Parton Branching TMDs with angular ordering condition and their application to \mathbf{Z} boson q_{\perp} spectrum

DIS 2019

- Ola Lelek ${ }^{1}$ Francesco Hautmann ${ }^{1,2}$ Hannes Jung ${ }^{1,3}$ Mees van Kampen ${ }^{1}$ Lissa Keersmaekers ${ }^{1}$
${ }^{1}$ University of Antwerp (UAntwerp)
${ }^{2}$ University of Oxford
${ }^{3}$ Deutsches Elektronen-Synchrotron (DESY)

Motivation

Motivation: why do we need TMDs?

Collinear PDFs:
$\widetilde{f}_{a}\left(x, \mu^{2}\right)$ - proton structure in longitudinal direction
3D mapping:
Transverse Momentum Dependent (TMD) PDFs TMD $\left(x, k_{\perp}, \mu^{2}\right)$

Motivation: why do we need TMDs?

> Collinear PDFs:
> $\widetilde{f}_{a}\left(x, \mu^{2}\right)$ - proton structure in longitudinal direction
> 3D mapping:
> Transverse Momentum Dependent (TMD) PDFs TMD $\left(x, k_{\perp}, \mu^{2}\right)$

Some observables problematic for collinear factorization and pQCD.
\rightarrow TMD factorization theorems (Collins-Soper-Sterman, High energy $\left(k_{\perp^{-}}\right)$factorization) Wide area of applications

Motivation

> Motivation:

We want to develop an approach in which transverse momentum kinematics will be treated without any mismatch between matrix element (ME) and PS

Standard MC predictions

Motivation

Motivation:

We want to develop an approach in which transverse momentum kinematics will be treated without any mismatch between matrix element (ME) and PS

Standard MC predictions

Mismatch between PDF used by $\hat{\sigma}$ and PS

Motivation

Motivation:

We want to develop an approach in which transverse momentum kinematics will be treated without any mismatch between matrix element (ME) and PS

Standard MC predictions

Alternative approach: Eur. Phys. J. C19, 351 (2001)

Mismatch between PDF used by $\hat{\sigma}$ and PS

Motivation

Motivation:

We want to develop an approach in which transverse momentum kinematics will be treated without any mismatch between matrix element (ME) and PS

Standard MC predictions

Alternative approach: Eur. Phys. J. C19, 351 (2001)

Mismatch between PDF used by $\hat{\sigma}$ and PS

Goal: to construct TMDs in a wide range of x, k_{\perp} and μ^{2}

Parton Branching (PB) method

We construct (and solve using MC solution) an iterative equation for a parton density which takes into account also the transverse momentum at each branching

Plan for today

Plan for today:

- Parton Branching (PB) TMDs
- comparison of PB with other existing approaches

Transverse momentum in PB

How to connect branching scale $\mu^{\prime 2}$ and $q_{\perp, c}^{2}$?

$$
\begin{array}{cc}
p_{\perp} \text {-ordering: } & q_{\perp, c}^{2}=\mu^{\prime 2} \\
\text { virtuality ordering: } & q_{\perp, c}^{2}=(1-z) \mu^{\prime 2} \\
\text { angular ordering: } & q_{\perp, c}^{2}=(1-z)^{2} \mu^{\prime 2}
\end{array}
$$

Transverse momentum in PB

How to connect branching scale $\mu^{\prime 2}$ and $q_{\perp, c}^{2}$? resolvable \& non-resolvable \Rightarrow condition on $\min q_{\perp, c}^{2} \Rightarrow z_{M}$

$$
\begin{array}{ccc}
p_{\perp} \text {-ordering: } & q_{\perp, c}^{2}=\mu^{\prime 2} & z_{M}=\text { fixed } \\
\text { virtuality ordering: } & q_{\perp, c}^{2}=(1-z) \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2} \\
\text { angular ordering: } & q_{\perp, c}^{2}=(1-z)^{2} \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)
\end{array}
$$

Transverse momentum in PB

How to connect branching scale $\mu^{\prime 2}$ and $q_{\perp, c}^{2}$? resolvable \& non-resolvable \Rightarrow condition on $\min q_{\perp, c}^{2} \Rightarrow z_{M}$ The argument of α_{s} should be $q_{\perp, c}^{2}$

$$
\begin{array}{cccc}
p_{\perp} \text {-ordering: } & q_{\perp, c}^{2}=\mu^{\prime 2} & z_{M}=\text { fixed } & \alpha_{S}\left(\mu^{\prime 2}\right) \\
\text { virtuality ordering: } & q_{\perp, c}^{2}=(1-z) \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2} & \alpha_{S}\left((1-z) \mu^{\prime 2}\right) \\
\text { angular ordering: } & q_{\perp, c}^{2}=(1-z)^{2} \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right) & \alpha_{S}\left((1-z)^{2} \mu^{\prime 2}\right)
\end{array}
$$

Transverse momentum in PB

How to connect branching scale $\mu^{\prime 2}$ and $q_{\perp, c}^{2}$? resolvable \& non-resolvable \Rightarrow condition on $\min q_{\perp, c}^{2} \Rightarrow z_{M}$ The argument of α_{s} should be $q_{\perp, c}^{2}$

$$
p_{\perp} \text {-ordering: } \quad q_{\perp, c}^{2}=\mu^{2} \quad z_{M}=\text { fixed }
$$

virtuality ordering:

$$
\begin{array}{cc}
q_{\perp, c}^{2}=(1-z) \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2}
\end{array} \alpha_{s}\left((1-z) \mu^{\prime 2}\right)
$$

$$
\vec{k}_{1, a}=\vec{k}_{1, b}-\vec{q}_{1, c}
$$

Transverse momentum in PB

How to connect branching scale $\mu^{\prime 2}$ and $q_{\perp, c}^{2}$? resolvable \& non-resolvable \Rightarrow condition on $\min q_{\perp, c}^{2} \Rightarrow z_{M}$ The argument of α_{s} should be $q_{\perp, c}^{2}$

$$
p_{\perp} \text {-ordering: } \quad q_{\perp, c}^{2}=\mu^{\prime 2} \quad z_{M}=\text { fixed } \quad \alpha_{s}\left(\mu^{\prime 2}\right)
$$

virtuality ordering:

$$
\begin{array}{cccc}
\text { virtuality ordering: } & q_{\perp, c}^{2}=(1-z) \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2} & \alpha_{s}\left((1-z) \mu^{\prime 2}\right) \\
\text { angular ordering: } & q_{\perp, c}^{2}=(1-z)^{2} \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right) & \alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right) \\
& \vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{q}_{\perp, c} &
\end{array}
$$

$$
\begin{aligned}
& \tilde{A}_{a}\left(x, k_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \widetilde{A}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right)+ \\
& \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{~d}^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \int_{x}^{z_{M}} \mathrm{~d} z P_{a b}^{R}\left(z, \mu^{\prime 2}, \alpha_{s}\left(a(z)^{2} \mu^{\prime 2}\right)\right) \widetilde{A}_{b}\left(\frac{x}{z}, k_{\perp}+a(z) \mu_{\perp}, \mu^{\prime 2}\right)
\end{aligned}
$$

Transverse momentum in PB

How to connect branching scale $\mu^{\prime 2}$ and $q_{\perp, c}^{2}$? resolvable \& non-resolvable \Rightarrow condition on $\min q_{\perp, c}^{2} \Rightarrow z_{M}$ The argument of α_{s} should be $q_{\perp, c}^{2}$

$$
\begin{array}{cccc}
p_{\perp} \text {-ordering: } & q_{\perp, c}^{2}=1 \mu^{\prime 2} & z_{M}=\text { fixed } & \alpha_{s}\left(1 \mu^{\prime 2}\right) \\
\text { virtuality ordering: } & q_{\perp, c}^{2}=(1-z) \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2} & \alpha_{s}\left((1-z) \mu^{\prime 2}\right) \\
\text { angular ordering: } & q_{\perp, c}^{2}=\underbrace{(1-z)^{2}}_{a^{2}(z)} \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right) & \alpha_{s}(\underbrace{(1-z)^{2}}_{a^{2}(z)} \mu^{\prime 2}) \\
& \vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{q}_{\perp, c} &
\end{array}
$$

$$
\begin{aligned}
& \widetilde{A}_{a}\left(x, k_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \widetilde{A}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right)+ \\
& \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{~d}^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \int_{x}^{z M} \mathrm{~d} z P_{a b}^{R}\left(z, \mu^{\prime 2}, \alpha_{s}\left(a(z)^{2} \mu^{\prime 2}\right)\right) \widetilde{A}_{b}\left(\frac{x}{z}, k_{\perp}+a(z) \mu_{\perp}, \mu^{\prime 2}\right)
\end{aligned}
$$

- PB method: effect of every individual part of the ordering definition can be studied separately

Transverse momentum in PB

How to connect branching scale $\mu^{\prime 2}$ and $q_{\perp, c}^{2}$? resolvable \& non-resolvable \Rightarrow condition on $\min q_{\perp, c}^{2} \Rightarrow z_{M}$ The argument of α_{s} should be $q_{\perp, c}^{2}$

$$
p_{\perp} \text {-ordering: } \quad q_{\perp, c}^{2}=\mu^{\prime 2} \quad z_{M}=\text { fixed } \quad \alpha_{s}\left(\mu^{\prime 2}\right)
$$

virtuality ordering:

$$
\begin{array}{cccc}
\text { virtuality ordering: } & q_{\perp, c}^{2}=(1-z) \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2} & \alpha_{s}\left((1-z) \mu^{\prime 2}\right) \\
\text { angular ordering: } & q_{\perp, c}^{2}=(1-z)^{2} \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right) & \alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right) \\
\vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{q}_{\perp, c} &
\end{array}
$$

$$
\begin{aligned}
& \widetilde{A}_{a}\left(x, k_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \widetilde{A}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right)+ \\
& \left.\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{~d}^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \int_{x}^{z_{M} \approx 1} \mathrm{~d} z P_{a b}^{R}\left(z, \mu^{\prime 2}, \alpha_{s}\left(1 \mu^{\prime 2}\right)\right) \widetilde{A}_{b}\left(\frac{x}{z}, k_{\perp}+a(z) \mu_{\perp}, \mu^{\prime 2}\right) \right\rvert\, \int \mathrm{d} k_{\perp}^{2}
\end{aligned}
$$

Transverse momentum in PB

How to connect branching scale $\mu^{\prime 2}$ and $q_{\perp, c}^{2}$? resolvable \& non-resolvable \Rightarrow condition on $\min q_{\perp, c}^{2} \Rightarrow z_{M}$ The argument of α_{s} should be $q_{\perp, c}^{2}$

$$
p_{\perp} \text {-ordering: } \quad q_{\perp, c}^{2}=\mu^{\prime 2} \quad z_{M}=\text { fixed } \quad \alpha_{s}\left(\mu^{\prime 2}\right)
$$

virtuality ordering:
angular ordering:

$$
\left.\begin{array}{cc}
q_{\perp, c}^{2}=(1-z) \mu^{\prime 2} & z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2} \\
q_{\perp, c}^{2}=(1-z)^{2} \mu^{\prime 2} & \alpha_{M}\left((1-z) \mu^{\prime 2}\right) \\
\vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{q}_{\perp, c} & \\
\mu_{0}^{\prime}
\end{array}\right) \alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right)
$$

$$
\begin{aligned}
& \widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
+ & \int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu^{\prime 2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \sum_{b} \int_{x}^{z_{M}} d z P_{a b}^{R}\left(\mu^{\prime 2}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, \mu^{\prime 2}\right)
\end{aligned}
$$

Effect of ordering choice and z_{M} on TMDs

p_{\perp} - ordering
$q_{\perp}^{2}=1 \mu^{\prime 2}$
NOT stable TMDs
gluon, $x=0.01, \mu=100 \mathrm{GeV}$

virtuality ordering
$q_{\perp}^{2}=(1-z) \mu^{\prime 2}$
gluon, $x=0.01, \mu=100 \mathrm{GeV}$

angular ordering
$q_{\perp}^{2}=(1-z)^{2} \mu^{\prime 2}$
stable TMDs

Note1: Everywhere $\alpha_{s}\left(\mu^{\prime 2}\right)$

Effect of ordering choice and z_{M} on TMDs

gluon, $x=0.01, \mu=100 \mathrm{GeV}$

$$
p_{\perp}-\text { ordering }
$$

$$
q_{\perp}^{2}=1 \mu^{\prime 2}
$$

NOT stable TMDs

Note1: Everywhere $\alpha_{s}\left(\mu^{\prime 2}\right)$
Note2: All these TMDs after integration over k_{\perp} give the same collinear PDF

Phys.Lett. B772 (2017) 446-451
JHEP 1801 (2018) 070
gluon, $x=0.01, \mu=100 \mathrm{GeV}$

virtuality ordering

$$
q_{\perp}^{2}=(1-z) \mu^{\prime 2}
$$

$q_{\perp}^{2}=(1-z)^{2} \mu^{\prime 2}$
stable TMDs

Prediction for \mathbf{Z} boson p_{\perp} spectrum using TMDs

Z. Phys. C32, 67 (1986)

Procedure:

- DY collinear ME

Prediction for \mathbf{Z} boson p_{\perp} spectrum using TMDs

Z. Phys. C32, 67 (1986)

Procedure:

- DY collinear ME
- Generate k_{\perp} of $q \bar{q}$ according to TMDs
 ($m_{\text {DY }}$ fixed, x_{1}, x_{2} change)
- compare with the 8 TeV ATLAS measurement

Prediction for Z boson p_{\perp} spectrum using TMDs

here: DY LO matrix element from Pythia: $q \bar{q} \rightarrow Z$
data from ATLAS measurement Eur. Phys. J. C76, 291 (2016)

- difference between angular and virtuality ordering visible
- angular ordering: the shape of Z boson p_{\perp} spectrum reproduced

Prediction for Z boson p_{\perp} spectrum using TMDs

here: DY LO matrix element from Pythia: $q \bar{q} \rightarrow Z$
data from ATLAS measurement Eur. Phys. J. C76, 291 (2016)

- difference between angular and virtuality ordering visible
- angular ordering: the shape of Z boson p_{\perp} spectrum reproduced
- with $\alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right)$ agreement within the data much better than for $\alpha_{s}\left(\mu^{\prime 2}\right)$

Prediction for Z boson p_{\perp} spectrum using TMDs

here: DY LO matrix element from Pythia: $q \bar{q} \rightarrow Z$ data from ATLAS measurement Eur. Phys. J. C76, 291 (2016)

Summarizing: angular ordering allows for stable TMDs definition and $Z p_{\perp}$ spectrum description: \rightarrow Fit using xFitter: HERA H1 and ZEUS combined DIS measurement Eur.Phys.J. C75 (2015) no.12, 580 for angular ordering for two scenarios:

- Set1: $\alpha_{s}\left(\mu^{\prime 2}\right)$, reproduces HERAPDF2.0
- Set2: $\alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right)$, different HERAPDF2.0

Prediction for Z boson p_{\perp} spectrum using TMDs

here: DY LO matrix element from Pythia: $q \bar{q} \rightarrow Z$ data from ATLAS measurement Eur. Phys. J. C76, 291 (2016)

Results after the fit. Experimental and model uncertainty arXiv:1804.11152, in Phys. Rev. D soon

Summarizing: angular ordering allows for stable TMDs definition and $Z p_{\perp}$ spectrum description: \rightarrow Fit using xFitter: HERA H1 and ZEUS combined DIS measurement Eur.Phys.J. C75 (2015) no.12, 580 for angular ordering for two scenarios:

- Set1: $\alpha_{s}\left(\mu^{\prime 2}\right)$, reproduces HERAPDF2.0
- Set2: $\alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right)$, different HERAPDF2.0 prediction for the whole p_{\perp} spectrum directly from the PB method no tuning/adjustment of free parameters

Current Activities

- PS from TMDs \rightarrow see talk by Melanie Schmitz
- off-shell ME with TMDs
- PB TMDs with low-x effects \rightarrow see talk by Sara Taheri Monfared
- Comparison of PB with other approaches \rightarrow I concentrate on that now

PB and other approaches

PB and Marchesini, Webber

PB with angular ordering is very successful

PB and Marchesini, Webber

PB with angular ordering is very successful

PB for angular ordering:

$$
\begin{align*}
& \widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
+ & \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \sum_{b} \int_{x}^{1-\frac{q_{0}}{\mu^{\prime}}} d z P_{a b}^{R}\left(\alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right), \mu^{\prime 2}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, \mu^{\prime 2}\right) \tag{1}
\end{align*}
$$

where

$$
q_{\perp, i}^{2}=\left(1-z_{i}\right)^{2} \mu^{\prime 2}
$$

Eq. (1) is identical to the Marchesini and Webber (MarWeb1988) prescription Nuclear Physics B310 (1988) 461-526

PB and Kimber- Martin- Ryskin- Watt (KMRW)

PB for angular ordering written in terms of integral over q_{\perp} (identical to MarWeb1988):

$$
\begin{aligned}
& \widetilde{f}_{a}\left(x, \mu^{2}\right)= \\
&+\quad \widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
&+ \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \sum_{b}^{(1-x)^{2} \mu^{2}} \int_{x}^{1-\frac{q_{\perp}}{\mu}} d z \Delta_{a}\left(\mu^{2}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) P_{a b}^{R}\left(\alpha_{s}\left(q_{\perp}^{2}\right), \frac{q_{\perp}^{2}}{(1-z)^{2}}, z\right) \widetilde{f_{b}}\left(\frac{x}{z}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right)
\end{aligned}
$$

PB and Kimber- Martin- Ryskin- Watt (KMRW)

PB for angular ordering written in terms of integral over q_{\perp} (identical to MarWeb1988):

$$
\begin{aligned}
\widetilde{f}_{a}\left(x, \mu^{2}\right)= & \widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
+\quad & \int_{q_{0}^{2}}^{(1-x)^{2} \mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \sum_{b} \int_{x}^{1-\frac{q_{\perp}}{\mu}} d z \Delta_{a}\left(\mu^{2}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) P_{a b}^{R}\left(\alpha_{s}\left(q_{\perp}^{2}\right), \frac{q_{\perp}^{2}}{(1-z)^{2}}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right)
\end{aligned}
$$

KMRW: TMDs (unintegrated PDFs) obtained from the integrated PDFs and the Sudakov form factors Phys. Rev. D63 (2001) 114027

$$
\begin{aligned}
& \tilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
&+\int_{q_{0}^{2}}^{q_{M}^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \underbrace{\sum_{x} \int_{x}^{z M} d z \Delta_{a}\left(\mu^{2}, q_{\perp}^{2}\right)}_{\tilde{b}}
\end{aligned}
$$

at last step of the evolution the unintegrated distribution becomes dependent on two scales: q_{\perp} and μ

PB and Kimber- Martin- Ryskin- Watt (KMRW)

PB for angular ordering written in terms of integral over q_{\perp} (identical to MarWeb1988):

$$
\begin{aligned}
& \widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
&+\quad \int_{q_{0}^{2}}^{(1-x)^{2} \mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \sum_{b} \int_{x}^{1-\frac{q_{\perp}}{\mu}} d z \Delta_{a}\left(\mu^{2}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) P_{a b}^{R}\left(\alpha_{s}\left(q_{\perp}^{2}\right), \frac{q_{\perp}^{2}}{(1-z)^{2}}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right)
\end{aligned}
$$

KMRW: TMDs (unintegrated PDFs) obtained from the integrated PDFs and the Sudakov form factors Phys. Rev. D63 (2001) 114027

$$
\begin{aligned}
& \tilde{f}_{a}\left(x, \mu^{2}\right)=\tilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
&+\int_{q_{0}^{2}}^{q_{M}^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \underbrace{\sum_{x} \int_{x}^{z M} d z \Delta_{a}\left(\mu^{2}, q_{\perp}^{2}\right) P_{a b}^{R}\left(\alpha_{\perp}^{2}\right)}_{\tilde{b}}
\end{aligned}
$$

at last step of the evolution the unintegrated distribution becomes dependent on two scales: q_{\perp} and μ
In KMRW:

- "Strong ordering" : $q_{M}^{2}=(1-x)^{2} \mu^{2}$ and $z_{M}=1-\frac{q_{\perp}}{\mu}$
- "Angular ordering" $q_{M}^{2}=\left(\frac{1-x}{x}\right)^{2} \mu^{2}$ and $z_{M}=1-\frac{q_{\perp}}{q_{\perp}+\mu}$

PB and KMRW: distributions

PB: intrinsic k_{\perp} is a Gauss distribution with width $=0.5 \mathrm{GeV}$
KMRW parametrization for $k_{\perp}<k_{0}=1 \mathrm{GeV}$:

$$
\frac{\widetilde{f}_{a}\left(x, k_{\perp}, \mu^{2}\right)}{k_{\perp}^{2}}=\frac{1}{\mu_{0}^{2}} \widetilde{f}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)=\mathrm{const}
$$

MRW-ct10nlo: TMD sets obtained according to KMRW formalism with angular ordering included in TMDlib Eur.Phys.J.C78(2018)no.2,137

PB and KMRW: distributions

PB: intrinsic k_{\perp} is a Gauss distribution with width $=0.5 \mathrm{GeV}$
KMRW parametrization for $k_{\perp}<k_{0}=1 \mathrm{GeV}$:

$$
\frac{\widetilde{f}_{a}\left(x, k_{\perp}, \mu^{2}\right)}{k_{\perp}^{2}}=\frac{1}{\mu_{0}^{2}} \widetilde{f}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)=\mathrm{const}
$$

MRW-ct10nlo: TMD sets obtained according to KMRW formalism with angular ordering included in TMDlib Eur.Phys.J.C78(2018)no.2,137

PB and KMRW: distributions

PB: intrinsic k_{\perp} is a Gauss distribution with width $=0.5 \mathrm{GeV}$
KMRW parametrization for $k_{\perp}<k_{0}=1 \mathrm{GeV}$:

$$
\frac{\widetilde{f}_{a}\left(x, k_{\perp}, \mu^{2}\right)}{k_{\perp}^{2}}=\frac{1}{\mu_{0}^{2}} \widetilde{f}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)=\text { const }
$$

MRW-ct10nlo: TMD sets obtained according to KMRW formalism with angular ordering included in TMDlib Eur.Phys.J.C78(2018)no.2,137 exercise:

take PB with angular ordering but take k_{\perp} only from the last emission do $\vec{k}_{\perp, a}=-\vec{a}_{\perp, c}$ instead $\vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{d}_{\perp, c}$ (PB full)
$k_{t}<1 \mathrm{GeV}$:

- KMRW: initial parametrization
- PB last Step: matching of intrinsic k_{\perp} and evolution clearly visible
- PB full: matching of intrinsic k_{\perp} and evolution smeared during evolution

For $k_{t} \in(\approx 10 \mathrm{GeV}, \approx \mu)$:
PB full and KMRW very similar!

iTMDs

- PB, PB last Step and KMRW do not integrate back to ct10nlo (as expected, z_{M} far from $\left.1, \alpha_{s}\left(q_{\perp}\right)\right)$
- KMRW integrated up to ∞ much higher than integrated up to μ (large k_{\perp} tail has significant contribution)

Z boson p_{\perp} spectrum

- PB with angular ordering and full evolution works very well
- KMRW works well for small and middle-range k_{\perp} but for higher k_{\perp} it overestimates the data
- PB with last step evolution not sufficient

PB and Collins, Soper and Sterman

WORK IN PROGRESS

CSS: TMD factorization formula for the DY cross section:
Nuclear Physics B250 (1985) 199-224

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{2} q_{\perp} \mathrm{d} M^{2} \mathrm{~d} y}=\sum_{q, \bar{q}} \frac{\sigma^{0}}{s} H\left(\alpha_{s}\right) \int \frac{\mathrm{d}^{2} b}{(2 \pi)^{2}} e^{i q_{\perp} \cdot b} \mathcal{F}_{q}\left(x_{1}, b, M\right) \mathcal{F}_{\bar{q}}\left(x_{2}, b, M\right)+Y
$$

where

$$
\begin{array}{r}
\mathcal{F}_{i}(x, b, M)=\exp \left(-\frac{1}{2} \int_{c_{0} / b^{2}}^{M^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}}\left[A_{i}\left(\alpha_{s}\left(\mu^{\prime 2}\right)\right) \ln \left(\frac{M^{2}}{\mu^{\prime 2}}\right)+B_{i}\left(\alpha_{s}\left(\mu^{\prime 2}\right)\right)\right]\right) \sqrt{G_{\mathrm{NP}(b)}} \\
\\
\times \sum_{j} \int_{x}^{1} \frac{\mathrm{~d} z}{z} C_{i j}\left(z, \alpha_{s}\left(\frac{c_{0}}{b^{2}}\right)\right) f_{j}\left(\frac{x}{z}, \frac{c_{0}}{b^{2}}\right)
\end{array}
$$

and A, B, C, H - have perturbative expansion

PB and Collins, Soper and Sterman

WORK IN PROGRESS

CSS: TMD factorization formula for the DY cross section:
Nuclear Physics B250 (1985) 199-224

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{2} q_{\perp} \mathrm{d} M^{2} \mathrm{~d} y}=\sum_{q, \bar{q}} \frac{\sigma^{0}}{s} H\left(\alpha_{s}\right) \int \frac{\mathrm{d}^{2} b}{(2 \pi)^{2}} e^{i q_{\perp} \cdot b} \mathcal{F}_{q}\left(x_{1}, b, M\right) \mathcal{F}_{\bar{q}}\left(x_{2}, b, M\right)+Y
$$

where

$$
\begin{array}{r}
\mathcal{F}_{i}(x, b, M)=\exp \left(-\frac{1}{2} \int_{c_{0} / b^{2}}^{M^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}}\left[A_{i}\left(\alpha_{s}\left(\mu^{\prime 2}\right)\right) \ln \left(\frac{M^{2}}{\mu^{\prime 2}}\right)+B_{i}\left(\alpha_{s}\left(\mu^{\prime 2}\right)\right)\right]\right) \sqrt{G_{\mathrm{NP}(b)}} \\
\quad \times \sum_{j} \int_{x}^{1} \frac{\mathrm{~d} z}{z} C_{i j}\left(z, \alpha_{s}\left(\frac{c_{0}}{b^{2}}\right)\right) f_{j}\left(\frac{x}{z}, \frac{c_{0}}{b^{2}}\right)
\end{array}
$$

and A, B, C, H - have perturbative expansion

- one scale evolution up to a scale c_{0} / b
- in the last step of the evolution the dependence on the second scale enters

Sudakov form factor in PB and CSS

WORK IN PROGRESS

$$
\begin{array}{r}
\mathcal{F}_{i}(x, b, M)=\exp \left(-\frac{1}{2} \int_{c_{0} / b^{2}}^{M^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}}\left[A_{i}\left(\alpha_{s}\left(\mu^{\prime 2}\right)\right) \ln \left(\frac{M^{2}}{\mu^{\prime 2}}\right)+B_{i}\left(\alpha_{s}\left(\mu^{\prime 2}\right)\right)\right]\right) \sqrt{G_{N P}(b)} \\
\\
\times \sum_{j} \int_{x}^{1} \frac{\mathrm{~d} z}{z} C_{i j}\left(z, \alpha_{s}\left(\frac{c_{0}}{b^{2}}\right)\right) f_{j}\left(\frac{x}{z}, \frac{c_{0}}{b^{2}}\right)
\end{array}
$$

Sudakov form factor in PB and CSS

WORK IN PROGRESS

$$
\begin{array}{r}
\mathcal{F}_{i}(x, b, M)=\exp \left(-\frac{1}{2} \int_{c_{0} / b^{2}}^{M^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}}\left[A_{i}\left(\alpha_{s}\left(\mu^{\prime 2}\right)\right) \ln \left(\frac{M^{2}}{\mu^{\prime 2}}\right)+B_{i}\left(\alpha_{s}\left(\mu^{\prime 2}\right)\right)\right]\right) \sqrt{G_{\mathrm{NP}(b)}} \\
\\
\times \sum_{j} \int_{x}^{1} \frac{\mathrm{~d} z}{z} C_{i j}\left(z, \alpha_{s}\left(\frac{c_{0}}{b^{2}}\right)\right) f_{j}\left(\frac{x}{\boldsymbol{z}}, \frac{c_{0}}{b^{2}}\right)
\end{array}
$$

PB: Sudakov form factor in terms of P_{a}^{V} (momentum sum rule) for angular ordering:

$$
\begin{aligned}
& \text { ordering: } \\
& \Delta_{a}\left(\mu^{2}\right)=\exp \left(-\int_{q_{0}^{2}}^{\mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \alpha_{s}\left(q_{\perp}\right)\left(\int_{0}^{1-\frac{q_{\perp}}{\mu}} d z\left(k_{a} \frac{1}{1-z}\right)-d\right)\right) .
\end{aligned}
$$

notice: $\int_{0}^{1-\frac{q_{\perp}}{\mu}} d z\left(\frac{1}{1-z}\right)=\frac{1}{2} \ln \left(\frac{\mu}{q_{\perp}}\right)^{2}$
PB with angular ordering: in Sudakov the same coefficients as $\underbrace{A^{1}}_{\text {LL }}, \underbrace{A^{2} \text { and } B^{1}}_{\text {NLL }}$ in CSS

Resummation scheme dependence

WORK IN PROGRESS

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{2} q_{\perp} \mathrm{d} M^{2} \mathrm{~d} y}=\sum_{q, \bar{q}} \frac{\sigma^{0}}{s} H\left(\alpha_{s}\right) \int \frac{\mathrm{d}^{2} b}{(2 \pi)^{2}} e^{i q_{\perp} \cdot b} \mathcal{F}_{q}\left(x_{1}, b, M\right) \mathcal{F}_{\bar{q}}\left(x_{2}, b, M\right)+Y
$$

NNLL: difference of CSS and PB B_{2} comes from renormalization group

Sudakov form factor is process dependent Nucl.Phys. B596 (2001) 299-312
renormalization group equation: $\frac{\partial \ln H}{\partial \ln \mu^{2}}=\gamma\left(\alpha_{S}\right)$
solution: $H\left(\alpha_{s}\left(M^{2}\right)\right)=\exp \left(\int_{c_{0} / b^{2}}^{M^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}} \gamma\left(\alpha_{s}\left(\mu^{\prime 2}\right)\right)\right) H\left(\alpha_{s}\left(\frac{c_{0}}{b^{2}}\right)\right)$
This changes coefficient B in the Sudakov
$B\left(\alpha_{s}\right) \rightarrow B\left(\alpha_{s}\right)-\frac{\beta\left(\alpha_{s}\right)}{H\left(\alpha_{s}\right)} \frac{\partial H}{\partial \alpha_{s}}$
At $\mathcal{O}\left(\alpha_{s}^{2}\right): B^{2}\left(\alpha_{s}\right) \rightarrow B^{2}\left(\alpha_{s}\right)+\pi \beta_{0} H^{1}$
$H^{1}=16\left(\frac{\pi^{2}}{6}-1\right)$

Summary and Conclusions

Summary and Conclusions

- PB: collinear PDFs and TMDs obtained
- different ordering definitions studied; visible effects on TMDs and Z boson p_{\perp} Angular ordering: stable (z_{M}-independent) TMDs and good description of Z boson p_{\perp}
- many different activities ongoing shown today: ongoing studies on comparison with Marchesini and Webber, KMRW and CSS
- results in:

Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070, arXiv:1804.11152 (in Phys. Rev. D soon)
new paper in preparation!

Summary and Conclusions

- PB: collinear PDFs and TMDs obtained
- different ordering definitions studied; visible effects on TMDs and Z boson p_{\perp} Angular ordering: stable (z_{M}-independent) TMDs and good description of Z boson p_{\perp}
- many different activities ongoing shown today: ongoing studies on comparison with Marchesini and Webber, KMRW and CSS
- results in:

Phys.Lett. B772 (2017) 446-451,
JHEP 1801 (2018) 070, arXiv:1804.11152 (in Phys. Rev. D soon)
new paper in preparation!

Outlook:
new level of precision in obtaining predictions for QCD observables (hard ME and PS follow the same TMD) for LHC and future colliders

Summary and Conclusions

- PB: collinear PDFs and TMDs obtained
- different ordering definitions studied; visible effects on TMDs and Z boson p_{\perp} Angular ordering: stable (z_{M}-independent) TMDs and good description of Z boson p_{\perp}
- many different activities ongoing shown today: ongoing studies on comparison with Marchesini and Webber, KMRW and CSS
- results in:

Phys.Lett. B772 (2017) 446-451,
JHEP 1801 (2018) 070, arXiv:1804.11152 (in Phys. Rev. D soon)
new paper in preparation!

Outlook:
new level of precision in obtaining predictions for QCD observables (hard ME and PS follow the same TMD) for LHC and future colliders

Thank you!

