ABM update

S.Alekhin (Univ. of Hamburg & IHEP Protvino)

(in collaboration with J.Blümlein and S.Moch)

DIS2019, Turin, 9 Apr 2019

PDF fit framework

Higher twists: generalities

10 5 Operator product expansion: $Q^2 (GeV^2)$ HERA • BCDMS $F_{2,T} = F_{2,T}$ (leading twist) + $H_{2,T}(x)/Q^2$ + ... – additive • NMC 10 SLAC $F_{2,T} = F_{2,T}$ (leading twist) $(1 + h_{2,T}(x)/Q^2 + ...)$ $W^2 = 12.5 \text{ GeV}^2$ 10³ $- Q^2 = 10 \text{ GeV}^2$ multiplicative The only one in accordance with QCD 10 For multiplicative form the LT anomalous dimensions strongly affect the HT terms at small x 10 $F_2(x,Q^2)$ 10 10 10 ١Ō Hydroger Deuterium 10 △ SLAC △ SLAC O BCDMS BCDMS $Q^{2} (GeV/c)^{2}$ 1 10 10 $Q^{2} (GeV/c)^{2}$

Virchaux, Milsztajn PLB 274, 221 (1992)

Х

sa, Blümlein, Moch, Plačakytė PRD 96, 014011 (2017)

• $H_{r}(x)$ continues a trend observed at larger x; $H_{r}(x)$ is comparable to 0 at small x

• h_=0.05 \pm 0.07 \rightarrow slow vanishing at x \rightarrow 0

• No dramatic increase of F_L at small x: different from the study with multiplicative form of HTs Abt et. al. hep-ph/1604.02229

 Alternative explanations are available in literature: resummation, saturation, etc.

Higher twists: correlation with α_s

- \bullet The value of $\boldsymbol{\alpha}_s$ and twist-4 terms are strongly correlated
- With HT=0 the errors are reduced → no uncertainty due to HTs
- With account of the HT terms the value of α_s is stable with respect to the cuts

fit	$\alpha_s(M_Z)$		
higher twist modeling	cuts on DIS data	NLO	NNLO
higher twist fitted	$Q^2 > 2.5 \text{ GeV}^2, W > 1.8 \text{ GeV}$	0.1191(11)	0.1147(8)
higher twist fixed at 0	$Q^2 > 10 \text{ GeV}^2, W^2 > 12.5 \text{ GeV}^2$	0.1212(9)	0.1153(8)
	$Q^2 > 15 \text{ GeV}^2, W^2 > 12.5 \text{ GeV}^2$	0.1201(11)	0.1141(10)
	$Q^2 > 25 \text{ GeV}^2, W^2 > 12.5 \text{ GeV}^2$	0.1208(13)	0.1138(11)

sa, Blümlein, Moch EPJC 78, 477 (2018)

MRST: $\alpha_{s}(M_{z})=0.1153(20)$ (NNLO) (W²>15 GeV², Q²> 10 GeV²)

A stringent cut on Q is necessary for the fit with HT=0

Moch et al. hep-ph/1405.4781

Higher twists: fit with stringent cut on Q,W

2 ...

	χ²/NL	JP
	HT fitted Q ² >2.5 GeV ² , W>1.8 GeV	HT=0, Q ² >10 GeV ² , W ² >12.5 GeV ²
HERA	1510/1168	1220/1007
Fixed target: SLAC, NMC,BCDMS	1145/1008	498/444

Value of χ^2 is stable w.r.t. to cuts

Stringent cut affects high-x data, however, the large-x PDF uncertainties remain stable

HERA charm data and m

HERA I+II (ep --> e charm X) Theory: FFN scheme, running mass data/fit-1 definition (cf. talk afternoon) 0.4 0.2 -0.2 m_(m_)=1.245±0.019(exp.) GeV $O^2 = 5 GeV^2$ $O^2 = 2.5 \text{ GeV}^2$ $O^2 = 7 \text{ GeV}^2$ -0.4present analysis 0.4 0.2 m_(m_)=1.252±0.018(exp.) GeV 0 -0.2ABMP16 $O^2 = 18 \text{ GeV}^2$ $O^2 = 12 \text{ GeV}^2$ $O^2 = 32 \text{ GeV}^2$ -0.4m (pole)~1.9 GeV (NNLO) 0.4 Marguard et al. PRL 114, 142002 (2015) 0.2 0 m_(m_)=1.246±0.023 (h.o.) GeV NNLO -0.2 $Q^2 = 60 \text{ GeV}^2$ $O^2 = 120 \text{ GeV}^2$ $O^2 = 200 \text{ GeV}^2$ -0.4Kiyo, Mishima, Sumino PLB 752, 122 (2016) 0.4 0.2 m_(m)=1.279±0.008 GeV 0 Kühn, LoopsLegs2018 -0.2 $O^2 = 650 \text{ GeV}^2$ $=350 \text{ GeV}^2$ $O^2 = 2000 \text{ GeV}^2$ -0.4 10⁻⁴ 10⁻³ 10^{-2} 10^{-2} 10^{-3} 10^{-2} 10^{-3} 10^{-4} 10^{-4} Good consistency with the earlier results Х X Х and other determinations \rightarrow further X²/NDP=86/52

confirmation of the FFN scheme relevance for the HERA kinematics

H1, ZEUS EPJC 78, 473 (2018)

HERA beauty data and m

X²/NDP=36/27

Improved agreement with other determinations, evidently due to data purification

Impact of stringent cut on PDFs at small x

Gluon goes higher, consistent with the constraint from charm/beauty

Strange sea goes lower at small x, consistent with 1 within errors \rightarrow SU(3) symmetry

t-quark: pair production

Running t-quark mass can be determined simultaneously**
m_t(m_t)= 160.8±1.1 GeV
m_t(pole)=170.4±1.2 GeV
m_t(MC)~172.5 GeV from LHC

(Hoang et al. try to quantify the difference)

** Running-mass definition provides better perturbative stability (Extras)

t-quark: single production (mass determination)

$m_t(m_t) = 161.1 \pm 3.8 \text{GeV}$ (single-top only)

sa, Moch, Thier PLB 763, 341 (2016)

Channel	ABM12 21	ABMP15 52	CT14 55	MMHT14 56	NNPDF3.0 57
tī	158.6 ± 0.6	158.4 ± 0.6	164.7 ± 0.6	164.6 ± 0.6	164.3 ± 0.6
t-channel	158.7 ± 3.7	158.0 ± 3.7	160.1 ± 3.8	160.5 ± 3.8	164.0 ± 3.8
s- & t-channel	158.4 ± 3.3	157.7 ± 3.3	159.1 ± 3.4	159.6 ± 3.4	162.4 ± 3.5

11

t-quark: single production (flavour separation)

• The single-top data are sensitive to the u/d ratio, however in general they are not competitive with the DY constraints

 The only window opens when the hadronization MC is fixed and the modeling errors cancel in the ratio → model dependent result

• The comparison can be also inverted in order to discriminate hadronization models

Small errors due to cancellation of theor. unc. in case the MC version is fixed; they are much larger if different MCs are considered

Data set used for study of impact PDF shape on α_{a}

sa, Blümlein, Moch PLB 777, 134 (2018) sa, Blümlein, Kulagin, Moch, Petti hep-ph/1808.06871

Experiment	Process	NDP
DIS		
HERA I+II	$e^{\pm}p \rightarrow e^{\pm}X$	1168
	$e^{\pm}p \rightarrow \overset{(-)}{\nu}X$	
Fixed-target (BCDMS, NMC, SLAC)	$l^{\pm}p \to l^{\pm}X$	1935

DIS heavy-quark production

HERA I+II	$e^{\pm}p \rightarrow e^{\pm}cX$	52
H1, ZEUS	$e^{\pm}p \rightarrow e^{\pm}bX$	29
Fixed-target (CCFR, CHORUS, NOMAD, NuTeV)	${\overset{(-)}{\nu}}N \to \mu^{\pm}cX$	232

DY

Fixed-target (FNAL-605, FNAL-866)	$pN \rightarrow \mu^+ \mu^- X$	158
-	1	

The ABMP16 framework with:

 DY data replaced by the deuteron ones ⇒ comparable quark disentangling at moderate and large x

- t-quark data excluded (no relevance for the first round of estimates)

DY data have no essential impact on α_s

Checking styles of PDF shape

	ABMP16	CJ15	CT10	CT14	epWZ16	MMHT14
N _{pdf}	28	21	26	26	14	31
μ_0^{2} (GeV ²)	9	1.69	1.69	1.69	1.9	1
χ ²	4065	4108	4148	4153	4336	4048
PDF shape	$x^{\alpha}(1-x)^{\beta}$ exp[P(x,ln(x))]	x ^α (1-x) ^β P(x,√x)	$x^{\alpha}(1-x)^{\beta}$ exp[P(x, \sqrt{x})]	$x^{\alpha}(1-x)^{\beta}$ exp[P(x, \sqrt{x})]	x ^α (1-x) ^β P(x,√x)	x ^α (1-x) ^β P(x,√x)
Constraints		ū=đ (x→0)	$\alpha_{uv} = \alpha_{dv}$ $\alpha_{\bar{u}} = \alpha_{\bar{d}} = \alpha_{s}$ $\bar{u} = \bar{d} (x \to 0)$	$\alpha_{uv} = \alpha_{dv}$ $\beta_{uv} = \beta_{dv}$ $\alpha_{u} = \alpha_{d} = \alpha_{s}$	$\alpha_{\bar{u}} = \alpha_{\bar{d}} = \alpha_{\bar{s}}$ $\bar{u} = \bar{d} (x \rightarrow 0)$	
$\alpha_{s}(M_{z})$	0.1153	0.1147	0.1150	0.1160	0.1162	0.1158

• Various PDF-shape modifications provide comparable description with $N_{PDF} \sim 30$

 Some deterioration, which happens in cases is apparently due to constraints on large(small)-x exponents

Conservative estimate of uncertainty in $\alpha_{s}(M_{r})$: 0.0007, more optimistic: 0.0003

DY: data used in the ABMP16 fit

Exp	periment	ATI	LAS	CN	MS	D	Ø	LHCb		
\sqrt{s}	s (TeV)	7	13	7	8	1.	96	7	7 8	
Fina	al states	$W^+ \rightarrow l^+ \nu$	$W^+ \rightarrow l^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow e^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$Z \rightarrow e^+ e^-$	$W^+ \rightarrow \mu^+ \nu$
		$W^- \rightarrow l^- \nu$	$W^- \rightarrow l^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow e^- v$	$W^- \rightarrow \mu^- \nu$		$W^- \rightarrow \mu^- \nu$
		$Z \rightarrow l^+ l^-$	$Z \rightarrow l^+ l^-$	(asym)		(asym)	(asym)	$Z \rightarrow \mu^+ \mu^-$		$Z \rightarrow \mu^+ \mu^-$
Cut on t	he lepton P_T	$P_T^l > 20 \text{ GeV}$	$P_T^e > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^e > 25 \text{ GeV}$	$P_T^{\mu} > 20 \text{ GeV}$	$P_T^e > 20 \text{ GeV}$	$P_T^{\mu} > 20 \text{ GeV}$
Lumin	osity (1/fb)	0.035	0.081	4.7	18.8	7.3	9.7	1	2	2.9
1	<i>NDP</i>	30	6	11	22	10	13	31(33) ^a	17	32(34)
	ABMP16	31.0	9.2	22.4	16.5	17.6	19.0	45.1(54.4)	21.7	40.0(59.2)
	CJ15	-	-	-	-	20	29	-	—	-
	CT14	42	_	_ ^b	-	-	34.7	_	_	_
	HERAFitter	-	—	-	-	13	19	—	-	—
	MMHT16	39 ^c	-	-	21	21 ^c	26	(43)	29	(59)
	NNPDF3.1	29	—	19	-	16	35	(59)	19	(47)

^{*a*} The values of NDP and χ^2 correspond to the unfiltered samples. ^{*b*} For the statistically less significant data with the cut of $P_T^{\mu} > 35$ GeV the value of $\chi^2 = 12.1$ was obtained. ^{*c*} The value obtained in MMHT14 fit.

Experiment	NDP	χ^2 after the data sets excuded					
		—	ATLAS	CMS	DØ	LHCb	
ATLAS	36	37.7	—	37.0	38.3	39.6	
CMS	33	26.6	25.6	_	26.0	23.5	
DØ	23	48.5	48.1	47.7	_	44.2	
LHCb	80	98.2	100.2	97.4	78.8	_	

Good overall agreement in NNLO with some tension between D0 and LHCb data

New input: ATLAS at 7 TeV

ATLAS (7 TeV)

W±, Z(central),

Z(forward)

84/43

 Different trends for the central and forward Z-boson data

DY: impact of the recent data (ATLAS, 5 TEV)

PRELIMINARY: Uncertainty correlations are not taken into account (still unpublished); smaller impact on fit is expected when they are included

DY: towards double differential distributions

Reasonable agreement with the ABMP16 predictions

- Complimentary constraint on PDFs → improved quark disentangling
- Other CMS and ATLAS data in progress; the bottleneck is NNLO computations with the fiducial-volume cuts

Summary

- The fit with stringent cuts, W²>12.5 GeV², Q²> 10 GeV², on the DIS data is considered
 - impact of the higher-twist terms is minimized
 - small-x gluon goes higher, consistent with the constraint from charm/beauty; small-x strange sea goes lower at small x, consistent with 1 within errors; valence quarks stable
 - reasonable description of the recent charm/beauty HERA data with $m_c(m_c)=1.245\pm0.019(exp.)$ GeV $m_b(m_b)=3.96\pm0.10(exp.)$ GeV
- Update of the pair- and single-top production with

 $m_t(m_t) = 160.8 \pm 1.1 \text{ GeV}$ $m_t(m_t) = 161.1 \pm 3.8 \text{GeV}$ (single-top only)

- potential impact on the d/u ratio form t/tbar, however validation of MC tools is still needed
- Steady progress with accommodating more DY data into the fit
 - recent ATLAS data at 5 and 7 Tev
 - double differential data on Z-boson production from CMS and ATLAS

EXTRAS

Impact of high twists on SLAC data

Power-like terms affect comparison even with a cut $W^2 \ge 12.5 \text{ GeV}^2$

Impact of the t-quark data on the ABMP16 fit

HATHOR (NNLO terms are checked with TOP++)

Langenfeld, Moch, Uwer PRD 80, 054009 (2009)

Running mass definition provides nice perturbative stability Czakon, Fiedler, Mitov PRL 110, 252004 (2013)

NNLO tools benchmarking

DYNNLO-FEWZ difference not fully understood; further benchmarking is needed

Closure test of the NNPDF3.1 fit

• Different trend for W and Z data $\Rightarrow \chi^2/NDP=400/34$; problems with the flavor disentangling

 Suppressed (fitted) charm distribution requires corresponding enhancement of strangeness sur to constraint from W data Thorne QCD@LHC2018

DY: ATLAS versus CMS

NNLO DY corrections in the fit

The existing NNLO codes (DYNNLO, FEWZ) are quite time-consuming \rightarrow fast tools are employed (FASTNLO, Applgrid,....)

- the corrections for certain basis of PDFs are stored in the grid
- the fitted PDFs are expanded over the basis
- the NNLO c.s. in the PDF fit is calculated as a combination of expansion coefficients with the pre-prepared grids

The general PDF basis is not necessary since the PDFs are already constrained by the data, which do not require involved computations \rightarrow use as a PDF basis the eigenvalue PDF sets obtained in the earlier version of the fit

- $\mathbf{P}_{0} \pm \Delta \mathbf{P}_{0}$ vector of PDF parameters with errors obtained in the earlier fit
- **E** error matrix
- \mathbf{P} current value of the PDF parameters in the fit
- store the DY NNLO c.s. for all PDF sets defined by the eigenvectors of E
- the variation of the fitted PDF parameters $(\mathbf{P} \mathbf{P}_0)$ is transformed into this eigenvector basis
- the NNLO c.s. in the PDF fit is calculated as a combination of transformed ($\mathbf{P} \mathbf{P}_0$) with the stored eigenvector values

DY: tool benchamrking

A variety of tools/methods employed in the PDF fits: DYNNO/FEWZ/ResBos, NLO combined with NNLO K-factors, etc. \rightarrow a consolidation is required for using potential of the existing data.

Test fit with the neural network shape

• Valence u-quark is modeled by $x^{\alpha}(1-x)^{\beta}NN(x)$, where NN is neural network with 37 parameters (NNPDF3.0 ansatz), other PDFs use MMHT14 shape

- Result is in quite agreement with the MMHT14 shape $x^{\alpha}(1-x)^{\beta}P(x)$ with 4 paramters in $P(x) \Rightarrow$ no particular flexibility is provided by neural network
- Study of sea and gluon distribution in progress, the same behaviour expected