarrow$ no particular flexibility is provided by neural network

Study of sea and gluon distribution in progress, the same behaviour expected