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QCD evolution 

massless NNLO, massive NLO OMEs 
(OPENQCDRAD)

DIS inclusive

 NNLO
(OPENQCDRAD)

 Power corr.
(TMC+higher-twist)

 t-quark

(Hathor, fasttop)

 Drell-Yan (W,Z,γ)

NNLO
(DYrap,FEWZ-grids)

 DIS heavy quark

NNLO(approx.)
(OPENQCDRAD)

5-flavour PDFs3-flavour PDFs

PDF fit framework
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Higher twists: generalities 

Virchaux, Milsztajn PLB 274, 221 (1992)

High twists appear in the DIS data
at large x(equiv. W) and/or small Q2

Operator product expansion:

F
2,T

=F
2,T

(leading twist) + H
2,T

(x)/Q2   + ...  –  additive 

F
2,T

=F
2,T

(leading twist) (1 + h
2,T

(x)/Q2 +…)   –                       

                                                                     multiplicative
  The only one in accordance with QCD

 For multiplicative form the LT anomalous 
dimensions strongly affect the HT terms at small x
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Higher twists: small and moderate x 

 H
T
(x) continues a trend observed at larger x; H

2
(x) is comparable to 0 at small x

  h
T
=0.05±0.07 → slow vanishing at x → 0 

F
2,T

=F
2,T

(leading twist) + H
2,T

(x)/Q2                H(x)=xhP(x)                    

Controlled by
SLAC data

 No dramatic increase of F
L
 at small x:

different from the study with multiplicative 
form of HTs

 Alternative explanations are available in 
literature: resummation, saturation, etc.

Abt et. al. hep-ph/1604.02229  

sa, Blümlein, Moch,  Plačakytė PRD 96, 014011 (2017)



  

5

 The value of α
S
 and twist-4 terms are strongly 

correlated

 With HT=0 the errors are reduced →  no              
  uncertainty due to HTs  

 With account of the HT terms the value of α
S 
is    

 stable with respect to the cuts

MRST:  α
S
(M

Z
)=0.1153(20)   (NNLO)

                (W2>15 GeV2, Q2> 10 GeV2)

A stringent cut on Q is necessary for
 the fit with HT=0

Moch et al. hep-ph/1405.4781

Higher twists: correlation with α
S 

sa, Blümlein, Moch EPJC 78, 477 (2018) 
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Higher twists: fit with stringent cut on Q,W
 

HT fitted
Q2>2.5 GeV2,
W>1.8 GeV

HT=0, 
Q2>10 GeV2,
W2>12.5 GeV2

HERA 1510/1168 1220/1007

Fixed target:
SLAC, NMC,BCDMS

1145/1008 498/444

χ2/NDP

Stringent cut affects high-x 
data, however, the large-x
PDF uncertainties remain 
stable   

Value of χ2 is stable
w.r.t. to cuts
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        m

c
(m

c
)=1.245±0.019(exp.) GeV

                                                     present analysis

        m
c
(m

c
)=1.252±0.018(exp.) GeV 

                                                                ABMP16
                   m

c
(pole)~1.9 GeV (NNLO) 

        m
c
(m

c
)=1.246±0.023 (h.o.) GeV  NNLO

       

         m
c
(m

c
)=1.279±0.008  GeV 

HERA charm data and m
c

Kiyo, Mishima, Sumino PLB 752, 122 (2016)

Marquard et al. PRL 114, 142002 (2015)

Kühn, LoopsLegs2018

H1, ZEUS EPJC 78, 473 (2018)

Good consistency with the earlier results
and other determinations → further 
confirmation of the FFN scheme 
relevance for the HERA kinematics

Χ2/NDP=86/52

Theory: FFN scheme, running mass
definition (cf. talk afternoon)
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        m

b
(m

b
)=3.96±0.10(exp.) GeV

                                                     present analysis

        m
b
(m

b
)=3.84±0.13(exp.) GeV 

                                                                ABMP16
                  
         m

b
(m

b
)=4.18+0.04-0.03  GeV 

HERA beauty data and m
b

PDG 2018

H1, ZEUS EPJC 78, 473 (2018)

Improved agreement with other determinations, 
evidently due to data  purification 

Χ2/NDP=36/27
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Impact of stringent cut on PDFs at small x

Strange sea goes lower at small x, 
consistent with 1 within errors → 
SU(3) symmetry

Gluon goes higher, consistent with 
the constraint from charm/beauty 
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 Running t-quark mass can be 
 determined simultaneously**

                 

        
 

m
t
(m

t
)= 160.8±1.1 GeV     

m
t
(pole)=170.4±1.2 GeV   

m
t
(MC)~172.5 GeV from LHC

     (Hoang et al. try to quantify the 
     difference)       

** Running-mass definition provides
    better perturbative stability  (Extras)

t-quark: pair production
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sa, Moch, Thier PLB 763, 341 (2016)

t-quark: single production (mass determination) 

m
t
(m

t
)= 161.1± 3.8GeV  (single-top only)   
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Small errors due to cancellation of 
theor. unc. in case the MC version 

is fixed; they are much larger if 
different MCs are considered 

t-quark: single production (flavour separation)

 The single-top data are sensitive to the 
u/d ratio, however in general they are not 
competitive with the DY constraints

 The only window opens when the 
hadronization MC is fixed and the modeling 
errors cancel in the ratio → 
model dependent result

 The comparison can be also inverted in 
order to discriminate hadronization models 
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Data set used for study of impact PDF shape on α
s
 

 

The ABMP16 framework with: 

       – DY data replaced by the deuteron ones ⇒  comparable 
          quark disentangling at moderate and large x

       – t-quark data excluded (no relevance for the first round of estimates) 

sa, Blümlein, Moch  PLB 777, 134 (2018)
sa, Blümlein, Kulagin, Moch, Petti hep-ph/1808.06871

DY data have no essential 
impact on α

s
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ABMP16 CJ15 CT10 CT14 epWZ16 MMHT14

N
PDF

28 21 26 26 14 31

μ
0

2 (GeV2) 9 1.69 1.69 1.69 1.9 1

χ2 4065 4108 4148 4153 4336 4048

PDF shape xα(1-x)β

exp[P(x,ln(x))]
xα(1-x)βP(x,√x) xα(1-x)β

exp[P(x,√x)]
xα(1-x)β

exp[P(x,√x)]
xα(1-x)βP(x,√x) xα(1-x)βP(x,√x)

Constraints ū=đ  (x→0) α
uv

=α
dv

α
ū
=α

đ
=α

s

ū=đ  (x→0)

α
uv

=α
dv

β
uv

=β
dv

α
ū
=α

đ
=α

s

α
ū
=α

đ
=α

s

ū=đ  (x→0)

α
s
(M

Z
) 0.1153 0.1147 0.1150 0.1160 0.1162 0.1158

Checking styles of PDF shape

 Various PDF-shape modifications provide comparable description with N
PDF

~30

 Some deterioration, which happens in cases is apparently due 
 to constraints on large(small)-x exponents

Conservative estimate of uncertainty in α
s
(M

Z
): 0.0007, more optimistic: 0.0003 
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DY: data used in the ABMP16 fit

 Good overall agreement in NNLO with
 some tension between D0 and LHCb data
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 Good agreement with W data

 Undershooting Z-boson data

 Different trends for the central 
 and forward Z-boson data

New input: ATLAS at 7 TeV 

ATLAS data set χ2 /NDP

W±, Z(central) 43/34

W±, Z(central),
Z(forward)

84/43
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DY: impact of the recent data (ATLAS, 5 TEV)

PRELIMINARY: Uncertainty correlations are not taken into account (still unpublished);
smaller impact  on fit is expected when they are included
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DY: towards double differential distributions

 Reasonable agreement with the ABMP16 predictions

 Complimentary constraint on PDFs → improved quark disentangling

 Other CMS and ATLAS data in progress; the bottleneck is NNLO 
 computations with the  fiducial-volume cuts
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Summary 

 The fit with stringent cuts, W2>12.5 GeV2, Q2> 10 GeV2, on the DIS data  
  is considered

     – impact of the higher-twist terms is minimized

     – small-x gluon goes higher, consistent with the constraint from charm/beauty;
        small-x strange sea goes lower at small x, consistent with 1 within errors; 
        valence quarks stable 

     – reasonable description of the recent charm/beauty HERA data with
                     m

c
(m

c
)=1.245±0.019(exp.) GeV

                     m
b
(m

b
)=3.96±0.10(exp.) GeV 

 Update of the pair- and single-top production with

                         m
t
(m

t
)== 160.8±1.1 GeV

                            m
t
(m

t
)= 161.1± 3.8GeV                                  (single-top only)  

       – potential impact on the d/u ratio form t/tbar, however validation
          of MC tools is still needed
 Steady progress with accommodating more DY data into the fit

     –  recent ATLAS data at 5 and 7 Tev 

     –  double differential data on Z-boson production from CMS and ATLAS
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EXTRAS



  

21

Impact of high twists on SLAC data

sa, Blümlein, Moch PRD 86, 054009 (2012)

Power-like terms affect comparison even with a cut W2≥12.5 GeV2 
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Impact of the t-quark data on the ABMP16 fit

HATHOR  (NNLO terms are checked with TOP++) Langenfeld, Moch, Uwer PRD 80, 054009 (2009)

Czakon, Fiedler, Mitov PRL 110, 252004 (2013)

Pole        MSbar

Running mass definition provides nice perturbative stability
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NNLO tools benchmarking

DYNNLO-FEWZ difference not fully understood; further benchmarking is needed  

Yannick Ulrich, Barchelor thesis, Univ. of Hamburg 2015
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Closure test of the NNPDF3.1 fit

 Different trend for W and Z data ⇒ χ2/NDP= 400/34; problems with the flavor
disentangling

 Suppressed (fitted) charm distribution requires corresponding enhancement of 
strangeness sur to constraint from W data 

Thorne QCD@LHC2018 
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DY: ATLAS versus CMS

Different trends for ATAS and CMS Z-production data: 
ATLAS seems to go higher than CMS with a different trend
w.r.t. rapidity; however the errors are still large 
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The existing NNLO codes (DYNNLO, FEWZ) are quite time-consuming → 
fast tools are employed (FASTNLO, Applgrid,.....)
    
    –  the corrections for certain basis of PDFs are stored in the grid
    –  the fitted PDFs are expanded over the basis
    –  the NNLO c.s. in the PDF fit is calculated as a combination of 
       expansion coefficients with the pre-prepared grids

The general PDF basis is not necessary since the PDFs are already constrained
by the data, which do not require involved computations  → use as a PDF basis 
the eigenvalue PDF sets obtained in the earlier version of the fit 

            P
0 
± ΔP

0
 – vector of PDF parameters with errors obtained in the earlier fit 

            E  – error matrix  
            P

 
 – current value of the PDF parameters in the fit

  
     –  store the DY NNLO c.s. for all PDF sets defined by the eigenvectors of  E   
     –  the variation of the fitted PDF parameters (P – P

0
) is transformed into this 

         eigenvector basis      
     –  the NNLO c.s. in the PDF fit is calculated as a combination of transformed (P -

 
 P

0
) 

         with the stored  eigenvector values

NNLO DY corrections in the fit
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DY: tool benchamrkingDY: tool benchamrking

A variety of tools/methods employed in the PDF fits: DYNNO/FEWZ/ResBos, 
NLO combined with NNLO K-factors, etc. → a consolidation is required for using 
potential of the existing data.   
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Test fit with the neural network shape

 Valence u-quark is modeled by xα(1-x)βNN(x), where NN is neural network with 37 
parameters (NNPDF3.0 ansatz), other PDFs use MMHT14 shape

 Result is in quite agreement with the MMHT14 shape xα(1-x)βP(x) with 
4 paramters in P(x) ⇒  no particular flexibility is provided by neural network

 Study of sea and gluon distribution in progress, the same behaviour expected 
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