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• Treatment of PDF uncertainties well developed. Two established methods - 
Hessian and MC replicas - and procedures for converting between the two.

• However this only concerns ‘experimental’ uncertainties, due to propagation 
of data errors through to fit.

• Other sources of error, due in particular to ‘theory’ in fit:

Theoretical Uncertainties in PDFs
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Figure 1: MMHT2014 NNLO PDFs at Q2 = 10 GeV2 and Q
2 = 104 GeV2, with associated 68%

confidence-level uncertainty bands. The corresponding plot of NLO PDFs is shown in Fig. 20.

2 Changes in the theoretical procedures

In this Section, we list the changes in our theoretical description of the data, from that used

in the MSTW analysis [1]. We also glance ahead to mention some of the main e↵ects on the

resulting PDFs.

2.1 Input distributions

As is clear from the discussion in the Introduction, one improvement is to use parameterisations

for the input distributions based on Chebyshev polynomials. Following the detailed study in

[11], we take for most PDFs a parameterisation of the form

xf(x,Q2

0
) = A(1� x)⌘x�

 
1 +

nX

i=1

aiT
Ch

i
(y(x))

!
, (1)

where Q
2

0
= 1 GeV2 is the input scale, and T

Ch

i
(y) are Chebyshev polynomials in y, with

y = 1 � 2xk where we take k = 0.5 and n = 4. The global fit determines the values of the

set of parameters A, �, ⌘, ai for each PDF, namely for f = uV , dV , S, s+, where S is the

light-quark sea distribution

S ⌘ 2(ū+ d̄) + s+ s̄. (2)

For s+ ⌘ s + s̄ we set �+ = �S. As argued in [1] the sea quarks at very low x are governed

almost entirely by perturbative evolution, which is flavour independent, and any di↵erence in
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‣ Value of strong coupling      , quark masses         .
‣ Treatment of heavy flavour in cross sections.
‣ Higher twists effects.
‣ Nuclear corrections
‣ …

• Sources of these numerous, and focus of many 
studies.

• One source until recently never touched on - what 
is uncertainty due to fact we are using approximate 
fixed-order theory in the fit? 

• Increasingly relevant in high precision LHC era.

↵S mc,b
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MHO Uncertainties
• Generically in fit relate observables     to PDFs     via (schematically):O

• Function of PDF fit is to invert this relation, giving                . 
• But     and therefore                not known exactly - source of uncertainty due 

to the missing higher orders (MHOs) in theory (the `…’).

f(O ; �)

f(O ; �)

O ⇠ f ⌦ � ⇠ f ⌦
⇣
�
(0) + ↵S�

(1) + · · ·
⌘

f

• Typically these MHOs are estimated via scale variations. First concrete 
study including these have been recently performed by NNPDF.

• Our aim is a little different - to try and consider from first principles how 
such uncertainties should/could be included in a fit.

ar
X

iv
:1

81
1.

08
43

4v
1 

 [h
ep

-p
h]

  2
0 

N
ov

 2
01

8

On the Consistent Use of Scale Variations in PDF

Fits and Predictions

L. A. Harland–Lang1, R. S. Thorne2,

1Rudolf Peierls Centre, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK
2Department of Physics and Astronomy, University College London, WC1E 6BT, UK

Abstract

We present an investigation of the theoretical uncertainties in parton distribution functions
(PDFs) due to missing higher–order corrections in the perturbative predictions used in the
fit, and their relationship to the uncertainties in subsequent predictions made using the
PDFs. We consider in particular the standard approach of factorization and renormalization
scale variation, and derive general results for the consistent application of these at the PDF
fit stage. To do this, we use the fact that a PDF fit may be recast in a physical basis, where
the PDFs themselves are bypassed entirely, and one instead relates measured observables
to predicted ones. In the case of factorization scale variation we find that in various situ-
ations there is a high degree of effective correlation between the variation in the fit and in
predicted observables. In particular, including such a variation in both cases can lead to an
exaggerated theoretical uncertainty. More generally, a careful treatment of this correlation
appears mandatory, at least within the standard scale variation paradigm. For the renor-
malization scale, the situation is less straightforward, but again we highlight the potential
for correlations between related processes in the fit and predictions to enter at the same level
as between processes in the fit or prediction alone.

1 Introduction

The history of the determination of parton distribution functions (PDFs) from comparison to
data goes back many decades, see [1] for a recent review. For some years the precision in
both the data and theory was such that no systematic uncertainty estimate on the PDF at all
was warranted or required. If some estimate of uncertainty were needed, then a comparison of
different PDFs from different groups, or using different assumptions for one group, were thought
to be sufficient. The situation changed in the first years of the new millennium. This was largely
driven by the very precise measurements of structure function data over a wide range of both
x and Q2 by the HERA experiment (see [2] for the final Run I + II combination). In addition,
various apparent observed excesses over the Standard Model predictions, such as in high E⊥

inclusive jet production at CDF [3] were subsequently explained by a suitable modification of the
PDFs [4], rather than being due to new physics. A systematic evaluation of PDF uncertainties
therefore became essential, and the first global PDFs with an estimate of the uncertainty due
to the experimental precision were released by CTEQ [5, 6] and MRST [7], building on earlier
DIS–only fits [8–11].

In these first fits PDF uncertainties were a few percent at best, and much larger for many
PDF flavours and x regions. Soon after this the full calculation of the next-to-next-to leading
order (NNLO) splitting functions for the evolution of PDFs were presented in full [12, 13] and
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Basic Idea
• PDFs themselves not observable. Can recast fit process purely in terms of 

fit and predicted observables, with no reference to PDFs.

fi

Fit

Prediction

A

B

C

• Rule of thumb: vary scale                     . Can propagate through to PDFs. 
However, will traditionally then include such a variation again in prediction.

• If we interpret ‘theory uncertainty’ as that inherent in expressing predicted 
quantity in terms of measured one then varying at both B and C not 
obviously the right procedure.

• Recasting in terms of                   via A makes this concrete.

µ 2
⇣µ0

2
, 2µ0

⌘

O1 $ O2
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i : PDF type
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Simple Model
• Simplest thing we can consider- fit to non-singlet structure function         

and prediction of another        . At NLO:
FNS

F 0
NS

issues related to its variation1. To keep the expressions which follow simpler we have also taken

the leading order coefficient function as C(0)
q = 1, which can always be achieved by a suitable

redefinition of the normalisation of FNS. We use the shorthand

g ⊗ f(x) =

∫ 1

x

dz

z
f(z)g

(x

z

)

, (2)

throughout. The non–singlet quark combination qNS = q − q obeys the usual NLO DGLAP
evolution

∂qNS(x, µ2)

∂ lnµ2
= α̃S

(

P (0)
qq + α̃SP

(1)
qq

)

⊗ qNS(x, µ
2) . (3)

We now consider an idealised PDF fit of qNS to the structure function, that is we assume that
FNS has been measured to arbitrary accuracy over the x region we are interested in. We are free
to do this as we are only considering the impact of theoretical uncertainties on the fit, and the
inclusion of the (unrelated) experimental sources of uncertainty will not qualitatively effect the
argument which follows. Indeed, we are precisely most interested in the case where the former
dominates over the latter. Defining the ratio ai = µ2/Q2, we can rewrite (1) as

xqNS(x, µ
2) = FNS(x, µ

2/ai)− α̃SC
(1)
q ⊗ xqNS(x, µ

2) + α̃S ln aiP
(0)
qq ⊗ xqNS(x, µ

2) , (4)

= FNS(x, µ
2/ai)− α̃SC

(1)
q ⊗ FNS(x, µ

2/ai) + α̃S ln aiP
(0)
qq ⊗ FNS(x, µ

2/ai) , (5)

where in the second line we consistently drop terms of O(α2
S). Note a ‘standard’ fit, i.e. where

one does not consider any scale variation and takes the conventional choice of µ2 = Q2, simply
corresponds to

xqNS(x, µ
2) = FNS(x, µ

2)− α̃SC
(1)
q ⊗ FNS(x, µ

2) , (6)

while for example a standard factor of 2 scale variation about the central scale µ = Q would
correspond to taking ai ∈ (14 , 4).

We now use this to predict a second, distinct, non–singlet structure function, F ′
NS:

F ′
NS(x,Q

2) = xqNS(x, µ
2) + α̃SC

′(1)
q ⊗ xqNS(x, µ

2) + α̃S ln

(

Q2

µ2

)

P (0)
qq ⊗ xqNS(x, µ

2) ,

= xqNS(x, afQ
2) + α̃SC

′(1)
q ⊗ xqNS(x, afQ

2)− α̃S ln afP
(0)
qq ⊗ xqNS(x, afQ

2) , (7)

where we have defined af = µ2/Q2. We now consider the standard fit approach, that is using
(6) to express the quark distribution in terms of the structure function, giving

F ′
NS(x,Q

2) = FNS(x, afQ
2)+ α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afQ
2)− α̃S ln afP

(0)
qq ⊗xFNS(x, afQ

2) ,

(8)
Thus we can rewrite our prediction so that no reference is made to the intermediate PDFs, and
instead we express one observable quantity, F ′

NS, in terms of the another, FNS. This expression
is accurate to O(αS) and following the standard rule of thumb approach we can then evaluate
the theoretical uncertainty from MHOs by performing a scale variation with af ∈ (14 , 4).

We now consider the case that the scale is allowed to vary in the fit as well, which simply
corresponds to keeping the ai dependence as in (5). We find

F ′
NS(x,Q

2) = FNS(x, afiQ
2)+α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afiQ
2)−α̃S ln afiP

(0)
qq ⊗xFNS(x, afiQ

2) ,

(9)

1We are implicitly using the “standard” convention, see e.g. [33], that in the PDF evolution the scale of the
coupling is taken to be the same as the factorization scale, i.e the PDFs depends on only one scale. However, the
arguments all remain the same if this scale of the coupling in the evolution is related to the factorization scale by
µR = cµF if c is the same for all physical quantities, i.e. the scale choice in the coupling for PDF evolution is not
process–dependent.
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FNS(x,Q
2) = xqNS(x, aiQ

2) + ↵̃SC
(1)
q ⌦ xqNS(x, aiQ

2)� ↵̃S ln aiP
(0)
qq ⌦ xqNS(x, aiQ

2)

F 0
NS(x,Q

2) = xqNS(x, afQ
2) + ↵̃SC

(1)
q ⌦ xqNS(x, afQ

2)� ↵̃S ln afP
(0)
qq ⌦ xqNS(x, afQ

2)

Fit

Prediction

A

B

C

qNS
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• Here                           reflects relative variation of factorization scale     
(renormalization scale fixed), so that rule of thumb variation is 

ai,f = µ2
i,f/Q

2 µ

ai,f 2
✓
1

4
, 4

◆

• ‘Standard’ fit - fix            : 

issues related to its variation1. To keep the expressions which follow simpler we have also taken

the leading order coefficient function as C(0)
q = 1, which can always be achieved by a suitable

redefinition of the normalisation of FNS. We use the shorthand

g ⊗ f(x) =

∫ 1

x

dz

z
f(z)g

(x

z

)

, (2)

throughout. The non–singlet quark combination qNS = q − q obeys the usual NLO DGLAP
evolution

∂qNS(x, µ2)

∂ lnµ2
= α̃S

(

P (0)
qq + α̃SP

(1)
qq

)

⊗ qNS(x, µ
2) . (3)

We now consider an idealised PDF fit of qNS to the structure function, that is we assume that
FNS has been measured to arbitrary accuracy over the x region we are interested in. We are free
to do this as we are only considering the impact of theoretical uncertainties on the fit, and the
inclusion of the (unrelated) experimental sources of uncertainty will not qualitatively effect the
argument which follows. Indeed, we are precisely most interested in the case where the former
dominates over the latter. Defining the ratio ai = µ2/Q2, we can rewrite (1) as

xqNS(x, µ
2) = FNS(x, µ

2/ai)− α̃SC
(1)
q ⊗ xqNS(x, µ

2) + α̃S ln aiP
(0)
qq ⊗ xqNS(x, µ

2) , (4)

= FNS(x, µ
2/ai)− α̃SC

(1)
q ⊗ FNS(x, µ

2/ai) + α̃S ln aiP
(0)
qq ⊗ FNS(x, µ

2/ai) , (5)

where in the second line we consistently drop terms of O(α2
S). Note a ‘standard’ fit, i.e. where

one does not consider any scale variation and takes the conventional choice of µ2 = Q2, simply
corresponds to

xqNS(x, µ
2) = FNS(x, µ

2)− α̃SC
(1)
q ⊗ FNS(x, µ

2) , (6)

while for example a standard factor of 2 scale variation about the central scale µ = Q would
correspond to taking ai ∈ (14 , 4).

We now use this to predict a second, distinct, non–singlet structure function, F ′
NS:

F ′
NS(x,Q

2) = xqNS(x, µ
2) + α̃SC

′(1)
q ⊗ xqNS(x, µ

2) + α̃S ln

(

Q2

µ2

)

P (0)
qq ⊗ xqNS(x, µ

2) ,

= xqNS(x, afQ
2) + α̃SC

′(1)
q ⊗ xqNS(x, afQ

2)− α̃S ln afP
(0)
qq ⊗ xqNS(x, afQ

2) , (7)

where we have defined af = µ2/Q2. We now consider the standard fit approach, that is using
(6) to express the quark distribution in terms of the structure function, giving

F ′
NS(x,Q

2) = FNS(x, afQ
2)+ α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afQ
2)− α̃S ln afP

(0)
qq ⊗xFNS(x, afQ

2) ,

(8)
Thus we can rewrite our prediction so that no reference is made to the intermediate PDFs, and
instead we express one observable quantity, F ′

NS, in terms of the another, FNS. This expression
is accurate to O(αS) and following the standard rule of thumb approach we can then evaluate
the theoretical uncertainty from MHOs by performing a scale variation with af ∈ (14 , 4).

We now consider the case that the scale is allowed to vary in the fit as well, which simply
corresponds to keeping the ai dependence as in (5). We find

F ′
NS(x,Q

2) = FNS(x, afiQ
2)+α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afiQ
2)−α̃S ln afiP

(0)
qq ⊗xFNS(x, afiQ

2) ,

(9)

1We are implicitly using the “standard” convention, see e.g. [33], that in the PDF evolution the scale of the
coupling is taken to be the same as the factorization scale, i.e the PDFs depends on only one scale. However, the
arguments all remain the same if this scale of the coupling in the evolution is related to the factorization scale by
µR = cµF if c is the same for all physical quantities, i.e. the scale choice in the coupling for PDF evolution is not
process–dependent.

4

ai = 1

• This is step B, to be used in C. However can just as well substitute in expression 
for         to get direct relation A.F 0

NS
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To O(↵S) throughout
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• Simplest thing we can consider- fit to non-singlet structure function         
and prediction of another        . At NLO:

FNS

F 0
NS

issues related to its variation1. To keep the expressions which follow simpler we have also taken

the leading order coefficient function as C(0)
q = 1, which can always be achieved by a suitable

redefinition of the normalisation of FNS. We use the shorthand

g ⊗ f(x) =

∫ 1

x

dz

z
f(z)g

(x

z

)

, (2)

throughout. The non–singlet quark combination qNS = q − q obeys the usual NLO DGLAP
evolution

∂qNS(x, µ2)

∂ lnµ2
= α̃S

(

P (0)
qq + α̃SP

(1)
qq

)

⊗ qNS(x, µ
2) . (3)

We now consider an idealised PDF fit of qNS to the structure function, that is we assume that
FNS has been measured to arbitrary accuracy over the x region we are interested in. We are free
to do this as we are only considering the impact of theoretical uncertainties on the fit, and the
inclusion of the (unrelated) experimental sources of uncertainty will not qualitatively effect the
argument which follows. Indeed, we are precisely most interested in the case where the former
dominates over the latter. Defining the ratio ai = µ2/Q2, we can rewrite (1) as

xqNS(x, µ
2) = FNS(x, µ

2/ai)− α̃SC
(1)
q ⊗ xqNS(x, µ

2) + α̃S ln aiP
(0)
qq ⊗ xqNS(x, µ

2) , (4)

= FNS(x, µ
2/ai)− α̃SC

(1)
q ⊗ FNS(x, µ

2/ai) + α̃S ln aiP
(0)
qq ⊗ FNS(x, µ

2/ai) , (5)

where in the second line we consistently drop terms of O(α2
S). Note a ‘standard’ fit, i.e. where

one does not consider any scale variation and takes the conventional choice of µ2 = Q2, simply
corresponds to

xqNS(x, µ
2) = FNS(x, µ

2)− α̃SC
(1)
q ⊗ FNS(x, µ

2) , (6)

while for example a standard factor of 2 scale variation about the central scale µ = Q would
correspond to taking ai ∈ (14 , 4).

We now use this to predict a second, distinct, non–singlet structure function, F ′
NS:

F ′
NS(x,Q

2) = xqNS(x, µ
2) + α̃SC

′(1)
q ⊗ xqNS(x, µ

2) + α̃S ln

(

Q2

µ2

)

P (0)
qq ⊗ xqNS(x, µ

2) ,

= xqNS(x, afQ
2) + α̃SC

′(1)
q ⊗ xqNS(x, afQ

2)− α̃S ln afP
(0)
qq ⊗ xqNS(x, afQ

2) , (7)

where we have defined af = µ2/Q2. We now consider the standard fit approach, that is using
(6) to express the quark distribution in terms of the structure function, giving

F ′
NS(x,Q

2) = FNS(x, afQ
2)+ α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afQ
2)− α̃S ln afP

(0)
qq ⊗xFNS(x, afQ

2) ,

(8)
Thus we can rewrite our prediction so that no reference is made to the intermediate PDFs, and
instead we express one observable quantity, F ′

NS, in terms of the another, FNS. This expression
is accurate to O(αS) and following the standard rule of thumb approach we can then evaluate
the theoretical uncertainty from MHOs by performing a scale variation with af ∈ (14 , 4).

We now consider the case that the scale is allowed to vary in the fit as well, which simply
corresponds to keeping the ai dependence as in (5). We find

F ′
NS(x,Q

2) = FNS(x, afiQ
2)+α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afiQ
2)−α̃S ln afiP

(0)
qq ⊗xFNS(x, afiQ

2) ,

(9)

1We are implicitly using the “standard” convention, see e.g. [33], that in the PDF evolution the scale of the
coupling is taken to be the same as the factorization scale, i.e the PDFs depends on only one scale. However, the
arguments all remain the same if this scale of the coupling in the evolution is related to the factorization scale by
µR = cµF if c is the same for all physical quantities, i.e. the scale choice in the coupling for PDF evolution is not
process–dependent.
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FNS(x,Q
2) = xqNS(x, aiQ

2) + ↵̃SC
(1)
q ⌦ xqNS(x, aiQ

2)� ↵̃S ln aiP
(0)
qq ⌦ xqNS(x, aiQ

2)

F 0
NS(x,Q

2) = xqNS(x, afQ
2) + ↵̃SC

(1)
q ⌦ xqNS(x, afQ

2)� ↵̃S ln afP
(0)
qq ⌦ xqNS(x, afQ

2)
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issues related to its variation1. To keep the expressions which follow simpler we have also taken

the leading order coefficient function as C(0)
q = 1, which can always be achieved by a suitable

redefinition of the normalisation of FNS. We use the shorthand

g ⊗ f(x) =

∫ 1

x

dz

z
f(z)g

(x

z

)

, (2)

throughout. The non–singlet quark combination qNS = q − q obeys the usual NLO DGLAP
evolution

∂qNS(x, µ2)

∂ lnµ2
= α̃S

(

P (0)
qq + α̃SP

(1)
qq

)

⊗ qNS(x, µ
2) . (3)

We now consider an idealised PDF fit of qNS to the structure function, that is we assume that
FNS has been measured to arbitrary accuracy over the x region we are interested in. We are free
to do this as we are only considering the impact of theoretical uncertainties on the fit, and the
inclusion of the (unrelated) experimental sources of uncertainty will not qualitatively effect the
argument which follows. Indeed, we are precisely most interested in the case where the former
dominates over the latter. Defining the ratio ai = µ2/Q2, we can rewrite (1) as

xqNS(x, µ
2) = FNS(x, µ

2/ai)− α̃SC
(1)
q ⊗ xqNS(x, µ

2) + α̃S ln aiP
(0)
qq ⊗ xqNS(x, µ

2) , (4)

= FNS(x, µ
2/ai)− α̃SC

(1)
q ⊗ FNS(x, µ

2/ai) + α̃S ln aiP
(0)
qq ⊗ FNS(x, µ

2/ai) , (5)

where in the second line we consistently drop terms of O(α2
S). Note a ‘standard’ fit, i.e. where

one does not consider any scale variation and takes the conventional choice of µ2 = Q2, simply
corresponds to

xqNS(x, µ
2) = FNS(x, µ

2)− α̃SC
(1)
q ⊗ FNS(x, µ

2) , (6)

while for example a standard factor of 2 scale variation about the central scale µ = Q would
correspond to taking ai ∈ (14 , 4).

We now use this to predict a second, distinct, non–singlet structure function, F ′
NS:

F ′
NS(x,Q

2) = xqNS(x, µ
2) + α̃SC

′(1)
q ⊗ xqNS(x, µ

2) + α̃S ln

(

Q2

µ2

)

P (0)
qq ⊗ xqNS(x, µ

2) ,

= xqNS(x, afQ
2) + α̃SC

′(1)
q ⊗ xqNS(x, afQ

2)− α̃S ln afP
(0)
qq ⊗ xqNS(x, afQ

2) , (7)

where we have defined af = µ2/Q2. We now consider the standard fit approach, that is using
(6) to express the quark distribution in terms of the structure function, giving

F ′
NS(x,Q

2) = FNS(x, afQ
2)+ α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afQ
2)− α̃S ln afP

(0)
qq ⊗xFNS(x, afQ

2) ,

(8)
Thus we can rewrite our prediction so that no reference is made to the intermediate PDFs, and
instead we express one observable quantity, F ′

NS, in terms of the another, FNS. This expression
is accurate to O(αS) and following the standard rule of thumb approach we can then evaluate
the theoretical uncertainty from MHOs by performing a scale variation with af ∈ (14 , 4).

We now consider the case that the scale is allowed to vary in the fit as well, which simply
corresponds to keeping the ai dependence as in (5). We find

F ′
NS(x,Q

2) = FNS(x, afiQ
2)+α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afiQ
2)−α̃S ln afiP

(0)
qq ⊗xFNS(x, afiQ

2) ,

(9)

1We are implicitly using the “standard” convention, see e.g. [33], that in the PDF evolution the scale of the
coupling is taken to be the same as the factorization scale, i.e the PDFs depends on only one scale. However, the
arguments all remain the same if this scale of the coupling in the evolution is related to the factorization scale by
µR = cµF if c is the same for all physical quantities, i.e. the scale choice in the coupling for PDF evolution is not
process–dependent.
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• Doing this we find for relation A:

issues related to its variation1. To keep the expressions which follow simpler we have also taken

the leading order coefficient function as C(0)
q = 1, which can always be achieved by a suitable

redefinition of the normalisation of FNS. We use the shorthand

g ⊗ f(x) =

∫ 1

x

dz

z
f(z)g

(x

z

)

, (2)

throughout. The non–singlet quark combination qNS = q − q obeys the usual NLO DGLAP
evolution

∂qNS(x, µ2)

∂ lnµ2
= α̃S

(

P (0)
qq + α̃SP

(1)
qq

)

⊗ qNS(x, µ
2) . (3)

We now consider an idealised PDF fit of qNS to the structure function, that is we assume that
FNS has been measured to arbitrary accuracy over the x region we are interested in. We are free
to do this as we are only considering the impact of theoretical uncertainties on the fit, and the
inclusion of the (unrelated) experimental sources of uncertainty will not qualitatively effect the
argument which follows. Indeed, we are precisely most interested in the case where the former
dominates over the latter. Defining the ratio ai = µ2/Q2, we can rewrite (1) as

xqNS(x, µ
2) = FNS(x, µ

2/ai)− α̃SC
(1)
q ⊗ xqNS(x, µ

2) + α̃S ln aiP
(0)
qq ⊗ xqNS(x, µ

2) , (4)

= FNS(x, µ
2/ai)− α̃SC

(1)
q ⊗ FNS(x, µ

2/ai) + α̃S ln aiP
(0)
qq ⊗ FNS(x, µ

2/ai) , (5)

where in the second line we consistently drop terms of O(α2
S). Note a ‘standard’ fit, i.e. where

one does not consider any scale variation and takes the conventional choice of µ2 = Q2, simply
corresponds to

xqNS(x, µ
2) = FNS(x, µ

2)− α̃SC
(1)
q ⊗ FNS(x, µ

2) , (6)

while for example a standard factor of 2 scale variation about the central scale µ = Q would
correspond to taking ai ∈ (14 , 4).

We now use this to predict a second, distinct, non–singlet structure function, F ′
NS:

F ′
NS(x,Q

2) = xqNS(x, µ
2) + α̃SC

′(1)
q ⊗ xqNS(x, µ

2) + α̃S ln

(

Q2

µ2

)

P (0)
qq ⊗ xqNS(x, µ

2) ,

= xqNS(x, afQ
2) + α̃SC

′(1)
q ⊗ xqNS(x, afQ

2)− α̃S ln afP
(0)
qq ⊗ xqNS(x, afQ

2) , (7)

where we have defined af = µ2/Q2. We now consider the standard fit approach, that is using
(6) to express the quark distribution in terms of the structure function, giving

F ′
NS(x,Q

2) = FNS(x, afQ
2)+ α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afQ
2)− α̃S ln afP

(0)
qq ⊗xFNS(x, afQ

2) ,

(8)
Thus we can rewrite our prediction so that no reference is made to the intermediate PDFs, and
instead we express one observable quantity, F ′

NS, in terms of the another, FNS. This expression
is accurate to O(αS) and following the standard rule of thumb approach we can then evaluate
the theoretical uncertainty from MHOs by performing a scale variation with af ∈ (14 , 4).

We now consider the case that the scale is allowed to vary in the fit as well, which simply
corresponds to keeping the ai dependence as in (5). We find

F ′
NS(x,Q

2) = FNS(x, afiQ
2)+α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afiQ
2)−α̃S ln afiP

(0)
qq ⊗xFNS(x, afiQ

2) ,

(9)

1We are implicitly using the “standard” convention, see e.g. [33], that in the PDF evolution the scale of the
coupling is taken to be the same as the factorization scale, i.e the PDFs depends on only one scale. However, the
arguments all remain the same if this scale of the coupling in the evolution is related to the factorization scale by
µR = cµF if c is the same for all physical quantities, i.e. the scale choice in the coupling for PDF evolution is not
process–dependent.
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issues related to its variation1. To keep the expressions which follow simpler we have also taken

the leading order coefficient function as C(0)
q = 1, which can always be achieved by a suitable

redefinition of the normalisation of FNS. We use the shorthand

g ⊗ f(x) =

∫ 1

x

dz
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f(z)g

(x

z

)

, (2)

throughout. The non–singlet quark combination qNS = q − q obeys the usual NLO DGLAP
evolution

∂qNS(x, µ2)

∂ lnµ2
= α̃S

(

P (0)
qq + α̃SP

(1)
qq

)

⊗ qNS(x, µ
2) . (3)

We now consider an idealised PDF fit of qNS to the structure function, that is we assume that
FNS has been measured to arbitrary accuracy over the x region we are interested in. We are free
to do this as we are only considering the impact of theoretical uncertainties on the fit, and the
inclusion of the (unrelated) experimental sources of uncertainty will not qualitatively effect the
argument which follows. Indeed, we are precisely most interested in the case where the former
dominates over the latter. Defining the ratio ai = µ2/Q2, we can rewrite (1) as

xqNS(x, µ
2) = FNS(x, µ

2/ai)− α̃SC
(1)
q ⊗ xqNS(x, µ

2) + α̃S ln aiP
(0)
qq ⊗ xqNS(x, µ

2) , (4)

= FNS(x, µ
2/ai)− α̃SC

(1)
q ⊗ FNS(x, µ

2/ai) + α̃S ln aiP
(0)
qq ⊗ FNS(x, µ

2/ai) , (5)

where in the second line we consistently drop terms of O(α2
S). Note a ‘standard’ fit, i.e. where

one does not consider any scale variation and takes the conventional choice of µ2 = Q2, simply
corresponds to

xqNS(x, µ
2) = FNS(x, µ

2)− α̃SC
(1)
q ⊗ FNS(x, µ

2) , (6)

while for example a standard factor of 2 scale variation about the central scale µ = Q would
correspond to taking ai ∈ (14 , 4).

We now use this to predict a second, distinct, non–singlet structure function, F ′
NS:

F ′
NS(x,Q

2) = xqNS(x, µ
2) + α̃SC

′(1)
q ⊗ xqNS(x, µ

2) + α̃S ln

(

Q2

µ2

)

P (0)
qq ⊗ xqNS(x, µ

2) ,

= xqNS(x, afQ
2) + α̃SC

′(1)
q ⊗ xqNS(x, afQ

2)− α̃S ln afP
(0)
qq ⊗ xqNS(x, afQ

2) , (7)

where we have defined af = µ2/Q2. We now consider the standard fit approach, that is using
(6) to express the quark distribution in terms of the structure function, giving

F ′
NS(x,Q

2) = FNS(x, afQ
2)+ α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afQ
2)− α̃S ln afP

(0)
qq ⊗xFNS(x, afQ

2) ,

(8)
Thus we can rewrite our prediction so that no reference is made to the intermediate PDFs, and
instead we express one observable quantity, F ′

NS, in terms of the another, FNS. This expression
is accurate to O(αS) and following the standard rule of thumb approach we can then evaluate
the theoretical uncertainty from MHOs by performing a scale variation with af ∈ (14 , 4).

We now consider the case that the scale is allowed to vary in the fit as well, which simply
corresponds to keeping the ai dependence as in (5). We find

F ′
NS(x,Q

2) = FNS(x, afiQ
2)+α̃S

(

C ′(1)
q −C(1)

q

)

⊗FNS(x, afiQ
2)−α̃S ln afiP

(0)
qq ⊗xFNS(x, afiQ

2) ,

(9)

1We are implicitly using the “standard” convention, see e.g. [33], that in the PDF evolution the scale of the
coupling is taken to be the same as the factorization scale, i.e the PDFs depends on only one scale. However, the
arguments all remain the same if this scale of the coupling in the evolution is related to the factorization scale by
µR = cµF if c is the same for all physical quantities, i.e. the scale choice in the coupling for PDF evolution is not
process–dependent.

4

• Thus in this case effect of varying scale in prediction and fit is completely 
equivalent to variation in prediction alone (or fit):

ai 2
✓
1

4
, 4

◆
& af 2

✓
1

4
, 4

◆
⇠ afi 2

✓
1

16
, 16

◆

• Indeed in terms of fundamental                     relation:

where we have defined afi ≡ af/ai. Thus the af and ai dependence is entirely contained in the
ratio af/ai, such that (9) is identical to (8) upon the replacement af → afi. Note that really
at this stage the distinction between afi and af is entirely artificial. There is only one physical
relation between the two structure functions

F ′
NS(x,Q

2) = FNS(x, aQ
2)+α̃S

(

C ′(1)
q − C(1)

q

)

⊗FNS(x, aQ
2)−α̃S ln aP

(0)
qq ⊗xFNS(x, aQ

2) , (10)

where a corresponds to the relative difference in (squared) scale at which we evaluate FNS and
F ′
NS. In other words, we can see that the effect of varying the scale in the fit (5) is the same as

the previous approach, but with a larger range of variation, a = afi ∈ ( 1
16 , 16).

How should we interpret this result? The rule of thumb variation is applied to a broad
category of observables, under the expectation that this will provide an estimate of the MHO
uncertainty. Concretely, one varies the logarithms in a within a reasonable range, in order to
track of the decreasing dependence on these with increasing perturbative order, but nonetheless
keeping the argument a to beO(1) in order to avoid spoiling the overall perturbative convergence.
The precise choice of a ∈ (14 , 4) above is of course arbitrary, but is nonetheless guided by these
principles.

We have seen in the above scenario that the intermediate PDFs themselves can be bypassed
entirely in favour of a straightforward and arguably more fundamental relation between the
physical observables FNS and F ′

NS. This simply reflects the fact that the PDFs are not them-
selves observables, and follows in a similar way to the physical factorization approach discussed
elsewhere [27–29, 32]. In terms of this relation, there is only one degree of freedom for scale
variation, namely a in (10). Within the context of the standard rule of thumb variation, the
only reasonable and consistent choice appears to be to take (10) and vary a ∈ (14 , 4).

Now of course from a practical point of view one will not in general work explicitly in
this physical framework, but rather in terms of the PDFs. The aim should therefore be to
be consistent with the above results when doing so and evaluating a theoretical uncertainty
on the PDFs themselves. We have seen above that in our example one should either vary the
factorization scale in the prediction by the canonical factor of 2, or equivalently in the fit, but
not in both. One may clearly call into question the reliability of such simple scale variations,
but nonetheless at least under the assumption that this a ∈ (14 , 4) variation provides an accurate
estimate of the theoretical uncertainty for general observables, this result will hold.

While the above result is demonstrated at NLO for simplicity, this remains true at arbitrary
order. This becomes clearest when we work in Mellin space, where we can write the DGLAP
evolution (3) in the simple form

qNS(j, µ
2) = qNS(j,Q

2)

(

µ2

Q2

)α̃sγqq(j,α̃s)

, (11)

where j denotes the Mellin moment. Then, our expression for FNS, at a scale Q, can be written
in the form

FNS(j,Q
2) = qNS(j + 1, µ2)

(

Q2

µ2

)α̃sγqq(j,α̃s)

fq(j, α̃s) ,

= qNS(j + 1, µ2)a
−α̃sγqq(j,α̃s)
i fq(j, α̃s) , (12)

where we define ai = µ2/Q2 as before. In the above expression, and in what follows, it is
understood that the result at any arbitrary order in perturbation theory is given by expanding
this out to the desired order in αS . Here

γqq(j, α̃s) =
n
∑

k=0

(α̃s)
kγ(k)qq (j) , fq(j, α̃s) =

n
∑

k=0

(α̃s)
kf (k)

q (j) , (13)

5

there is only one d.o.f. (‘  ’), corresponding to difference in (squared) scale at 
which we evaluate        and       .

FNS $ F 0
NS

a

FNS F 0
NS
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where: afi ⌘ af/ai

ai 2
✓
1

4
, 4

◆
⇠ af 2

✓
1

4
, 4

◆

ai,f = µ2
i,f/Q

2

Scale var. - 
prediction:

Scale var. - 
prediction 
& fit:

�F 0
NS :
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Interpretation

• ‘Rule of thumb’ variation: one varies logarithms in    within specified range, to 
keep track of decreasing dependence with order, but keeping                 .

• Within context of basic                    relation, this leads to                . MHO 
uncertainty in PDF should reflect this.

• In this example: either vary in fit or prediction by set amount, but not in both.
• If one wished to argue for larger variation, this could still be performed with 

larger range in either fit or prediction - complete overlap between these.
• Note: can also extend idea to higher orders straightforwardly in Mellin space, 

and extension to DY cross section works in same way.

where we have defined afi ≡ af/ai. Thus the af and ai dependence is entirely contained in the
ratio af/ai, such that (9) is identical to (8) upon the replacement af → afi. Note that really
at this stage the distinction between afi and af is entirely artificial. There is only one physical
relation between the two structure functions

F ′
NS(x,Q

2) = FNS(x, aQ
2)+α̃S

(

C ′(1)
q − C(1)

q

)

⊗FNS(x, aQ
2)−α̃S ln aP

(0)
qq ⊗xFNS(x, aQ

2) , (10)

where a corresponds to the relative difference in (squared) scale at which we evaluate FNS and
F ′
NS. In other words, we can see that the effect of varying the scale in the fit (5) is the same as

the previous approach, but with a larger range of variation, a = afi ∈ ( 1
16 , 16).

How should we interpret this result? The rule of thumb variation is applied to a broad
category of observables, under the expectation that this will provide an estimate of the MHO
uncertainty. Concretely, one varies the logarithms in a within a reasonable range, in order to
track of the decreasing dependence on these with increasing perturbative order, but nonetheless
keeping the argument a to beO(1) in order to avoid spoiling the overall perturbative convergence.
The precise choice of a ∈ (14 , 4) above is of course arbitrary, but is nonetheless guided by these
principles.

We have seen in the above scenario that the intermediate PDFs themselves can be bypassed
entirely in favour of a straightforward and arguably more fundamental relation between the
physical observables FNS and F ′

NS. This simply reflects the fact that the PDFs are not them-
selves observables, and follows in a similar way to the physical factorization approach discussed
elsewhere [27–29, 32]. In terms of this relation, there is only one degree of freedom for scale
variation, namely a in (10). Within the context of the standard rule of thumb variation, the
only reasonable and consistent choice appears to be to take (10) and vary a ∈ (14 , 4).

Now of course from a practical point of view one will not in general work explicitly in
this physical framework, but rather in terms of the PDFs. The aim should therefore be to
be consistent with the above results when doing so and evaluating a theoretical uncertainty
on the PDFs themselves. We have seen above that in our example one should either vary the
factorization scale in the prediction by the canonical factor of 2, or equivalently in the fit, but
not in both. One may clearly call into question the reliability of such simple scale variations,
but nonetheless at least under the assumption that this a ∈ (14 , 4) variation provides an accurate
estimate of the theoretical uncertainty for general observables, this result will hold.

While the above result is demonstrated at NLO for simplicity, this remains true at arbitrary
order. This becomes clearest when we work in Mellin space, where we can write the DGLAP
evolution (3) in the simple form

qNS(j, µ
2) = qNS(j,Q

2)

(

µ2

Q2

)α̃sγqq(j,α̃s)

, (11)

where j denotes the Mellin moment. Then, our expression for FNS, at a scale Q, can be written
in the form

FNS(j,Q
2) = qNS(j + 1, µ2)

(

Q2

µ2

)α̃sγqq(j,α̃s)

fq(j, α̃s) ,

= qNS(j + 1, µ2)a
−α̃sγqq(j,α̃s)
i fq(j, α̃s) , (12)

where we define ai = µ2/Q2 as before. In the above expression, and in what follows, it is
understood that the result at any arbitrary order in perturbation theory is given by expanding
this out to the desired order in αS . Here

γqq(j, α̃s) =
n
∑

k=0

(α̃s)
kγ(k)qq (j) , fq(j, α̃s) =

n
∑

k=0

(α̃s)
kf (k)

q (j) , (13)

5

correspond to the non–singlet qq anomalous dimension and Mellin transform of the coefficient

function at order n, respectively. Note that we have defined f (0)
q ≡ 1 in the structure function

case above, but we leave the expression completely general here. Now if we consider the second
structure function at the same scale Q, we have

F ′
NS(j,Q

2) = qNS(j + 1, µ2)a
α̃sγqq(j,α̃s)
i f ′

q(j, α̃s) , (14)

and so expressing F ′
NS(j,Q

2) in terms of FNS(j,Q2) we obtain the very simple result

F ′
NS(j,Q

2) =
f ′
q(j, α̃s)

fq(j, α̃s)
FNS(j,Q

2) . (15)

We can see that there is now no explicit dependence on the factorization scale, µ, at all. The
above situation is however defined for the quite specific case that we wish to relate the two
observables at exactly the same scale. More generally, we have the freedom to express F ′

NS(j −
1, Q2

f ) in terms of FNS(j − 1, Q2
i ), that is choose to express the predicted quantity a different

physical scale, Qf , to the scale at which we express the measured quantity, Qi. In this case we
have

F ′
NS(j,Q

2
f ) =

f ′
q(j, α̃s)

fq(j, α̃s)

(

Q2
f

Q2
i

)α̃sγqq(j,α̃s)

FNS(j,Q
2
i ) . (16)

Hence, we see that to any arbitrary order the relationship between the prediction and the mea-
surement can be expressed as a ratio of scales, and that the relationship between the factorization
scale chosen when fitting the PDF to that chosen when making the prediction becomes equiva-
lent to the relationship between the scale at which one predicts the physical quantity and that
at which one evaluates the physical quantity entering the fit. To be completely explicit, we can
suggestively define Q2 ≡ Q2

f and µ2 ≡ Q2
i , in terms of which we have

F ′
NS(j,Q

2) =
f ′
q(j, α̃s)

fq(j, α̃s)

(

Q2

µ2

)α̃sγqq(j,α̃s)

FNS(j, µ
2) , (17)

where FNS obeys the same DGLAP evolution equation (11) as qNS, up to terms in the ratio of the
coefficient function which depend on the running of the coupling; indeed, if we more correctly
re–introduce the scale dependence of αS into the above results, these would follow in precisely
the same way, up to this difference in evolution. Thus, we can express this at any arbitrary
order, as is done in (1) at NLO, and we have an analogous freedom to vary the scale µ at which
one evaluates FNS as in the case of the standard factorization scale. However, as we have only
one ratio of scales involved in this relation, there is only one such degree of freedom, and not
the two implied by varying the factorization scale independently in the fit and prediction.

Finally, we note that while it might seem most direct in the above expression to choose the
scale of FNS (µ = Qi) equal to the scale at which the measurement is made, this is, of course,
not mandatory. If the scale at which one structure function is fit is significantly different to
that at which the second is to be predicted (Q = Qf ) it would normally be assumed to be more
sensible to express the measured quantity at a scale similar to the predicted quantity, relying on
the validity of the evolution equation and avoiding obvious large logarithms in the expression
relating the two physical quantities.

2.2 Drell–Yan Cross Section

As a second simple example of the above argument, and to demonstrate how the above result
can readily be generalised to the case of hadronic observables, we can use the same fit as above

6

a

FNS $ F 0
NS

a ⇠ O(1)

a 2
✓
1

4
, 4

◆

• Clearly global PDF fit much more complex. Can we take this idea further?
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Extension
• Next step towards generality, included coupled       evolution. Toy model - fit to 

two structure function observables:

and prediction of a third,            . Effect of coupled DGLAP simplified here by 
moving to diagonal basis.

• Leaving details to our paper, varying in fit (       ) and prediction (    ), get:

• Situation no longer so simple - have introduced completely new logarithmic 
dependence on           . Variation in prediction alone would instead give:

argument. We will also work in Mellin space, as this will simplify the calculation, although all
the results which follow hold analogously in x space as well. We write

F (j,Q2) = Σq(j + 1, µ2)Fq

(

j,
Q2

µ2

)

+ g(j + 1, µ2)Fg

(

j,
Q2

µ2

)

,

H(j,Q2) = Σq(j + 1, µ2)Hq

(

j,
Q2

µ2

)

+ g(j + 1, µ2)Hg

(

j,
Q2

µ2

)

. (21)

Thus, we assume that these observables depend on the gluon (g) and total quark singlet (Σq)
PDFs only. In other words, any dependence on non–singlet quark combinations, which would
be introduced by e.g. including a quark flavour–dependence (due typically to the quark EW
charges), is omitted to limit the observables we need to consider, although the set–up can readily
be generalised to include these.

We will drop the Mellin moment argument j for brevity in what follows. We can write the
coefficient functions at NLO as

Fq

(

Q2

µ2

)

= f (0)
q + α̃Sf

(1)
q + α̃Sf

(0)
q ln

(

Q2

µ2

)

γ(0)qq + α̃Sf
(0)
g ln

(

Q2

µ2

)

γ(0)gq , (22)

Fg

(

Q2

µ2

)

= f (0)
g + α̃Sf

(1)
g + α̃Sf

(0)
q ln

(

Q2

µ2

)

γ(0)qg + α̃Sf
(0)
g ln

(

Q2

µ2

)

γ(0)gg , (23)

and similarly for H. Note that the q ↔ g mixing introduces a corresponding mixing in the
coefficients fq,g of the expansions of the Fq,g, and similarly for Hq,g. This simplifies if we instead
use the basis of eigenvectors of the DGLAP equation, which we denote Σ±. In terms of these
we can write

F (Q2) = Σ+(µ
2)

(

Q2

µ2

)α̃Sγ+

F+ + Σ−(µ
2)

(

Q2

µ2

)α̃Sγ−

F− , (24)

H(Q2) = Σ+(µ
2)

(

Q2

µ2

)α̃Sγ+

H+ + Σ−(µ
2)

(

Q2

µ2

)α̃Sγ−

H− , (25)

at arbitrary order. Here the diagonal anomalous dimensions γ± and the PDF eigenvectors are
given explicitly in Appendix A. These then define the coefficients F± and H± above, which are
given in terms of Fq and Fg, and similarly for H.

We now consider a PDF fit to these observables, for which we take the factorization scales
µ2 = afQ2 and µ2 = ahQ2. In this case we have (see (46))

F

(

µ2

af

)

= Σ+(µ
2) (af )

−α̃Sγ+ F+ + Σ−(µ
2) (af )

−α̃Sγ− F− , (26)

H

(

µ2

ah

)

= Σ+(µ
2) (ah)

−α̃Sγ+ H+ + Σ−(µ
2) (ah)

−α̃Sγ− H− , (27)

which we can then invert to give

Σ+(µ
2) =

H−F
(

µ2

af

)

(af )
α̃Sγ− − F−H

(

µ2

ah

)

(ah)
α̃Sγ−

F+H− (af )
α̃S(γ−−γ+)

− F−H+ (ah)
α̃S(γ−−γ+)

, (28)

Σ−(µ
2) =

H+F
(

µ2

af

)

(af )
α̃Sγ+ − F+H

(

µ2

ah

)

(ah)
α̃Sγ+

F−H+ (af )
−α̃S(γ−−γ+)

− F+H− (ah)
−α̃S(γ−−γ+)

. (29)
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✓
ah
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✓
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Q

2

◆
+ F $ H

• What does this tell us?

K(Q2)

af,h ak

ah/af

K(Q2) ⇠ (K1 � ↵̃S ln(ak)K2)F
�
akQ

2
�
+ F $ H

q, g

 9

1 quark flavour

af $ ah

⌃±: DGLAP eigenvectors
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• Including MHO uncertainty in fit has introduced genuinely new d.o.f. in                   
relation - cannot in general include via variation in fit/prediction alone.

K(Q2) ⇠ (K1 � ↵̃S ln(ak)K2)F
�
akQ

2
�
+ F $ HPrediction 

only:

Fit & 
prediction:

K $ F,H

• However, things do simplify if one considers low/high    regions:

★ High    :          

more significantly, the fact that the partons and x range probed by the fit processes can be
rather different. With this in mind, how do we interpret our above result if we do not make
this simplifying assumption of fully correlated factorization scales for quantities in the PDF fit?
We will first consider this result in various kinematic limits, before discussing the more general
implications.

3.2 The low and high x limits

One can simplify the full result (30) by for example assuming that F− = 0 and H+ = 0, in
other words that F,H are only sensitive to the contribution from either the negative or positive
eigenvectors. In this case we have

K(Q2) =
K+

F+

{

1 + α̃S ln

(

af
ak

)

γ+

}

F

(

ak
af

Q2

)

+
K−

H−

{

1 + α̃S ln

(

ah
ak

)

γ−

}

H

(

ak
ah

Q2

)

,

(32)
and the terms proportional to the ratio af/ah vanish. As an aside, if in addition the prediction
is only sensitive to one eigenvector, then this will reduce to a single ratio, in precisely the same
way we saw for the non–singlet distribution.

While at first glance it may appear somewhat arbitrary to consider these limits, in fact in
the low and high x regions this can be precisely the situation we find ourselves in. As discussed
further in Appendix A, if we take the high x limit, we have the well known result that

Σ+(j, µ
2) = g(j, µ2) , Σ−(j, µ

2) = Σq(j, µ
2) , (33)

that is the quark distribution (∼ Σq, qNS) and gluon are independent eigenvectors of the DGLAP
evolution. In the alternative low x (j ∼ 1) limit we have

g(j, µ2) ∼ q(j, µ2) ∼ Σ+(j, µ
2) , (34)

for sufficiently high scale µ. That is, the positive eigenvector is dominant.
These regimes play a direct role in PDF phenomenology at the LHC and elsewhere. For

example, a topical case is the high x gluon, which is relatively poorly determined, and in which
there is currently a great deal of interest in placing further constraints. This typically involves the
use of LHC observables such as inclusive jet and tt production, and the Z boson p⊥ distribution,
for which the high x gluon plays a dominant role. Although a global fit includes of course a wider
dataset, the extracted high x gluon will to a significant extent be driven by these. One can then
take the result of this fit and predict the gluon–initiated production of e.g. a high mass BSM
object. In such a scenario the gluon evolution will be effectively decoupled and both the fit and
predicted observables will be dominated by the positive eigenvector Σ+. In other words, we are
in an analogous situation to Section 2, where the factorization scales for the fit and prediction
are fully correlated, and varying the factorization scale in both will lead to and effective double
counting of the theoretical uncertainty. The corresponding situation for the high x quark, where
both the singlet and non–singlet are decoupled from the gluon, is similar.

At low x, as we increase the scale of the observed process we find that the quark and
gluon contribution are completely correlated by evolution, and only the positive eigenvector
contributes. This is equally true for observables such as scaling violations of the structure func-
tion, dF2/d lnQ2, which only depends on the positive eigenvector at low x, for all scales. Thus,
for fit processes such as a dF2/d lnQ2 and predicted processes such as Drell–Yan production at
the LHC (in particular in the lower mass region), we will expect a large degree of correlation.

We note that in a realistic PDF fit we will in general include multiple observables at the fit
stage which may be dominated by a particular PDF eigenvector. This will therefore introduce
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more significantly, the fact that the partons and x range probed by the fit processes can be
rather different. With this in mind, how do we interpret our above result if we do not make
this simplifying assumption of fully correlated factorization scales for quantities in the PDF fit?
We will first consider this result in various kinematic limits, before discussing the more general
implications.

3.2 The low and high x limits

One can simplify the full result (30) by for example assuming that F− = 0 and H+ = 0, in
other words that F,H are only sensitive to the contribution from either the negative or positive
eigenvectors. In this case we have

K(Q2) =
K+

F+

{

1 + α̃S ln

(

af
ak

)

γ+

}

F

(

ak
af

Q2

)

+
K−

H−

{

1 + α̃S ln

(

ah
ak

)

γ−

}

H

(

ak
ah

Q2

)

,

(32)
and the terms proportional to the ratio af/ah vanish. As an aside, if in addition the prediction
is only sensitive to one eigenvector, then this will reduce to a single ratio, in precisely the same
way we saw for the non–singlet distribution.

While at first glance it may appear somewhat arbitrary to consider these limits, in fact in
the low and high x regions this can be precisely the situation we find ourselves in. As discussed
further in Appendix A, if we take the high x limit, we have the well known result that

Σ+(j, µ
2) = g(j, µ2) , Σ−(j, µ

2) = Σq(j, µ
2) , (33)

that is the quark distribution (∼ Σq, qNS) and gluon are independent eigenvectors of the DGLAP
evolution. In the alternative low x (j ∼ 1) limit we have

g(j, µ2) ∼ q(j, µ2) ∼ Σ+(j, µ
2) , (34)

for sufficiently high scale µ. That is, the positive eigenvector is dominant.
These regimes play a direct role in PDF phenomenology at the LHC and elsewhere. For

example, a topical case is the high x gluon, which is relatively poorly determined, and in which
there is currently a great deal of interest in placing further constraints. This typically involves the
use of LHC observables such as inclusive jet and tt production, and the Z boson p⊥ distribution,
for which the high x gluon plays a dominant role. Although a global fit includes of course a wider
dataset, the extracted high x gluon will to a significant extent be driven by these. One can then
take the result of this fit and predict the gluon–initiated production of e.g. a high mass BSM
object. In such a scenario the gluon evolution will be effectively decoupled and both the fit and
predicted observables will be dominated by the positive eigenvector Σ+. In other words, we are
in an analogous situation to Section 2, where the factorization scales for the fit and prediction
are fully correlated, and varying the factorization scale in both will lead to and effective double
counting of the theoretical uncertainty. The corresponding situation for the high x quark, where
both the singlet and non–singlet are decoupled from the gluon, is similar.

At low x, as we increase the scale of the observed process we find that the quark and
gluon contribution are completely correlated by evolution, and only the positive eigenvector
contributes. This is equally true for observables such as scaling violations of the structure func-
tion, dF2/d lnQ2, which only depends on the positive eigenvector at low x, for all scales. Thus,
for fit processes such as a dF2/d lnQ2 and predicted processes such as Drell–Yan production at
the LHC (in particular in the lower mass region), we will expect a large degree of correlation.

We note that in a realistic PDF fit we will in general include multiple observables at the fit
stage which may be dominated by a particular PDF eigenvector. This will therefore introduce
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★ Low    :          

more significantly, the fact that the partons and x range probed by the fit processes can be
rather different. With this in mind, how do we interpret our above result if we do not make
this simplifying assumption of fully correlated factorization scales for quantities in the PDF fit?
We will first consider this result in various kinematic limits, before discussing the more general
implications.

3.2 The low and high x limits

One can simplify the full result (30) by for example assuming that F− = 0 and H+ = 0, in
other words that F,H are only sensitive to the contribution from either the negative or positive
eigenvectors. In this case we have

K(Q2) =
K+

F+

{

1 + α̃S ln

(

af
ak

)

γ+

}

F

(

ak
af

Q2

)

+
K−

H−

{

1 + α̃S ln

(

ah
ak

)

γ−

}

H

(

ak
ah

Q2

)

,

(32)
and the terms proportional to the ratio af/ah vanish. As an aside, if in addition the prediction
is only sensitive to one eigenvector, then this will reduce to a single ratio, in precisely the same
way we saw for the non–singlet distribution.

While at first glance it may appear somewhat arbitrary to consider these limits, in fact in
the low and high x regions this can be precisely the situation we find ourselves in. As discussed
further in Appendix A, if we take the high x limit, we have the well known result that

Σ+(j, µ
2) = g(j, µ2) , Σ−(j, µ

2) = Σq(j, µ
2) , (33)

that is the quark distribution (∼ Σq, qNS) and gluon are independent eigenvectors of the DGLAP
evolution. In the alternative low x (j ∼ 1) limit we have

g(j, µ2) ∼ q(j, µ2) ∼ Σ+(j, µ
2) , (34)

for sufficiently high scale µ. That is, the positive eigenvector is dominant.
These regimes play a direct role in PDF phenomenology at the LHC and elsewhere. For

example, a topical case is the high x gluon, which is relatively poorly determined, and in which
there is currently a great deal of interest in placing further constraints. This typically involves the
use of LHC observables such as inclusive jet and tt production, and the Z boson p⊥ distribution,
for which the high x gluon plays a dominant role. Although a global fit includes of course a wider
dataset, the extracted high x gluon will to a significant extent be driven by these. One can then
take the result of this fit and predict the gluon–initiated production of e.g. a high mass BSM
object. In such a scenario the gluon evolution will be effectively decoupled and both the fit and
predicted observables will be dominated by the positive eigenvector Σ+. In other words, we are
in an analogous situation to Section 2, where the factorization scales for the fit and prediction
are fully correlated, and varying the factorization scale in both will lead to and effective double
counting of the theoretical uncertainty. The corresponding situation for the high x quark, where
both the singlet and non–singlet are decoupled from the gluon, is similar.

At low x, as we increase the scale of the observed process we find that the quark and
gluon contribution are completely correlated by evolution, and only the positive eigenvector
contributes. This is equally true for observables such as scaling violations of the structure func-
tion, dF2/d lnQ2, which only depends on the positive eigenvector at low x, for all scales. Thus,
for fit processes such as a dF2/d lnQ2 and predicted processes such as Drell–Yan production at
the LHC (in particular in the lower mass region), we will expect a large degree of correlation.

We note that in a realistic PDF fit we will in general include multiple observables at the fit
stage which may be dominated by a particular PDF eigenvector. This will therefore introduce
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x x

x

argument. We will also work in Mellin space, as this will simplify the calculation, although all
the results which follow hold analogously in x space as well. We write

F (j,Q2) = Σq(j + 1, µ2)Fq

(

j,
Q2

µ2

)

+ g(j + 1, µ2)Fg

(

j,
Q2

µ2

)

,

H(j,Q2) = Σq(j + 1, µ2)Hq

(

j,
Q2

µ2

)

+ g(j + 1, µ2)Hg

(

j,
Q2

µ2

)

. (21)

Thus, we assume that these observables depend on the gluon (g) and total quark singlet (Σq)
PDFs only. In other words, any dependence on non–singlet quark combinations, which would
be introduced by e.g. including a quark flavour–dependence (due typically to the quark EW
charges), is omitted to limit the observables we need to consider, although the set–up can readily
be generalised to include these.

We will drop the Mellin moment argument j for brevity in what follows. We can write the
coefficient functions at NLO as

Fq

(

Q2

µ2

)

= f (0)
q + α̃Sf

(1)
q + α̃Sf

(0)
q ln

(

Q2

µ2

)

γ(0)qq + α̃Sf
(0)
g ln

(

Q2

µ2

)

γ(0)gq , (22)

Fg

(

Q2

µ2

)

= f (0)
g + α̃Sf

(1)
g + α̃Sf

(0)
q ln

(

Q2

µ2

)

γ(0)qg + α̃Sf
(0)
g ln

(

Q2

µ2

)

γ(0)gg , (23)

and similarly for H. Note that the q ↔ g mixing introduces a corresponding mixing in the
coefficients fq,g of the expansions of the Fq,g, and similarly for Hq,g. This simplifies if we instead
use the basis of eigenvectors of the DGLAP equation, which we denote Σ±. In terms of these
we can write

F (Q2) = Σ+(µ
2)

(

Q2

µ2

)α̃Sγ+

F+ + Σ−(µ
2)

(

Q2

µ2

)α̃Sγ−

F− , (24)

H(Q2) = Σ+(µ
2)

(

Q2

µ2

)α̃Sγ+

H+ + Σ−(µ
2)

(

Q2

µ2

)α̃Sγ−

H− , (25)

at arbitrary order. Here the diagonal anomalous dimensions γ± and the PDF eigenvectors are
given explicitly in Appendix A. These then define the coefficients F± and H± above, which are
given in terms of Fq and Fg, and similarly for H.

We now consider a PDF fit to these observables, for which we take the factorization scales
µ2 = afQ2 and µ2 = ahQ2. In this case we have (see (46))

F

(

µ2

af

)

= Σ+(µ
2) (af )

−α̃Sγ+ F+ + Σ−(µ
2) (af )

−α̃Sγ− F− , (26)

H

(

µ2

ah

)

= Σ+(µ
2) (ah)

−α̃Sγ+ H+ + Σ−(µ
2) (ah)

−α̃Sγ− H− , (27)

which we can then invert to give

Σ+(µ
2) =

H−F
(

µ2

af

)

(af )
α̃Sγ− − F−H

(

µ2

ah

)

(ah)
α̃Sγ−

F+H− (af )
α̃S(γ−−γ+)

− F−H+ (ah)
α̃S(γ−−γ+)

, (28)

Σ−(µ
2) =

H+F
(

µ2

af

)

(af )
α̃Sγ+ − F+H

(

µ2

ah

)

(ah)
α̃Sγ+

F−H+ (af )
−α̃S(γ−−γ+)

− F+H− (ah)
−α̃S(γ−−γ+)

. (29)
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Backup

• We find if one assumes variations fully correlated in fit could equally include in 
prediction (but implicitly assumes correlated there as well).

• That is, certain eigenvectors dominate, with consequences for our results…



Low/High    limitsx
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tt

q, g

x

• In both cases, dominance of single eigenvector/separation of       means that we 
revert back to original ‘non-singlet’ case.

• Consider e.g. fit to processes sensitive to high    gluon (jets,    …). Then:

!
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For the sake of generality and demonstration, we consider a PDF fit to a pair of arbitrary
‘structure function’ observables F and H, which are then used to predict a third such observable,
K. The generalisation to the case of hadronic observables would render the corresponding
analysis a great deal more complex in practice, but in principle should not change the basic
argument. We will also work in Mellin space, as this will simplify the calculation, although all
the results which follow hold analogously in x space as well. We write

F (j,Q2) = ⌃q(j + 1, µ2)Fq

✓
j,
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µ2

◆
+ g(j + 1, µ2)Fg

✓
j,
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µ2

◆
,

H(j,Q2) = ⌃q(j + 1, µ2)Hq

✓
j,
Q2

µ2

◆
+ g(j + 1, µ2)Hg

✓
j,
Q2

µ2

◆
. (22)

Thus, we assume that these observables depend on the gluon (g) and total quark singlet (⌃q)
PDFs only. In other words, any dependence on non–singlet quark combinations, which would
be introduced by e.g. including a quark flavour–dependence (due typically to the quark EW
charges), is omitted to limit the observables we need to consider, although the set–up can readily
be generalised to include these.

We will drop the Mellin moment argument j for brevity in what follows. We can write the
coe�cient functions at NLO as

Fq
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Fg

✓
Q2

µ2

◆
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�(0)gg , (24)

and similarly for H. Note that the q $ g mixing introduces a corresponding mixing in the
coe�cients cq,g of the expansions of the Fq,g, and similarly for Hq,g. This simplifies if we instead
use the basis of eigenvectors of the DGLAP equation, which we denote ⌃±. In terms of these
we can write

F (Q2) = ⌃+(µ
2)

✓
Q2

µ2

◆↵̃S�+

F+ + ⌃�(µ
2)
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F� , (25)

H(Q2) = ⌃+(µ
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H+ + ⌃�(µ
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H� , (26)

at arbitrary order. Here the diagonal anomalous dimensions �± and the PDF eigenvectors are
given explicitly in Appendix A. These then define the coe�cients F± and H± above, which are
given in terms of Fq and Fg, and similarly for H.

We now consider a PDF fit to these observables, for which we take the factorization scales
µ2 = afQ2 and µ2 = ahQ2. In this case we have (see (47))

F
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H
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which we can then invert to give
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H�F
⇣
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⌘
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⇣
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For the sake of generality and demonstration, we consider a PDF fit to a pair of arbitrary
‘structure function’ observables F and H, which are then used to predict a third such observable,
K. The generalisation to the case of hadronic observables would render the corresponding
analysis a great deal more complex in practice, but in principle should not change the basic
argument. We will also work in Mellin space, as this will simplify the calculation, although all
the results which follow hold analogously in x space as well. We write

F (j,Q2) = ⌃q(j + 1, µ2)Fq

✓
j,
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µ2

◆
+ g(j + 1, µ2)Fg
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◆
,

H(j,Q2) = ⌃q(j + 1, µ2)Hq

✓
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µ2

◆
+ g(j + 1, µ2)Hg

✓
j,
Q2

µ2

◆
. (22)

Thus, we assume that these observables depend on the gluon (g) and total quark singlet (⌃q)
PDFs only. In other words, any dependence on non–singlet quark combinations, which would
be introduced by e.g. including a quark flavour–dependence (due typically to the quark EW
charges), is omitted to limit the observables we need to consider, although the set–up can readily
be generalised to include these.

We will drop the Mellin moment argument j for brevity in what follows. We can write the
coe�cient functions at NLO as
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✓
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�(0)gg , (24)

and similarly for H. Note that the q $ g mixing introduces a corresponding mixing in the
coe�cients cq,g of the expansions of the Fq,g, and similarly for Hq,g. This simplifies if we instead
use the basis of eigenvectors of the DGLAP equation, which we denote ⌃±. In terms of these
we can write

F (Q2) = ⌃+(µ
2)
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µ2

◆↵̃S�+

F+ + ⌃�(µ
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F� , (25)
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H� , (26)

at arbitrary order. Here the diagonal anomalous dimensions �± and the PDF eigenvectors are
given explicitly in Appendix A. These then define the coe�cients F± and H± above, which are
given in terms of Fq and Fg, and similarly for H.

We now consider a PDF fit to these observables, for which we take the factorization scales
µ2 = afQ2 and µ2 = ahQ2. In this case we have (see (47))
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which we can then invert to give
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↵̃S(����+)

� F�H+ (ah)
↵̃S(����+)

, (29)

⌃�(µ
2) =

H+F
⇣
µ2

af

⌘
(af )

↵̃S�+ � F+H
⇣
µ2

ah

⌘
(ah)

↵̃S�+

F�H+ (af )
�↵̃S(����+)

� F+H� (ah)
�↵̃S(����+)

. (30)
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more significantly, the fact that the partons and x range probed by the fit processes can be
rather di↵erent. With this in mind, how do we interpret our above result if we do not make
this simplifying assumption of fully correlated factorization scales for quantities in the PDF fit?
We will first consider this result in various kinematic limits, before discussing the more general
implications.

3.2 The low and high x limits

One can simplify the full result (31) by for example assuming that F� = 0 and H+ = 0, in
other words that F,H are only sensitive to the contribution from either the negative or positive
eigenvectors. In this case we have

K(Q2) =
K+

F+

⇢
1 + ↵̃S ln

✓
af
ak

◆
�+

�
F

✓
ak
af

Q2

◆
+

K�
H�

⇢
1 + ↵̃S ln

✓
ah
ak

◆
��

�
H

✓
ak
ah

Q2

◆
,

(33)
and the terms proportional to the ratio af/ah vanish. As an aside, if in addition the prediction
is only sensitive to one eigenvector, then this will reduce to a single ratio, in precisely the same
way we saw for the non–singlet distribution.

While at first glance it may appear somewhat arbitrary to consider these limits, in fact in
the low and high x regions this can be precisely the situation we find ourselves in. As discussed
further in Appendix A, if we take the high x limit, we have the well known result that

⌃+(j, µ
2) = g(j, µ2) , ⌃�(j, µ

2) = ⌃q(j, µ
2) , (34)

that is the quark distribution (⇠ ⌃q, qNS) and gluon are independent eigenvectors of the DGLAP
evolution. In the alternative low x (j ⇠ 1) limit we have

g(j, µ2) ⇠ q(j, µ2) ⇠ ⌃+(j, µ
2) , (35)

for su�ciently high scale µ. That is, the positive eigenvector is dominant.
These regimes play a direct role in PDF phenomenology at the LHC and elsewhere. For

example, a topical case is the high x gluon, which is relatively poorly determined, and in which
there is currently a great deal of interest in placing further constraints. This typically involves the
use of LHC observables such as inclusive jet and tt production, and the Z boson p? distribution,
for which the high x gluon plays a dominant role. Although a global fit includes of course a wider
dataset, the extracted high x gluon will to a significant extent be driven by these. One can then
take the result of this fit and predict the gluon–initiated production of e.g. a high mass BSM
object. In such a scenario the gluon evolution will be e↵ectively decoupled and both the fit and
predicted observables will be dominated by the positive eigenvector ⌃+. In other words, we are
in an analogous situation to Section 2, where the factorization scales for the fit and prediction
are fully correlated, and varying the factorization scale in both will lead to and e↵ective double
counting of the theoretical uncertainty. The corresponding situation for the high x quark, where
both the singlet and non–singlet are decoupled from the gluon, is similar.

At low x, as we increase the scale of the observed process we find that the quark and
gluon contribution are completely correlated by evolution, and only the positive eigenvector
contributes. This is equally true for observables such as scaling violations of the structure func-
tion, dF2/d lnQ2, which only depends on the positive eigenvector at low x, for all scales. Thus,
for fit processes such as a dF2/d lnQ2 and predicted processes such as Drell–Yan production at
the LHC (in particular in the lower mass region), we will expect a large degree of correlation.

We note that in a realistic PDF fit we will in general include multiple observables at the fit
stage which may be dominated by a particular PDF eigenvector. This will therefore introduce
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one scale d.o.f, i.e. vary in fit/prediction but not both, as in simple case.



Renormalization Scale
• Consider within very simple toy model, fit to           and predict            :

• If we write                     , then in fact find similar situation to factorization scale. 
But not what we are interested in here, i.e. a fit to PDFs.

• In that case, no simple breakdown of scales as before. However, what if we 
consider two related processes (e.g.         )?

where as usual ai = µ2
i /Q

2 and we drop terms of O(α2
S); note that while the physical quantities

begin at O(αS), the relation between them is one order lower, and is accurate to O(αS). For
B(Q2), taking af = µ2

f/Q
2 and substituting in our expression for A(Q2), we get

B(Q2) =
A(afiQ2)

A1

(

B1 +
A(afiQ2)

A1

[

B2 −
B1A2

A1
+ β(0)B1 ln afi

])

, (38)

Hence, we can indeed derive a final result which is expressed only in terms of a single ratio
afi = af/ai, as in the structure function case.

In the above example we have used our initial physical quantity in order to determine the
coupling constant, not the PDFs. This is really the most natural thing to to when thinking about
renormalization scale variation, since the scale is that used for the definition of the coupling,
while the factorization scale is that used for the definition of the PDFs. However, in a PDF fit
one instead uses the physical quantity A(Q2) to determine the PDFs. To see how this changes
the result, we now assume our toy observables depend on a single PDF q (the non–singlet quark,
say, although this is not essential). Implicitly we work in Mellin space to avoid complications
with convolutions, but as before this does not change the basic argument. We consider the case
of a fixed factorization scale µ2

F = Q2, while setting µ2
i = aiQ2 for the renormalization scale.

We have

A(Q2) = α̃S(µ
2
i )A1

[

1 +
α̃S(µ2

i )

A1

(

A2 + β(0)A1 ln ai
)

]

q(Q2) . (39)

In terms of this the PDF can be written as

q(Q2) =
A(Q2)

A1α̃S(µ2
i )

[

1−
α̃S(µ2

i )

A1

(

A2 + β(0)A1 ln ai
)

]

, (40)

Inserting this into the expression for B(Q2), we obtain

B(Q2) = α̃S(µ
2
f )B1

[

1 +
α̃S(µ2

f )

B1

(

B2 + β(0)B1 ln af
)

]

q(Q2)

=
B1A(Q2)

A1

α̃S(µ2
f )

α̃S(µ2
i )

[

1 + β(0)
(

α̃S(µ
2
f ) ln af − α̃S(µ

2
i ) ln ai

)

+
B2

B1
α̃S(µ

2
f )−

A2

A1
α̃S(µ

2
i )

]

.

(41)

We see that now the expression is certainly not just a function of the ratio of scales µ2
f/µ

2 = afi.
Let us examine the explicit consequence of this. For example, in our earlier case of factorisation
scale variation, the choice of µ2

f = µ2
i i.e. afi = 1 resulted in no change in the expression for

the prediction compared to choosing both ai = af = 1. In fact for the first term in (41) this
equivalent result appears, and similarly for the sum of the second and third terms. However, for
the fourth and fifth terms, i.e. those dependent on the coefficients of the scale-independent parts
of the NLO expressions for A(Q2) and B(Q2), this is not the case. In this limit each becomes
proportional to α̃s(µ2

f ), but depends on the absolute value of the scale. This term depends on
the difference in the relative size of these NLO corrections (compared to the LO contributions to
each quantity), so the violation of the dependence on ratios is violated by the scale independent
NLO corrections. If we consider other types of scale variation, e.g. multiplying µf by 2 but
dividing µi by 2 we see that even though the effect in the combination of the first, second and
third terms is close to effect of either multiplying µf by 4 or dividing µi by 4, it is not identical,
and the discrepancy is larger in the fourth and fifth terms.

The fact that the expression of the predicted physical quantity in terms of the measured
physical quantity does not break down into an expression depending on the ratio of the renor-
malization scales used for each calculation is a consequence of the fact that the renormalization

12

where as usual ai = µ2
i /Q

2 and we drop terms of O(α2
S); note that while the physical quantities

begin at O(αS), the relation between them is one order lower, and is accurate to O(αS). For
B(Q2), taking af = µ2

f/Q
2 and substituting in our expression for A(Q2), we get

B(Q2) =
A(afiQ2)

A1

(

B1 +
A(afiQ2)

A1

[

B2 −
B1A2

A1
+ β(0)B1 ln afi

])

, (38)

Hence, we can indeed derive a final result which is expressed only in terms of a single ratio
afi = af/ai, as in the structure function case.

In the above example we have used our initial physical quantity in order to determine the
coupling constant, not the PDFs. This is really the most natural thing to to when thinking about
renormalization scale variation, since the scale is that used for the definition of the coupling,
while the factorization scale is that used for the definition of the PDFs. However, in a PDF fit
one instead uses the physical quantity A(Q2) to determine the PDFs. To see how this changes
the result, we now assume our toy observables depend on a single PDF q (the non–singlet quark,
say, although this is not essential). Implicitly we work in Mellin space to avoid complications
with convolutions, but as before this does not change the basic argument. We consider the case
of a fixed factorization scale µ2

F = Q2, while setting µ2
i = aiQ2 for the renormalization scale.

We have

A(Q2) = α̃S(µ
2
i )A1

[

1 +
α̃S(µ2

i )

A1

(

A2 + β(0)A1 ln ai
)

]

q(Q2) . (39)

In terms of this the PDF can be written as

q(Q2) =
A(Q2)

A1α̃S(µ2
i )

[

1−
α̃S(µ2

i )

A1

(

A2 + β(0)A1 ln ai
)

]

, (40)

Inserting this into the expression for B(Q2), we obtain

B(Q2) = α̃S(µ
2
f )B1

[

1 +
α̃S(µ2

f )

B1

(

B2 + β(0)B1 ln af
)

]

q(Q2)

=
B1A(Q2)

A1

α̃S(µ2
f )

α̃S(µ2
i )

[

1 + β(0)
(

α̃S(µ
2
f ) ln af − α̃S(µ

2
i ) ln ai

)

+
B2

B1
α̃S(µ

2
f )−

A2

A1
α̃S(µ

2
i )

]

.

(41)

We see that now the expression is certainly not just a function of the ratio of scales µ2
f/µ

2 = afi.
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the prediction compared to choosing both ai = af = 1. In fact for the first term in (41) this
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of the NLO expressions for A(Q2) and B(Q2), this is not the case. In this limit each becomes
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NLO corrections. If we consider other types of scale variation, e.g. multiplying µf by 2 but
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Fig. 6: Higher-order QCD predictions and uncertainties for Z(`
+
`
�
)+jet, W±

(`⌫)+jet, and �+jet production at
13 TeV. Absolute predictions at LO, NLO and NNLO QCD are displayed in the main frame. The ratio plots
show results for individual processes normalised to NLO QCD. The bands correspond to the combination (in
quadrature) of the three types of QCD uncertainties, �(i)KNkLO, i.e. scale uncertainties according to Eq. (33),
shape uncertainties according to Eq. (35), and process-correlation uncertainties according to Eq. (38).

ratios (see also Figure 19). However, one should keep
in mind that an additional analysis-dependent photon-
isolation uncertainty (see Section 3.1) has to be consid-
ered for these ratios.

In general, comparing QCD predictions at different
orders we observe a good convergence of the perturba-
tive expansion, and the fact that process ratios receive
very small corrections both at NLO and NNLO provides
strong evidence for the universality of QCD dynamics
is all V+ jet processes. Results at NNLO provide also
a crucial test of the goodness of the proposed approach
for the estimate of QCD uncertainties and their correla-
tions. In particular, the remarkable consistency between
NNLO and NLO predictions in Figure 8 confirms that

QCD uncertainties for process ratios are as small as
1–2%.

4.2 Electroweak corrections

For EW higher-order corrections we use the notation,
d

dx
�
(V )
NLOEW =

d

dx
�
(V )
LOQCD +

d

dx
��

(V )
NLOEW, (40)

d

dx
�
(V )
nNLOEW =

d
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�
(V )
NLOEW +

d

dx
��

(V )
NNLOSud,

where ��
(V )
NLOEW denotes exact O(↵

2
↵S) contributions,

and ‘NNLO Sud’ stands for O(↵
3
↵S) EW Sudakov loga-

rithms in NLL approximation (see below). Their combi-
nation is dubbed nNLOEW as it accounts for the dom-
inant EW effects at NNLO. While our power counting
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in mind that an additional analysis-dependent photon-
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• On the other hand for two related processes (e.g.         ):

scale is fundamentally associated to the scale of the coupling, but here we do not directly relate
the physical quantities to the coupling constant, but to the PDF. It is also the case that different
physical quantities depend on the coupling in different ways, i.e. the perturbative order starts
at zeroth, first or second order for very standard quantities (and higher order for more exclusive
quantities). Here we have given perhaps the simplest example of two quantities which each start
at first order. However, the common input in PDF fits of the F2,3 structure functions starts
at zeroth order, so at lowest order has no renormalization scale dependence in the hard cross
section. The renormalization scale dependence of F2 will therefore be suppressed by a power of
αS relative to the case of e.g. top-pair production in hadron-hadron scattering, which begins at
O(α2

S). In contrast, all cross sections are linear in the PDF of any of the hadrons participating
in the scattering.

Finally, we can also consider the case of two related physical observables. This could be for
example, jet production at ATLAS and CMS, or more generally W and Z boson production, for
which the LO results are of course uncorrelated in normalization, but the effect of higher–order
QCD corrections is similar. Considering the latter example, for our toy observables above we
would have

A2

A1
∼

B2

B1
≡ CNLO , (42)

and so (41) can be written as

B(Q2)

A(Q2)
=

B1

A1

[

1 + β(0)
(

α̃S(µ
2
f ) ln af − α̃S(µ

2
i ) ln ai

)

+ CNLO
(

α̃S(µ
2
f )− α̃S(µ

2
i )
)

]

. (43)

Now to maintain consistency with our requirement that this ratio should be approximately
constant under inclusion of higher–order QCD corrections, we can see that we must take µf = µi

(af = ai), i.e. vary the renormalization scale in the fit and prediction in a correlated way. It
is of course a well–known procedure to vary QCD renormalization scales in such a way when
predicting this type of ratio (of e.g. the W to Z boson cross sections3). In [25] this argument
is extended to hold between processes at the fit stage. It is perhaps not particularly surprising
to find an equivalent requirement between the fit and prediction here, and clearly the inclusion
of this in a global fit would be intractable. Nonetheless, we can see that this correlation enters
in principle at the same level as that between processes entering the fit, and so the question of
whether it is necessary or sensible to include one without the other requires further investigation.
Certainly, the relative importance of the correlation between processes in the fit stage and
between the fit and prediction will in general depend on the specific data sets being considered.

5 Summary and Conclusions

In this paper we have discussed the inclusion of theoretical uncertainties in PDFs due to missing
higher–order terms in the pQCD results for the processes entering the fit. Such uncertainties,
while routinely included in the predictions, have previously not been explicitly included in
the PDF fit itself. We are now firmly in the high precision LHC era, both in terms of the
available data for PDF fitting and the standard for phenomenology which applies these PDFs.
Therefore, such an approach may be increasingly called into question, and certainly requires
careful consideration.

As a first step towards this, we have considered the standard approach to evaluating MHO
uncertainties, namely due to QCD factorization and renormalization scale variation around a

3See for example [35] for the example of vector boson plus jets. In this study an additional, conservative,
process dependent uncertainty is also introduced to account for the difference between the K-factors of the
different quantities.
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scale is fundamentally associated to the scale of the coupling, but here we do not directly relate
the physical quantities to the coupling constant, but to the PDF. It is also the case that di↵erent
physical quantities depend on the coupling in di↵erent ways, i.e. the perturbative order starts
at zeroth, first or second order for very standard quantities (and higher order for more exclusive
quantities). Here we have given perhaps the simplest example of two quantities which each start
at first order. However, the common input in PDF fits of the F2,3 structure functions starts
at zeroth order, so at lowest order has no renormalization scale dependence in the hard cross
section. The renormalization scale dependence of F2 will therefore be suppressed by a power of
↵S relative to the case of e.g. top-pair production in hadron-hadron scattering, which begins at
O(↵2

S). In contrast, all cross sections are linear in the PDF of any of the hadrons participating
in the scattering.

Finally, we can also consider the case of two related physical observables. This could be for
example, jet production at ATLAS and CMS, or more generally W and Z boson production, for
which the LO results are of course uncorrelated in normalization, but the e↵ect of higher–order
QCD corrections is similar. Considering the latter example, for our toy observables above we
would have

A2

A1

⇠
B2

B1

⌘ CNLO , (43)

and so (42) can be written as

B(Q2)

A(Q2)
=

B1

A1

h
1 + �(0)

�
↵̃S(µ

2

f ) ln af � ↵̃S(µ
2

i ) ln ai
�
+ CNLO

�
↵̃S(µ

2

f )� ↵̃S(µ
2

i )
�i

. (44)

Now to maintain consistency with our requirement that this ratio should be approximately
constant under inclusion of higher–order QCD corrections, we can see that we must take µf = µi

(af = ai), i.e. vary the renormalization scale in the fit and prediction in a correlated way. It
is of course a well–known procedure to vary QCD renormalization scales in such a way when
predicting this type of ratio (of e.g. the W to Z boson cross sections3). In [25] this argument
is extended to hold between processes at the fit stage. It is perhaps not particularly surprising
to find an equivalent requirement between the fit and prediction here, and clearly the inclusion
of this in a global fit would be intractable. Nonetheless, we can see that this correlation enters
in principle at the same level as that between processes entering the fit, and so the question of
whether it is necessary or sensible to include one without the other requires further investigation.
Certainly, the relative importance of the correlation between processes in the fit stage and
between the fit and prediction will in general depend on the specific data sets being considered.

5 Summary and Conclusions

In this paper we have discussed the inclusion of theoretical uncertainties in PDFs due to missing
higher–order terms in the pQCD results for the processes entering the fit. Such uncertainties,
while routinely included in the predictions, have previously not been explicitly included in
the PDF fit itself. We are now firmly in the high precision LHC era, both in terms of the
available data for PDF fitting and the standard for phenomenology which applies these PDFs.
Therefore, such an approach may be increasingly called into question, and certainly requires
careful consideration.

As a first step towards this, we have considered the standard approach to evaluating MHO
uncertainties, namely due to QCD factorization and renormalization scale variation around a

3
See for example [35] for the example of vector boson plus jets. In this study an additional, conservative,

process dependent uncertainty is also introduced to account for the di↵erence between the K-factors of the

di↵erent quantities.
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where as usual ai = µ2
i /Q

2 and we drop terms of O(α2
S); note that while the physical quantities

begin at O(αS), the relation between them is one order lower, and is accurate to O(αS). For
B(Q2), taking af = µ2

f/Q
2 and substituting in our expression for A(Q2), we get

B(Q2) =
A(afiQ2)

A1

(

B1 +
A(afiQ2)

A1

[

B2 −
B1A2

A1
+ β(0)B1 ln afi

])

, (38)

Hence, we can indeed derive a final result which is expressed only in terms of a single ratio
afi = af/ai, as in the structure function case.

In the above example we have used our initial physical quantity in order to determine the
coupling constant, not the PDFs. This is really the most natural thing to to when thinking about
renormalization scale variation, since the scale is that used for the definition of the coupling,
while the factorization scale is that used for the definition of the PDFs. However, in a PDF fit
one instead uses the physical quantity A(Q2) to determine the PDFs. To see how this changes
the result, we now assume our toy observables depend on a single PDF q (the non–singlet quark,
say, although this is not essential). Implicitly we work in Mellin space to avoid complications
with convolutions, but as before this does not change the basic argument. We consider the case
of a fixed factorization scale µ2

F = Q2, while setting µ2
i = aiQ2 for the renormalization scale.

We have

A(Q2) = α̃S(µ
2
i )A1
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q(Q2) . (39)

In terms of this the PDF can be written as

q(Q2) =
A(Q2)

A1α̃S(µ2
i )

[

1−
α̃S(µ2

i )

A1

(

A2 + β(0)A1 ln ai
)

]

, (40)

Inserting this into the expression for B(Q2), we obtain
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We see that now the expression is certainly not just a function of the ratio of scales µ2
f/µ

2 = afi.
Let us examine the explicit consequence of this. For example, in our earlier case of factorisation
scale variation, the choice of µ2

f = µ2
i i.e. afi = 1 resulted in no change in the expression for

the prediction compared to choosing both ai = af = 1. In fact for the first term in (41) this
equivalent result appears, and similarly for the sum of the second and third terms. However, for
the fourth and fifth terms, i.e. those dependent on the coefficients of the scale-independent parts
of the NLO expressions for A(Q2) and B(Q2), this is not the case. In this limit each becomes
proportional to α̃s(µ2

f ), but depends on the absolute value of the scale. This term depends on
the difference in the relative size of these NLO corrections (compared to the LO contributions to
each quantity), so the violation of the dependence on ratios is violated by the scale independent
NLO corrections. If we consider other types of scale variation, e.g. multiplying µf by 2 but
dividing µi by 2 we see that even though the effect in the combination of the first, second and
third terms is close to effect of either multiplying µf by 4 or dividing µi by 4, it is not identical,
and the discrepancy is larger in the fourth and fifth terms.

The fact that the expression of the predicted physical quantity in terms of the measured
physical quantity does not break down into an expression depending on the ratio of the renor-
malization scales used for each calculation is a consequence of the fact that the renormalization
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S); note that while the physical quantities

begin at O(αS), the relation between them is one order lower, and is accurate to O(αS). For
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Hence, we can indeed derive a final result which is expressed only in terms of a single ratio
afi = af/ai, as in the structure function case.

In the above example we have used our initial physical quantity in order to determine the
coupling constant, not the PDFs. This is really the most natural thing to to when thinking about
renormalization scale variation, since the scale is that used for the definition of the coupling,
while the factorization scale is that used for the definition of the PDFs. However, in a PDF fit
one instead uses the physical quantity A(Q2) to determine the PDFs. To see how this changes
the result, we now assume our toy observables depend on a single PDF q (the non–singlet quark,
say, although this is not essential). Implicitly we work in Mellin space to avoid complications
with convolutions, but as before this does not change the basic argument. We consider the case
of a fixed factorization scale µ2

F = Q2, while setting µ2
i = aiQ2 for the renormalization scale.

We have
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We see that now the expression is certainly not just a function of the ratio of scales µ2
f/µ

2 = afi.
Let us examine the explicit consequence of this. For example, in our earlier case of factorisation
scale variation, the choice of µ2

f = µ2
i i.e. afi = 1 resulted in no change in the expression for

the prediction compared to choosing both ai = af = 1. In fact for the first term in (41) this
equivalent result appears, and similarly for the sum of the second and third terms. However, for
the fourth and fifth terms, i.e. those dependent on the coefficients of the scale-independent parts
of the NLO expressions for A(Q2) and B(Q2), this is not the case. In this limit each becomes
proportional to α̃s(µ2

f ), but depends on the absolute value of the scale. This term depends on
the difference in the relative size of these NLO corrections (compared to the LO contributions to
each quantity), so the violation of the dependence on ratios is violated by the scale independent
NLO corrections. If we consider other types of scale variation, e.g. multiplying µf by 2 but
dividing µi by 2 we see that even though the effect in the combination of the first, second and
third terms is close to effect of either multiplying µf by 4 or dividing µi by 4, it is not identical,
and the discrepancy is larger in the fourth and fifth terms.

The fact that the expression of the predicted physical quantity in terms of the measured
physical quantity does not break down into an expression depending on the ratio of the renor-
malization scales used for each calculation is a consequence of the fact that the renormalization
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our fit results in the relation:

• Thus, to maintain consistency with requirement that this ratio                         
should be ~ constant under inclusion of higher-order QCD corrections, need to 
take               in relation between fit/predicted observables. 

A(Q2)/B(Q2)

µi ⇠ µf

• In practice, keeping track of such fit/prediction correlations impossible. However  
can enter at same level as correlations between related processes in fit        (open) 
question of whether it makes sense to include one when ignoring the other.

)
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Related Processes



In Summary
• By considering PDF fit as a relation between different observables we find that:

★ Including factorization scale variation in both fit and prediction leads to 
overestimate of error in certain regimes (simplified model - low/high    ).

★ Only varying in predictions does not fully account for theory error 
inherent in the relationship between observables.

★ Assuming a full correlation between factorization scales at the fit stage also 
misses this (and if fully correlated in fit, why not in prediction as well?).

• A possible route forward (future work):

★ Vary factorization scale at fit stage.
★ Do not vary factorization scale at prediction stage.
★ Apply a phenomenological approach for dealing with correlation between 

different processes entering fit.

x
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Caveats

★ Caveat 1 : This all relies on us trusting scale variation as the correct approach. 
Our results might even be taken as indication that it is not. But result of working 
in physical basis should apply in any case.

★ Caveat 2 : Only applies to factorization scale. We find renormalization scale is 
different, with no clear fit/prediction overlap (i.e. should include both). However 
correlations between related processes (e.g.           ) in fit/prediction in principle as 
important as in fit.

W, Z
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Thank you for listening!
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K(Q2) ⇠
✓
K1 + ↵̃S ln

✓
af

ak

◆
K2 + ↵̃S ln

✓
ah

af

◆
K3

◆
F

✓
ak

af
Q

2

◆
+ F $ H

• If one assumes all factorization scale variation is correlated across observables, 
have              , and:

K(Q2) ⇠ (K1 � ↵̃S ln(akf )K2)F
�
akfQ

2
�
+ F $ H

compare with variation in prediction alone:

K(Q2) ⇠ (K1 � ↵̃S ln(ak)K2)F
�
akQ

2
�
+ F $ H

• Thus again we reduce back to case where variation could be included in either 
fit or prediction, but not both (n.b. correlation in fit observables      correlation 
in predicted ones).

• However such an assumption appears to be overly strong, missing some of the 
genuine d.o.f inherent in the                   relation.K $ F,H

af = ah

)
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Correlated Scale Variations



Renormalization Scale
• Consider within very simple toy model, fit to           and predict            :

• If we write                     , then in fact find similar situation to factorization scale. 
But not what we are interested in here, i.e. a fit to PDFs.

• In that case, no simple breakdown of scales as before (fact. scale fixed here):

where as usual ai = µ2
i /Q

2 and we drop terms of O(α2
S); note that while the physical quantities

begin at O(αS), the relation between them is one order lower, and is accurate to O(αS). For
B(Q2), taking af = µ2

f/Q
2 and substituting in our expression for A(Q2), we get

B(Q2) =
A(afiQ2)

A1

(

B1 +
A(afiQ2)

A1

[

B2 −
B1A2

A1
+ β(0)B1 ln afi

])

, (38)

Hence, we can indeed derive a final result which is expressed only in terms of a single ratio
afi = af/ai, as in the structure function case.

In the above example we have used our initial physical quantity in order to determine the
coupling constant, not the PDFs. This is really the most natural thing to to when thinking about
renormalization scale variation, since the scale is that used for the definition of the coupling,
while the factorization scale is that used for the definition of the PDFs. However, in a PDF fit
one instead uses the physical quantity A(Q2) to determine the PDFs. To see how this changes
the result, we now assume our toy observables depend on a single PDF q (the non–singlet quark,
say, although this is not essential). Implicitly we work in Mellin space to avoid complications
with convolutions, but as before this does not change the basic argument. We consider the case
of a fixed factorization scale µ2

F = Q2, while setting µ2
i = aiQ2 for the renormalization scale.

We have

A(Q2) = α̃S(µ
2
i )A1

[
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)

]

q(Q2) . (39)

In terms of this the PDF can be written as
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A1α̃S(µ2
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, (40)

Inserting this into the expression for B(Q2), we obtain
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2
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(41)

We see that now the expression is certainly not just a function of the ratio of scales µ2
f/µ

2 = afi.
Let us examine the explicit consequence of this. For example, in our earlier case of factorisation
scale variation, the choice of µ2

f = µ2
i i.e. afi = 1 resulted in no change in the expression for

the prediction compared to choosing both ai = af = 1. In fact for the first term in (41) this
equivalent result appears, and similarly for the sum of the second and third terms. However, for
the fourth and fifth terms, i.e. those dependent on the coefficients of the scale-independent parts
of the NLO expressions for A(Q2) and B(Q2), this is not the case. In this limit each becomes
proportional to α̃s(µ2

f ), but depends on the absolute value of the scale. This term depends on
the difference in the relative size of these NLO corrections (compared to the LO contributions to
each quantity), so the violation of the dependence on ratios is violated by the scale independent
NLO corrections. If we consider other types of scale variation, e.g. multiplying µf by 2 but
dividing µi by 2 we see that even though the effect in the combination of the first, second and
third terms is close to effect of either multiplying µf by 4 or dividing µi by 4, it is not identical,
and the discrepancy is larger in the fourth and fifth terms.

The fact that the expression of the predicted physical quantity in terms of the measured
physical quantity does not break down into an expression depending on the ratio of the renor-
malization scales used for each calculation is a consequence of the fact that the renormalization

12
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2 and we drop terms of O(α2
S); note that while the physical quantities
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Hence, we can indeed derive a final result which is expressed only in terms of a single ratio
afi = af/ai, as in the structure function case.

In the above example we have used our initial physical quantity in order to determine the
coupling constant, not the PDFs. This is really the most natural thing to to when thinking about
renormalization scale variation, since the scale is that used for the definition of the coupling,
while the factorization scale is that used for the definition of the PDFs. However, in a PDF fit
one instead uses the physical quantity A(Q2) to determine the PDFs. To see how this changes
the result, we now assume our toy observables depend on a single PDF q (the non–singlet quark,
say, although this is not essential). Implicitly we work in Mellin space to avoid complications
with convolutions, but as before this does not change the basic argument. We consider the case
of a fixed factorization scale µ2

F = Q2, while setting µ2
i = aiQ2 for the renormalization scale.

We have
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We see that now the expression is certainly not just a function of the ratio of scales µ2
f/µ

2 = afi.
Let us examine the explicit consequence of this. For example, in our earlier case of factorisation
scale variation, the choice of µ2

f = µ2
i i.e. afi = 1 resulted in no change in the expression for

the prediction compared to choosing both ai = af = 1. In fact for the first term in (41) this
equivalent result appears, and similarly for the sum of the second and third terms. However, for
the fourth and fifth terms, i.e. those dependent on the coefficients of the scale-independent parts
of the NLO expressions for A(Q2) and B(Q2), this is not the case. In this limit each becomes
proportional to α̃s(µ2

f ), but depends on the absolute value of the scale. This term depends on
the difference in the relative size of these NLO corrections (compared to the LO contributions to
each quantity), so the violation of the dependence on ratios is violated by the scale independent
NLO corrections. If we consider other types of scale variation, e.g. multiplying µf by 2 but
dividing µi by 2 we see that even though the effect in the combination of the first, second and
third terms is close to effect of either multiplying µf by 4 or dividing µi by 4, it is not identical,
and the discrepancy is larger in the fourth and fifth terms.

The fact that the expression of the predicted physical quantity in terms of the measured
physical quantity does not break down into an expression depending on the ratio of the renor-
malization scales used for each calculation is a consequence of the fact that the renormalization
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Hence, we can indeed derive a final result which is expressed only in terms of a single ratio
afi = af/ai, as in the structure function case.

In the above example we have used our initial physical quantity in order to determine the
coupling constant, not the PDFs. This is really the most natural thing to to when thinking about
renormalization scale variation, since the scale is that used for the definition of the coupling,
while the factorization scale is that used for the definition of the PDFs. However, in a PDF fit
one instead uses the physical quantity A(Q2) to determine the PDFs. To see how this changes
the result, we now assume our toy observables depend on a single PDF q (the non–singlet quark,
say, although this is not essential). Implicitly we work in Mellin space to avoid complications
with convolutions, but as before this does not change the basic argument. We consider the case
of a fixed factorization scale µ2
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We see that now the expression is certainly not just a function of the ratio of scales µ2
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2 = afi.
Let us examine the explicit consequence of this. For example, in our earlier case of factorisation
scale variation, the choice of µ2

f = µ2
i i.e. afi = 1 resulted in no change in the expression for

the prediction compared to choosing both ai = af = 1. In fact for the first term in (41) this
equivalent result appears, and similarly for the sum of the second and third terms. However, for
the fourth and fifth terms, i.e. those dependent on the coefficients of the scale-independent parts
of the NLO expressions for A(Q2) and B(Q2), this is not the case. In this limit each becomes
proportional to α̃s(µ2

f ), but depends on the absolute value of the scale. This term depends on
the difference in the relative size of these NLO corrections (compared to the LO contributions to
each quantity), so the violation of the dependence on ratios is violated by the scale independent
NLO corrections. If we consider other types of scale variation, e.g. multiplying µf by 2 but
dividing µi by 2 we see that even though the effect in the combination of the first, second and
third terms is close to effect of either multiplying µf by 4 or dividing µi by 4, it is not identical,
and the discrepancy is larger in the fourth and fifth terms.

The fact that the expression of the predicted physical quantity in terms of the measured
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where as usual ai = µ2
i /Q

2 and we drop terms of O(α2
S); note that while the physical quantities

begin at O(αS), the relation between them is one order lower, and is accurate to O(αS). For
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Hence, we can indeed derive a final result which is expressed only in terms of a single ratio
afi = af/ai, as in the structure function case.

In the above example we have used our initial physical quantity in order to determine the
coupling constant, not the PDFs. This is really the most natural thing to to when thinking about
renormalization scale variation, since the scale is that used for the definition of the coupling,
while the factorization scale is that used for the definition of the PDFs. However, in a PDF fit
one instead uses the physical quantity A(Q2) to determine the PDFs. To see how this changes
the result, we now assume our toy observables depend on a single PDF q (the non–singlet quark,
say, although this is not essential). Implicitly we work in Mellin space to avoid complications
with convolutions, but as before this does not change the basic argument. We consider the case
of a fixed factorization scale µ2

F = Q2, while setting µ2
i = aiQ2 for the renormalization scale.

We have

A(Q2) = α̃S(µ
2
i )A1

[

1 +
α̃S(µ2

i )

A1

(

A2 + β(0)A1 ln ai
)

]

q(Q2) . (39)
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NLO corrections. If we consider other types of scale variation, e.g. multiplying µf by 2 but
dividing µi by 2 we see that even though the effect in the combination of the first, second and
third terms is close to effect of either multiplying µf by 4 or dividing µi by 4, it is not identical,
and the discrepancy is larger in the fourth and fifth terms.

The fact that the expression of the predicted physical quantity in terms of the measured
physical quantity does not break down into an expression depending on the ratio of the renor-
malization scales used for each calculation is a consequence of the fact that the renormalization
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e.g. if we take              (             ) and vary renormalization scales, this is not the 
same as taking                     (               ), as in case of factorisation scale - due to 
3rd/4th terms which depend on absolute scales       .
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µi,f = Q
<latexit sha1_base64="zKyoRcXt91UNTdQJ7nzXU75/s4M=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCOYiBLx4TMA8IFnC7GQ2GTKPZaZXCEs+w4sHRbz6Nd78GyfJHjSxoKGo6qa7K0oEt+D7315hY3Nre6e4W9rbPzg8Kh+ftK1ODWUtqoU23YhYJrhiLeAgWDcxjMhIsE40uZ/7nSdmLNfqEaYJCyUZKR5zSsBJvb5MBxm/imd3zUG54lf9BfA6CXJSQTkag/JXf6hpKpkCKoi1vcBPIMyIAU4Fm5X6qWUJoRMyYj1HFZHMhtni5Bm+cMoQx9q4UoAX6u+JjEhrpzJynZLA2K56c/E/r5dCXAszrpIUmKLLRXEqMGg8/x8PuWEUxNQRQg13t2I6JoZQcCmVXAjB6svrpH1dDfxq0Lyp1Gt5HEV0hs7RJQrQLaqjB9RALUSRRs/oFb154L14797HsrXg5TOn6A+8zx/yMJD8</latexit><latexit sha1_base64="zKyoRcXt91UNTdQJ7nzXU75/s4M=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCOYiBLx4TMA8IFnC7GQ2GTKPZaZXCEs+w4sHRbz6Nd78GyfJHjSxoKGo6qa7K0oEt+D7315hY3Nre6e4W9rbPzg8Kh+ftK1ODWUtqoU23YhYJrhiLeAgWDcxjMhIsE40uZ/7nSdmLNfqEaYJCyUZKR5zSsBJvb5MBxm/imd3zUG54lf9BfA6CXJSQTkag/JXf6hpKpkCKoi1vcBPIMyIAU4Fm5X6qWUJoRMyYj1HFZHMhtni5Bm+cMoQx9q4UoAX6u+JjEhrpzJynZLA2K56c/E/r5dCXAszrpIUmKLLRXEqMGg8/x8PuWEUxNQRQg13t2I6JoZQcCmVXAjB6svrpH1dDfxq0Lyp1Gt5HEV0hs7RJQrQLaqjB9RALUSRRs/oFb154L14797HsrXg5TOn6A+8zx/yMJD8</latexit><latexit sha1_base64="zKyoRcXt91UNTdQJ7nzXU75/s4M=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCOYiBLx4TMA8IFnC7GQ2GTKPZaZXCEs+w4sHRbz6Nd78GyfJHjSxoKGo6qa7K0oEt+D7315hY3Nre6e4W9rbPzg8Kh+ftK1ODWUtqoU23YhYJrhiLeAgWDcxjMhIsE40uZ/7nSdmLNfqEaYJCyUZKR5zSsBJvb5MBxm/imd3zUG54lf9BfA6CXJSQTkag/JXf6hpKpkCKoi1vcBPIMyIAU4Fm5X6qWUJoRMyYj1HFZHMhtni5Bm+cMoQx9q4UoAX6u+JjEhrpzJynZLA2K56c/E/r5dCXAszrpIUmKLLRXEqMGg8/x8PuWEUxNQRQg13t2I6JoZQcCmVXAjB6svrpH1dDfxq0Lyp1Gt5HEV0hs7RJQrQLaqjB9RALUSRRs/oFb154L14797HsrXg5TOn6A+8zx/yMJD8</latexit><latexit sha1_base64="zKyoRcXt91UNTdQJ7nzXU75/s4M=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCOYiBLx4TMA8IFnC7GQ2GTKPZaZXCEs+w4sHRbz6Nd78GyfJHjSxoKGo6qa7K0oEt+D7315hY3Nre6e4W9rbPzg8Kh+ftK1ODWUtqoU23YhYJrhiLeAgWDcxjMhIsE40uZ/7nSdmLNfqEaYJCyUZKR5zSsBJvb5MBxm/imd3zUG54lf9BfA6CXJSQTkag/JXf6hpKpkCKoi1vcBPIMyIAU4Fm5X6qWUJoRMyYj1HFZHMhtni5Bm+cMoQx9q4UoAX6u+JjEhrpzJynZLA2K56c/E/r5dCXAszrpIUmKLLRXEqMGg8/x8PuWEUxNQRQg13t2I6JoZQcCmVXAjB6svrpH1dDfxq0Lyp1Gt5HEV0hs7RJQrQLaqjB9RALUSRRs/oFb154L14797HsrXg5TOn6A+8zx/yMJD8</latexit>

µi,f
<latexit sha1_base64="ilPW1yltlBC5wLjQkfLMevrLPWE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNgVwRwDXjxGMA9JQpid9CZDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uMBHcWN//9tbWNza3tgs7xd29/YPD0tFx08SpZthgsYh1O6QGBVfYsNwKbCcaqQwFtsLx7cxvPaE2PFYPdpJgT9Kh4hFn1DrpsSvTfsYvo2m/VPYr/hxklQQ5KUOOer/01R3ELJWoLBPUmE7gJ7aXUW05EzgtdlODCWVjOsSOo4pKNL1sfvCUnDtlQKJYu1KWzNXfExmVxkxk6DoltSOz7M3E/7xOaqNqL+MqSS0qtlgUpYLYmMy+JwOukVkxcYQyzd2thI2opsy6jIouhGD55VXSvKoEfiW4vy7XqnkcBTiFM7iAAG6gBndQhwYwkPAMr/Dmae/Fe/c+Fq1rXj5zAn/gff4AyaKQWg==</latexit><latexit sha1_base64="ilPW1yltlBC5wLjQkfLMevrLPWE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNgVwRwDXjxGMA9JQpid9CZDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uMBHcWN//9tbWNza3tgs7xd29/YPD0tFx08SpZthgsYh1O6QGBVfYsNwKbCcaqQwFtsLx7cxvPaE2PFYPdpJgT9Kh4hFn1DrpsSvTfsYvo2m/VPYr/hxklQQ5KUOOer/01R3ELJWoLBPUmE7gJ7aXUW05EzgtdlODCWVjOsSOo4pKNL1sfvCUnDtlQKJYu1KWzNXfExmVxkxk6DoltSOz7M3E/7xOaqNqL+MqSS0qtlgUpYLYmMy+JwOukVkxcYQyzd2thI2opsy6jIouhGD55VXSvKoEfiW4vy7XqnkcBTiFM7iAAG6gBndQhwYwkPAMr/Dmae/Fe/c+Fq1rXj5zAn/gff4AyaKQWg==</latexit><latexit sha1_base64="ilPW1yltlBC5wLjQkfLMevrLPWE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNgVwRwDXjxGMA9JQpid9CZDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uMBHcWN//9tbWNza3tgs7xd29/YPD0tFx08SpZthgsYh1O6QGBVfYsNwKbCcaqQwFtsLx7cxvPaE2PFYPdpJgT9Kh4hFn1DrpsSvTfsYvo2m/VPYr/hxklQQ5KUOOer/01R3ELJWoLBPUmE7gJ7aXUW05EzgtdlODCWVjOsSOo4pKNL1sfvCUnDtlQKJYu1KWzNXfExmVxkxk6DoltSOz7M3E/7xOaqNqL+MqSS0qtlgUpYLYmMy+JwOukVkxcYQyzd2thI2opsy6jIouhGD55VXSvKoEfiW4vy7XqnkcBTiFM7iAAG6gBndQhwYwkPAMr/Dmae/Fe/c+Fq1rXj5zAn/gff4AyaKQWg==</latexit><latexit sha1_base64="ilPW1yltlBC5wLjQkfLMevrLPWE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNgVwRwDXjxGMA9JQpid9CZDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uMBHcWN//9tbWNza3tgs7xd29/YPD0tFx08SpZthgsYh1O6QGBVfYsNwKbCcaqQwFtsLx7cxvPaE2PFYPdpJgT9Kh4hFn1DrpsSvTfsYvo2m/VPYr/hxklQQ5KUOOer/01R3ELJWoLBPUmE7gJ7aXUW05EzgtdlODCWVjOsSOo4pKNL1sfvCUnDtlQKJYu1KWzNXfExmVxkxk6DoltSOz7M3E/7xOaqNqL+MqSS0qtlgUpYLYmMy+JwOukVkxcYQyzd2thI2opsy6jIouhGD55VXSvKoEfiW4vy7XqnkcBTiFM7iAAG6gBndQhwYwkPAMr/Dmae/Fe/c+Fq1rXj5zAn/gff4AyaKQWg==</latexit>


