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Theoretical Uncertainties in PDFs

Treatment of PDF uncertainties well developed. Two established methods -
Hessian and MC replicas - and procedures for converting between the two.
However this only concerns ‘experimental’ uncertainties, due to propagation
of data errors through to fit.

Other sources of error, due in particular to ‘theory’ in fit:

> Value of strong coupling a5, quark masses m,. ;.

» Treatment of heavy flavour in cross sections.

»  Higher twists effects. .o VIMIHTLE NRLO, Q - 199.‘?Yl2 N
» Nuclear corrections HnQ )1 i .
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fixed-order theory in the fit? g

Increasingly relevant in high precision LHC era.
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MHO Uncertainties

® Generically in fit relate observables O to PDFs f via (schematically):

0~f®a~f®(a<0>+ozso<”+---)

e [Function of PDF fit 1s to invert this relation, giving f (O : (7) :

® But 0 and therefore f(O; o) not known exactly - source of uncertainty due
to the missing higher orders (MHOs) in theory (the *...").

e Typically these MHOs are estimated via scale variations. First concrete
study including these have been recently performed by NNPDF. See Cameron’s talk
® QOur aim 1s a little different - to try and consider from first principles how

such uncertainties should/could be included in a fit.
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é Abstract
Z We present an investigation of the theoretical uncertainties in parton distribution functions
) (PDFs) due to missing higher—order corrections in the perturbative predictions used in the
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Basic Idea

¢ PDF's themselves not observable. Can recast fit process purely in terms of

fit and predicted observables, with no reference to PDFs.

Fit Oy ~ fi(1?) @ o3(p®) ~ fi(u?) @ (0@(0) (1) +as o () + - )

l

fi
v l

Prediction Opred N fi(,u2) R O_g(MQ) N fi(,u2) R (U§O)’(M2) + g O-z(l)/(,uz) + .. )

1 : PDF type

e Rule of thumb: vary scale 1 € (%, QMO). Can propagate through to PDFs.
However, will traditionally then include such a variation again in prediction.

e [f we interpret ‘theory uncertainty’ as that inherent in expressing predicted
quantity in terms of measured one then varying at both 15 and C not
obviously the right procedure.

® Recasting in terms of O <+ O, via A makes this concrete.



Simple Model

e Simplest thing we can consider- fit to non-singlet structure function Fxg

and prediction of another F vs. At NLO: 'd: e
v f@) = [ Cren ().

Fit  Fys(z, Q%) = zqns (7, ;Q%) + asCM ® zgns(7,a;Q%) — aslna; P ® zgns(w, a;Q?)

l

dN S

' l

Prediction Fygs(z, Q%) = zqns(w, a5 Q%) + asCy) @ mqns(x,a5Q?) — asay Pl © xqns(z,arQ?)

e Here a; 5 = ,ui r/ Q? reflects relative variation of factorization scale u

L o 1
(renormalization scale fixed), so that rule of thumb varationis a; € | -, 4>
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e ‘Standard’ fit - fixa; =1 : zgns(z, 1) = Fys(z, u?) — &SC(gl) ® Fys(z, 1),
To O(ag) throughout

e This 1s step I3, to be used in C. However can just as well substitute in expression

for Fy g to get direct relation



Standard Fit

e Simplest thing we can consider- fit to non-singlet structure function Fxg

and prediction of another F vs. At NLO: lde  a
g f@) = [ Creo(2).

Fit  Fis(z, Q%) = zgns(7,a;Q%) + asCM ® zans(z,a:Q%) — aslna; PY ® zqns(z, a;Q?)

l

dN s

' l

Prediction Fys(7, Q%) = zgns(z,a;Q )+OéSC( ) @ zqns(2,a,Q%) — as hflafp( ) @ zqns(z, apQ?)

e Predict:
Fl(IS(x,QQ) — FNs(CC,CLfQQ) + Qg (C(’J(l) — Cél)) ®FNS(x,an )—agIn afP( )®xFNS(:L',an2) :

— Direct Fng < F{g relation, with MHO uncertainty on § Fy g ar€ (le’ 4)

e Straightforward to now consider MHO at fit stage - vary a; . What do we find?



® Doing this we find for relation A: a; f = /%2, 1/Q °

Scale var. -

prediction: Fs(@, Q) = Fivs(z,a;Q°) +dis (Cclz(l) - Cé”) ® Frs(#,a5Q°) — asnap Py @z Fys(z,a;Q%)

Scale var. -
prediction F1<IS (x, QQ) = Ins(x, afiQ2)+C~VS (C(;(l) — C(gl)) ® Fns(x, afiQQ)—&S In afqu(g)@)xFNS (, afz-QQ) :

& fit:
where: af; = le/ai

— Identical up to a; — ay; replacement!

® Thus in this case effect of varying scale in prediction and fit 1s completely

equivalent to variation in prediction alone (or fit):
o L 1 (1t L) man e (L
5FNS' CLZ€<1,4>NCLJCE<Z,4) a'z€<4,4> &af€<4,4> afz€(16,16>
¢ Indeed in terms of fundamental Fiyg <> Fyq relation:

Fig(x, Q%) = Fns(z, aQ?)+as (C’(’J(l) — Cél)) ® Fns(z, aQ?)—égIn an(g)®azFNS(:L’, a@?)

there is only one d.o.f. (‘a’), corresponding to difference in (squared) scale at

which we evaluate Fns and Fy.



Interpretation

Fg(z, Q%) = Fs(z, aQ?)+as (C(’J(l) — C(gl)) ® Fns(z, aQ?)—égIn an(g)@)xFNs(x, a@?)

‘Rule of thumb’ variation: one varies logarithms in g within specified range, to

keep track of decreasing dependence with order, but keeping ¢ ~ O(1) .

Within context of basic Fns <> Fg relation, this leads to a e 6,4) . MHO
uncertainty in PDF should reflect this.

In this example: either vary in fit or prediction by set amount, but not in both.

If one wished to argue for larger variation, this could still be performed with

larger range 1n either fit or prediction - complete overlap between these.

Note: can also extend 1dea to higher orders straightforwardly in Mellin space,

and extension to DY cross section works 1n same way.

F&S(jaQQ) — FNS(jJILLQ)

fé(]7 543) <Q2 ) QsYqq(J,0s)
fq(j7 6‘8) :u2

® (learly global PDF fit much more complex. Can we take this idea further?



Extension

e Next step towards generality, included coupled ¢, g evolution. Toy model - fit to

two structure function observables:

2\ XSsV+ 9\ G5
P =50 (%) Rz (%) R

2\ QsV+ 9\ OLgY—
H@) =20 (%) mersd) (%) B

and prediction of a third, K(Q?). Effect of coupled DGLAP simplified here by
moving to diagonal basis. ¥, . DGLAP eigenvectors

1 quark flavour

® | .eaving details to our paper, varying in fit (as ) and prediction (ay), get:

K(Q?) ~ (Kl—l—asln<a>[(2—|—agln< >K3>F<%Q2>+FHH
aj a f a f

af <7 Qp

® Situation no longer so simple - have introduced completely new logarithmic

dependence on ap/as . Variation in prediction alone would instead give:
K(Q*) ~ (K1 — asln(ag)K2) F (axQ*) + F <+ H

e What does this tell us?



Prediction K(Q*) ~ (K1 — asIn(ax)Ka) F (ax Q) + F < H
only:

Fit & K(Q?) ~ <K1+a51n (Z )K2+Oésh’l<a )K:)))F(%QF) +F < H
k f

prediction: af

¢ Including MHO uncertainty in fit has introduced genuinely new d.o.f. in K < I, H

relation - cannot in general include via variation in fit/prediction alone.

e We find if one assumes variations fully correlated in fit could equally include in

prediction (but implicitly assumes correlated there as well).

Backup
¢ However, things do simplify if one considers low/high x regions:
2\ Qs+ 2\ XSY—
P =) (L) mrzn (%) R
- S1 (4, 1%) = 94, n?)
* High x: +’ | N . I N
S_(4, 1%) = Tq(j, 1*) Lowz: g(j,pu”) ~q(j, ") ~ 240, 17)

e That is, certain eigenvectors dominate, with consequences for our results...
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Low/High x limits

® In both cases, dominance of single eigenvector/separation of ¢, g means that we
revert back to original ‘non-singlet’ case.

¢ Consider e.g. fit to processes sensitive to high  gluon (jets, ¢¢...). Then:
) P sl g )

2\ X5+ 2\ ¥s7- N
FQ) =0 (%) mersed) (L) B reh -z (ff_) .

f f

~Y g ~ Eq
: oy _ Ky ~ af ak ~2
and : K(Q°)=—=<1+aghn|{ =)y s F|—Q
F_|_ ajg af

one scale d.o.f, 1.e. vary in fit/prediction but not both, as in simple case.



do/dpry [pb/GeV]

Renormalization Scale

e Consider within very simple toy model, fit to A(Q?)and predict B(Q?):

A 2
A(QQ) — &S(M?)Al [1 —+ &Sf({uz) <A2 -+ ﬁ(O)Al In CLZ')
1
) as(p7)
B(Q?%) = aS(,u?c)Bl 1+ Blf (32 + 30 B, lnaf)

o Ifwe write ag <> A(Q?), then in fact find similar situation to factorization scale.

But not what we are interested in here, 1.e. a fit to PDFs.

q(@Q?) .

q(Q?%)

® In that case, no simple breakdown of scales as before. However, what if we

consider two related processes (e.g. W, Z)?

(N)NLO QCD for V+jet @ 13 TeV

1.2 1.2

= & 12 —

A 1.1 B~ = 1.1 = _—.-.-%

8, 1.0 & J& 1.0 = =

, Q 99 F c 0.9 = =
Z(0F07) 4 jet Zz 0.8 & é 0.8 & =
3 O.Z B _—_—5@% O.g = é

== 10 \ 5 0.6 = - . 5 0.6 [ Tren
NLOQCD W(lv)+ jet | © o5& Z(eT )+ Jet = 05 W(lv)+ jet E

== NNLO QCD 0'4 ;7\ ‘ ‘ | | ‘ I N B € 0'4 = ‘ ‘ I | ‘ | | ﬂ

J. M. Lindert et al., Eur. Phys. J. C77 (2017) no.12, 829
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Related Processes

® On the other hand for two related processes (e.g. W, Z):

A2 B2
— ~ —==CC
Al Bl NLO
our fit results 1n the relation:
o BIA(Q?) as(p}) ) _ Bs . As
B(Q7) =—4 Ao 1+ B89 (Gs(u}) Inap — as(uf) Inas) + g as(uf) - A—las(u?)‘ -

B(Q) = by [1 + 8O (&S(u?g) Inar— as(ps) In CLZ') + CNLO (@S(M?) — &S(M%))]

A(Q%) A

¢ Thus, to maintain consistency with requirement that this ratio A(Q?)/B(Q?)
should be ~ constant under inclusion of higher-order QCD corrections, need to

take pt; ~ py 1n relation between fit/predicted observables.

® [n practice, keeping track of such fit/prediction correlations impossible. However
can enter at same level as correlations between related processes in fit = (open)

question of whether it makes sense to include one when 1ignoring the other.



In Summary

e By considering PDF fit as a relation between different observables we find that:

* Including factorization scale variation in both fit and prediction leads to
overestimate of error in certain regimes (simplified model - low/high x ).

* Only varying in predictions does not fully account for theory error
inherent 1n the relationship between observables.

* Assuming a full correlation between factorization scales at the fit stage also

misses this (and if fully correlated in fit, why not in prediction as well?).

e A possible route forward (future work):

* Vary factorization scale at fit stage.
* Do not vary factorization scale at prediction stage.
* Apply a phenomenological approach for dealing with correlation between

different processes entering fit.



Caveats

% Caveat 1 : This all relies on us trusting scale variation as the correct approach.
Our results might even be taken as indication that it 1s not. But result of Working

in physical basis should apply in any case.

* Caveat 2 : Only applies to factorization scale. We find renormalization scale 1s
different, with no clear fit/prediction overlap (i.e. should include both). However
correlations between related processes (e.g. W, Z ) in hit/prediction in principle as

important as in fit.



Thank you for |i5tening!
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Correlated Scale Variations

K(Q?) ~ (Kl—l—agln(a)Kz—l—aSln( >K3>F<%Q2>+FHH
aj a f a f

® If one assumes all factorization scale variation 1s correlated across observables,

have ay = ay, and:

K(Q%) ~ (K1 — asn(axf)Ky) F (arsQ°) + F < H
compare with variation in prediction alone:
K(Q%) ~ (K1 — asn(ax)K2) F (axQ*) + F < H

® Thus again we reduce back to case where variation could be included in either
fit or prediction, but not both (n.b. correlation in fit observables = correlation
in predicted ones).

e However such an assumption appears to be overly strong, missing some of the

genuine d.o.f inherent in the K <+ F, H relation.
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Renormalization Scale

e Consider within very simple toy model, fit to A(Q?)and predict B(Q?):

A = asut) Ay |1+ 25

A, (Az + 894 1n ai) q(Q?) .

~

Oés(uic)
By

B(Q?) = as(u})B1 |1+

(32 + 398, 1In af)- q(Q%)

o Ifwe write ag <> A(Q?), then in fact find similar situation to factorization scale.

But not what we are interested in here, 1.e. a fit to PDFs.

¢ |n that case, no simple breakdown of scales as before (fact. scale fixed here):

B1 A(Q?) as(p
B(Q?) = 1A<1Q ﬁiiig 1+ 89 (as(uf) Inay — as(uf) Ina;) + 5 () — Fas ()| -

e.g. 1t we take ity = 1ti (ay; = 1) and vary renormalization scales, this 1s not the
same as taking a; = ay =1 (fi,r = &), as 1n case of factorisation scale - due to

3rd/4th terms which depend on absolute scales 1, y.



