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Motivation



Motivation: why do we need TMDs?

Collinear PDFs:

f̃a
(
x , µ2

)
- proton structure in longitudinal direction

3D mapping:

Transverse Momentum Dependent (TMD) PDFs

TMD
(
x , k⊥, µ

2
)

Some observables problematic for collinear factorization and pQCD.

→ TMD factorization theorems (Collins-Soper-Sterman, High energy (k⊥-) factorization)

Wide area of applications
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Motivation

Motivation:

We want to develop an approach in which transverse momentum kinematics will be treated

without any mismatch between matrix element (ME) and PS

Standard MC predictions

Eur. Phys. J. C19, 351 (2001)

Mismatch between PDF used by σ̂ and PS

Alternative approach:

Eur. Phys. J. C19, 351 (2001)

No mismatch: σ̂ and PS follow the same TMD

Goal: to construct TMDs in a wide range of x , k⊥ and µ2
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Parton Branching (PB) method

We construct (and solve using MC solution) an iterative equation for a parton

density which takes into account also the transverse momentum at each branching
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Plan for today

Plan for today:

• Parton Branching (PB) TMDs

• comparison of PB with other existing approaches

4



Transverse momentum in PB

How to connect branching scale µ′2 and q2
⊥,c?

resolvable & non-resolvable ⇒ condition on min q2
⊥,c ⇒ zM

The argument of αs should be q2
⊥,c

p⊥-ordering: q2
⊥,c = µ′2 zM = fixed αs

(
µ′2
)

virtuality ordering: q2
⊥,c = (1− z)µ′2 zM = 1−

(
q0
µ′

)2
αs
(
(1− z)µ′2

)
angular ordering: q2

⊥,c = (1− z)2µ′2 zM = 1−
(

q0
µ′

)
αs
(
(1− z)2µ′2

)
−→
k ⊥,a =

−→
k ⊥,b −−→q ⊥,c
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Ãa
(
x , k⊥, µ

2
)

= ∆a
(
µ2
)
Ãa
(
x , k⊥, µ

2
0

)
+∑

b

∫ µ2

µ2
0

d2µ′⊥
πµ′2

∆a
(
µ2
)

∆a (µ′2)

∫ zM

x
dzPR

ab

(
z, µ′2, αs(a(z)2µ′2)

)
Ãb

( x
z
, k⊥ + a(z)µ⊥, µ

′2
) ∣∣∣∣ ∫ dk2

⊥
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Transverse momentum in PB
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• PB method: effect of every individual part of the ordering definition can be studied separately
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f̃a(x , µ2) = f̃a(x , µ2
0)∆a(µ2)

+

∫ lnµ2

lnµ2
0

d lnµ′2
∆a(µ2)

∆a(µ′2)

∑
b

∫ zM

x
dzPR

ab

(
µ′2, z

)
f̃b

( x
z
, µ′2

)
• DGLAP reproduced for zM → 1 and αs(µ′2)
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Effect of ordering choice and zM on TMDs

p⊥- ordering

q2
⊥ = 1µ′2

NOT stable TMDs

virtuality ordering

q2
⊥ = (1− z)µ′2

angular ordering

q2
⊥ = (1− z)2µ′2

stable TMDs

Note1: Everywhere αs

(
µ′2
)

Note2: All these TMDs after integration

over k⊥ give the same collinear PDF

Phys.Lett. B772 (2017) 446-451

JHEP 1801 (2018) 070
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Prediction for Z boson p⊥ spectrum using TMDs

Z. Phys. C32, 67 (1986)

Procedure:

• DY collinear ME

• Generate k⊥ of qq according to TMDs

(mDY fixed, x1, x2 change)

• compare with the 8 TeV ATLAS measurement
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Prediction for Z boson p⊥ spectrum using TMDs

here: DY LO matrix element from Pythia: qq → Z

data from ATLAS measurement Eur. Phys. J. C76, 291 (2016)
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• difference between angular and virtuality ordering visible

• angular ordering: the shape of Z boson p⊥ spectrum reproduced
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• difference between angular and virtuality ordering visible

• angular ordering: the shape of Z boson p⊥ spectrum reproduced

• with αs
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(1− z)2µ′2

)
agreement within the data much better than for αs(µ′2)
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Prediction for Z boson p⊥ spectrum using TMDs

here: DY LO matrix element from Pythia: qq → Z

data from ATLAS measurement Eur. Phys. J. C76, 291 (2016)
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Summarizing: angular ordering allows for stable TMDs definition and Z p⊥ spectrum description:

→ Fit using xFitter: HERA H1 and ZEUS combined DIS measurement Eur.Phys.J. C75 (2015) no.12, 580

for angular ordering for two scenarios:

• Set1: αs
(
µ′2
)
, reproduces HERAPDF2.0

• Set2: αs
(
(1− z)2µ′2

)
, different HERAPDF2.0
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Results after the fit. Experimental and model
uncertainty arXiv:1804.11152, in Phys. Rev. D soon

Results after the fit. Experimental and model
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Summarizing: angular ordering allows for stable TMDs definition and Z p⊥ spectrum description:

→ Fit using xFitter: HERA H1 and ZEUS combined DIS measurement Eur.Phys.J. C75 (2015) no.12, 580

for angular ordering for two scenarios:

• Set1: αs
(
µ′2
)
, reproduces HERAPDF2.0

• Set2: αs
(
(1− z)2µ′2

)
, different HERAPDF2.0

prediction for the whole p⊥ spectrum directly from the PB method
no tuning/adjustment of free parameters
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Current Activities

• PS from TMDs → see talk by Melanie Schmitz

• off-shell ME with TMDs

• PB TMDs with low-x effects → see talk by Sara Taheri Monfared

• ...

• Comparison of PB with other approaches → I concentrate on that now
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PB and other approaches



PB and Marchesini, Webber

PB with angular ordering is very successful

PB for angular ordering:

f̃a(x , µ2) = f̃a(x , µ2
0)∆a(µ2)

+

∫ µ2

µ2
0

dµ′2

µ′2
∆a(µ2)

∆a(µ′2)

∑
b

∫ 1− q0
µ′

x
dzPR

ab

(
αs
(
(1− z)2µ′2

)
, µ′2, z

)
f̃b

( x
z
, µ′2

)
(1)

where

q2
⊥,i = (1− zi )

2µ′2

Eq. (1) is identical to the Marchesini and Webber (MarWeb1988) prescription

Nuclear Physics B310 (1988) 461-526
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PB and Kimber- Martin- Ryskin- Watt (KMRW)

PB for angular ordering written in terms of integral over q⊥ (identical to MarWeb1988):

f̃a(x, µ2) = f̃a(x, µ2
0)∆a(µ2)

+

∫ (1−x)2µ2

q2
0

dq2
⊥

q2
⊥

∑
b

∫ 1− q⊥
µ

x

dz∆a

(
µ

2
,

q2
⊥

(1− z)2

)
PR
ab

(
αs

(
q2
⊥

)
,

q2
⊥

(1− z)2
, z

)
f̃b

(
x

z
,

q2
⊥

(1− z)2

)

KMRW: TMDs (unintegrated PDFs) obtained from the integrated PDFs and the Sudakov form factors

Phys. Rev. D63 (2001) 114027

f̃a(x, µ2) = f̃a(x, µ2
0)∆a(µ2)

+

∫ q2
M

q2
0

dq2
⊥

q2
⊥

∑
b

∫ zM

x

dz∆a(µ2
, q2
⊥)PR

ab

(
αs

(
q2
⊥

)
, z
)
f̃b

(
x

z
, q2
⊥

)
︸ ︷︷ ︸

f̃ (x,µ2,q2
⊥)

at last step of the evolution the unintegrated distribution becomes dependent on two scales: q⊥ and µ

In KMRW:

• ”Strong ordering”: q2
M = (1− x)2µ2 and zM = 1− q⊥

µ

• ”Angular ordering” q2
M =

(
1−x
x

)2
µ2 and zM = 1− q⊥

q⊥+µ
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⊥)PR

ab

(
αs

(
q2
⊥

)
, z
)
f̃b

(
x

z
, q2
⊥

)
︸ ︷︷ ︸

f̃ (x,µ2,q2
⊥)

at last step of the evolution the unintegrated distribution becomes dependent on two scales: q⊥ and µ

In KMRW:

• ”Strong ordering”: q2
M = (1− x)2µ2 and zM = 1− q⊥

µ

• ”Angular ordering” q2
M =

(
1−x
x

)2
µ2 and zM = 1− q⊥

q⊥+µ
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PB and Kimber- Martin- Ryskin- Watt (KMRW)
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⊥
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⊥
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ab
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q2
⊥
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,

q2
⊥
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, z

)
f̃b

(
x

z
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q2
⊥

(1− z)2

)
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PB and KMRW: distributions

PB: intrinsic k⊥ is a Gauss distribution with width=0.5 GeV

KMRW parametrization for k⊥ < k0 = 1GeV:

f̃a(x , k⊥, µ
2)

k2
⊥

=
1

µ2
0

f̃a(x , k⊥, µ
2
0)∆a(µ2, µ2

0) = const

MRW-ct10nlo: TMD sets obtained according to KMRW formalism with angular ordering included

in TMDlib Eur.Phys.J.C78(2018)no.2,137
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f̃a(x , k⊥, µ
2)

k2
⊥

=
1

µ2
0

f̃a(x , k⊥, µ
2
0)∆a(µ2, µ2

0) = const

MRW-ct10nlo: TMD sets obtained according to KMRW formalism with angular ordering included

in TMDlib Eur.Phys.J.C78(2018)no.2,137
exercise:

PB last Step: try to obtain KMRW from PB:

take PB with angular ordering but take k⊥ only

from the last emission
do
−→
k ⊥,a = −−→q ⊥,c instead

−→
k ⊥,a =

−→
k ⊥,b −

−→q ⊥,c (PB full)

kt < 1GeV:

• KMRW: initial parametrization

• PB last Step: matching of intrinsic k⊥
and evolution clearly visible

• PB full: matching of intrinsic k⊥ and

evolution smeared during evolution

For kt ∈ (≈ 10GeV,≈ µ):

PB full and KMRW very similar!
12



iTMDs

∫∞ dk2
⊥A(x, k⊥, µ)

∫µ dk2
⊥A(x, k⊥, µ)

• PB, PB last Step and KMRW do not integrate back to ct10nlo (as expected, zM far from

1, αs(q⊥))

• KMRW integrated up to ∞ much higher than integrated up to µ (large k⊥ tail has

significant contribution)

13



Z boson p⊥ spectrum

• PB with angular ordering and

full evolution works very well

• KMRW works well for small and

middle-range k⊥ but for higher

k⊥ it overestimates the data

• PB with last step evolution not

sufficient

14



PB and Collins, Soper and Sterman

WORK IN PROGRESS

CSS: TMD factorization formula for the DY cross section:
Nuclear Physics B250 (1985) 199-224

dσ

d2q⊥dM2dy
=
∑
q,q

σ0

s
H(αs)

∫
d2b

(2π)2
e iq⊥·bFq(x1, b,M)Fq(x2, b,M) + Y

where

Fi (x , b,M) = exp

(
−

1

2

∫ M2

c0/b2

dµ′2

µ′2

[
Ai

(
αs(µ′2)

)
ln

(
M2

µ′2

)
+ Bi

(
αs(µ′2)

)])√
GNP(b)

×
∑
j

∫ 1

x

dz

z
Cij

(
z, αs

( c0

b2

))
fj

( x
z
,
c0

b2

)

and A, B, C , H - have perturbative expansion

• one scale evolution up to a scale c0/b

• in the last step of the evolution the dependence on the second scale enters
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Sudakov form factor in PB and CSS

WORK IN PROGRESS

Fi (x , b,M) = exp

(
−

1

2

∫ M2

c0/b2

dµ′2

µ′2

[
Ai

(
αs(µ′2)

)
ln

(
M2

µ′2

)
+ Bi

(
αs(µ′2)

)])√
GNP(b)

×
∑
j

∫ 1

x

dz

z
Cij

(
z, αs

( c0

b2

))
fj

( x
z
,
c0

b2

)

PB: Sudakov form factor in terms of PV
a (momentum sum rule)

for angular ordering:

∆a(µ2) = exp

(
−
∫ µ2

q2
0

dq2
⊥

q2
⊥
αs(q⊥)

(∫ 1− q⊥
µ

0
dz

(
ka

1

1− z

)
− d

))
.

notice:
∫ 1− q⊥

µ

0 dz
(

1
1−z

)
= 1

2
ln
(
µ
q⊥

)2

PB with angular ordering: in Sudakov the same coefficients as A1︸︷︷︸
LL

, A2 and B1︸ ︷︷ ︸
NLL

in CSS
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Resummation scheme dependence

WORK IN PROGRESS

dσ

d2q⊥dM2dy
=
∑
q,q

σ0

s
H(αs)

∫
d2b

(2π)2
e iq⊥·bFq(x1, b,M)Fq(x2, b,M) + Y

NNLL: difference of CSS and PB B2 comes from renormalization group

Sudakov form factor is process dependent Nucl.Phys. B596 (2001) 299-312

renormalization group equation: ∂ ln H
∂ lnµ2 = γ(αs)

solution: H
(
αs(M2)

)
= exp

(∫M2

c0/b2
dµ′2

µ′2
γ
(
αs(µ′2)

))
H
(
αs( c0

b2 )
)

This changes coefficient B in the Sudakov

B(αs)→ B(αs)− β(αs )
H(αs )

∂H
∂αs

At O(α2
s ): B2(αs)→ B2(αs) + πβ0H1

H1 = 16
(
π2

6
− 1
)
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Summary and Conclusions

• PB: collinear PDFs and TMDs obtained

• different ordering definitions studied; visible effects on TMDs and Z boson p⊥
Angular ordering: stable (zM -independent) TMDs and good description of Z boson p⊥

• many different activities ongoing

shown today: ongoing studies on comparison with Marchesini and Webber, KMRW and

CSS

• results in:

Phys.Lett. B772 (2017) 446-451,

JHEP 1801 (2018) 070,

arXiv:1804.11152 (in Phys. Rev. D soon)

new paper in preparation!

Outlook:

new level of precision in obtaining predictions for QCD observables (hard ME and PS follow the

same TMD) for LHC and future colliders

Thank you!
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