Interpolation grids in NNLO for DIS jets and determination of the strong coupling constant using inclusive jets

D. Britzger, K. Rabbertz, C. Gwenlan, Th. Gehrmann, A. Huss, M. Sutton, J. Pires, J. Niehues, et al.

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Jet production in DIS

Jets in DIS measured in Breit frame

- Virtual boson collides 'head-on' with parton from proton: $ep \rightarrow 2$ jets
- Boson-gluon fusion dominant process
 QCD compton important only for high-p_T jets (high-x)

Jet measurements are sensitive to α_s and gluon density at LO

 \rightarrow valuable phenomenological applications

DIS jet production in NNLO

J. Currie, et al. [RPL 117 (2016) 042001] J. Currie, et al. [JHEP 1707 (2017) 018]

A bit of history

- 1973 asymptotic freedom of QCD [PRL 30(1973) 1343 & 1346]
- 1993 NLO studies of DIS jet cross sections [Phys. Rev. D49 (1994) 3291]
- 2016 NNLO corrections for DIS jets [Phys. Rev. Lett. 117 (2016) 042001], [arXiv:1703.05977]

Antenna subtraction

- Cancellation of IR divergences
 with local subtraction terms
- Contributions for each order: LO = LO
 NLO = Real (R) + Virtual (V)
 NNLO = VV + RV + RRa + RRb

Jet production in DIS

NNLO predictions confronted with data

- NNLO proved to provide good description of HERA data over entire kinematic reach
- NNLO turns out to be crucial at lower scales (low Q², low p_T^{jet})
- Significant reduction of scale uncertainty w.r.t. NLO, particularly at higher scales

For phenomenological applicationsNNLO predictions must be repeated

- NNLO predictions must be repeated sufficiently fast, with differing paramters
- \rightarrow Fast interpolation grids

Eur.Phys.J.C77 (2017) 4, 215

Technique of interpolation grids

Motivation

- phenomenological studies rely on sufficiently fast repetition of theoretical predictions
- → higher-order pQCD predictions: often 'slow'

fastNLO and APPLgrid concept

• Introduce interpolation kernel (unit operator; lagrange polynomials):

Set of functions f(x) around n discrete x-nodes

• Single PDF is replaced by set of interpolation kernels

$$f_a(x) \cong \sum_{i} f_a(x_i) \cdot E^{(i)}(x)$$

Improve interpolation by reweighting PDF

Scale dependence

- Similar interpolation procedure also for scales
- Two approaches implemented 'fixed scales': μ_R and μ_F are specified during grid generation 'flexible scale': Coefficients are fully independent on μ_R and μ_F

Measurements under consideration

Inclusive jet and dijet cross section

• H1 & ZEUS

Data taking periods

- HERA-I (1996/97): √s ~ 301 GeV
- HERA-I (1998/2000): √s ~ 319 GeV
- HERA-II (2003/2007): √s ~ 319 GeV

Kinematic range(s)

- $low-Q^2$ ($Q^2 < 100 \text{ GeV}^2$)
- high-Q² (Q² > 100 GeV²)

Inclusive jets and dijet

- jets: k_T-algo, R=1.0
- 'all' inclusive jet data sets will be made available in NNLO
- dijets: selection of data sets, because some dijet definitions are infrared sensitive in NNLO (p_{T,min}^{jet1} = p_{T,min}^{jet2})

Workflow for production of NNLO grids

1. Preprocessing:

- Check of interpolation quality
- Short test jobs to check interpolation settings (& optimise if necessary)

2. NNLOJET Warm-up:

- Vegas integration optimisation
- 1 long (multi-core) job per process

3. APPLgrid/fastNLO Warm-up:

- Adapt x- and scale-grids to accessed phase space (exact strategy differs between APPLgrid & fastNLO)
 Only phase space provided from NNLOJET → significant speed-up

4. Interpolation grid production:

Thousands of parallel jobs

5. Postprocessing:

- Statistical evaluation and combination of all single NNLOJET file
 Merge grid-files with weights from step 1)
 MergeJob to combine all grids and estimate statistical uncertainty

6. Validate, validate, and validate

O(10 h)

O(100 h)

O(100 h)

O(300k h)

O(h)

O(y)

O(50 h)

O(min)

Grid closure: dijet cross sections

fastNLO grid vs. native NNLOJET run

Trade-off(s)

- accuracy vs. ...
- file-size of grid(s)
- Memory consumption during production
 speed when evaluating grid
- functionality (scale choice)
- \rightarrow flexible scale choice (p_T, Q²)
- \rightarrow Goal: closure better than 0.1% 0.1% is numerical precision of the data tables

Closure

- significantly better than 0.1%
- LŎ, NLO look equivalent: Grid (mainly) reproduces stat. fluctuations
- at NNLO: due to imperfect closure (O(0.01%)) grid does not exactly look like (N)LO, but incorporates some stat. fluctuations
 - \rightarrow closure still < 0.1%
 - \rightarrow closes better with full statistics (up to x7800)

Dijet cross section: $d\sigma/d < p_{\tau} >_{2}$

- 'single run' for each contribution NLO = LO+V+R
 - NNLO = LO+V+R+VV+RV+RRa+RRb
 - \rightarrow limited statistics only!

Applgrid and fastNLO

New tool to convert

- fastNLO grids
- Applgrid fastNLO

- \rightarrow Applgrid(s) \rightarrow fastNLO
- \rightarrow fastNLO

Applgrid

 \rightarrow Applgrid

Previous conversion tool

based on numerical value of grid nodes

New conversion tool

- Use an existing grid as 'input generator' to a new one
- $\rightarrow\,$ perfect clousre, when 'input' and 'output' grid have equivalent node specifications

Many applications

- Conversions between formats
- Reduce file size and improved speed, by reducing functionality/accuracy
 - \rightarrow reduce grid accuracy (less nodes)
 - \rightarrow reduce functionality (fix scale settings)

First Applgrids in DIS

Inclusive jets I

Commonly, the calculation of single inclusive jet cross sections is technically more involved...

- Every single jet has to be counted, i.e. every 'event' may have multiple entries in the 'histogram'
- The scale settings: if a single jet-dependent quantity/observable shall be used as input to the scale calculation: e.g. $p_{\text{T}^{\text{jet}}}$, η^{jet}
 - Event kinematic, and measurement function, must be known prior to calculation of the amplitude
 - Every single phase space point has to be evaluated multiple times, but for different scale settings (e.g. p_T^{jet1} , p_T^{jet2} ,)

\rightarrow Inclusive jets are often difficult to implement in generator codes

Inclusive jets: scale settings

Exploit the scale structure of NNLO predictions

 $\omega = \omega_0 + \log(\mu_F^2) \omega_F + \log(\mu_R^2) \omega_R + \log^2(\mu_F^2) \omega_{FF} + \log^2(\mu_R^2) \omega_{RR} + \log(\mu_F^2) \log(\mu_R^2) \omega_{RF}$

For a single phase-space point ('event')

• Calculate amplitude for 6 distinct choices for pairs of $(\mu_{\rm F}, \mu_{\rm R})$ These pairs can be constant, and fairly trivial,...

- This defines a 6x6 system of linear equations, which is solved by a (constant) inverse matrix
- $\rightarrow\,$ This provides the values of $\omega_{\scriptscriptstyle 0},\,\omega_{\scriptscriptstyle F},\,...,\,\omega_{\scriptscriptstyle RF}$

Once, the parameters $\omega_0, \omega_F, ..., \omega_{RF}$ are known...

- the amplitude can be re-evaluated trivially
- scale variations become computional cheap
- jet observables (e.g. $p_{\ensuremath{\mathsf{T}}}^{\ensuremath{\mathsf{jet}}}$) can easily be employed for the scales
- For the grids, the weights ω_0 , ω_F , ..., ω_{RF} are stored separately in the grids (for later evaluation)

Application I: Scale dependence of NNLO cross sections

Simultaneous variation of μ_R and μ_F

At lower scales

- Significant NNLO k-factors
- NNLO with reduced scale dependence
- Inclusive jets have somewaht higher scaledependence than dijets

At higher scales

• NNLO with reduced scale dependence

More grid feautures (hot shown)

- PDF choices, PDF uncertainties
- scale choices

Application: α_s determination

Determination of α s(MZ) from inclusive jets at HERA

• Exploit all H1 and ZEUS inclusive jet cross section data

χ_2 -minimisation

- $\alpha_s(m_z)$ is a free parameter to NNLO theory prediction σ_i

$$\chi^2 = \sum_{i,j} \log \frac{\varsigma_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{\varsigma_j}{\sigma_j}$$

ζ_i	jet data
$\sigma_{_i}$	NNLO theory
V	covariance matrices

- NNLO theory is sensitive to $\alpha_s(m_z)$
- Methodology equivalent to Eur.Phys.J.C77 (2017), 791

Perform fits to

• All inclusive jet data sets from H1 and ZEUS

Determination of $\alpha_s(m_z)$

Value of $\alpha_s(m_z)$ from HERA inclusive jet data

H1 inclusive jet cross sections

• See: Eur.Phys.J.C77 (2017) 791

ZEUS inclusive jet cross section

- New!
- Inclusive jets, HERA-I, 1996/97

 $0.1213(28)_{exp}(3)_{had}(5)_{PDF}(2)_{PDF\alpha_{s}}(3)_{PDFset}(26)_{scale}$

• Inclusive jets, HERA-I, 1998-2000

 $0.1181(27)_{\exp}(16)_{had}(6)_{PDF}(2)_{PDF\alpha_{s}}(6)_{PDFset}(25)_{scale}$

ZEUS data are well described by NNLO predictions

- [96/97] χ^2 /ndf = 28.6/29
- [98/00] χ^2 /ndf = 20.8/29

Determination of $\alpha_s(m_z)$

Multiple data sets taken together All H1 data sets

• See: Eur.Phys.J.C77 (2017) 791

Both ZEUS data sets taken together

 $0.1199(20)_{\exp}(8)_{had}(6)_{PDF}(1)_{PDF\alpha_{s}}(5)_{PDFset}(26)_{scale}$

All HERA inclusive jet cross sections

• H1 & ZEUS taken together in a single fit consistent jet definition (k_T-jets, R=1)

 $0.1148(9)_{exp}(5)_{had}(4)_{PDF}(3)_{PDF\alpha_s}(2)_{PDFset}(38)_{scale}$

- Excellent description of all inclusive jet data: $\chi^2/ndf = 191.3/193$
- \rightarrow High experimental precision.
- → moderate (NNLO) scale uncertainty
- Reduction of scale uncertainty 'achieved' by cutting data a low scales (μ <28GeV)

 α_s results from HERA inclusive jet data in NNLO

Scale dependence of strong coupling

Determination of α_s at different scales

- Data points are grouped according to their values of μ_{R}

Results

- all H1 data: EPJ C77 (2017) 791
- all ZEUS data (new) approx: 15 < µ_R < 90 GeV → results consistent with expectation(s)
- H1 and ZEUS well consistent within exp. uncertainty
- HERA (i.e. H1&ZEUS, new)
 - \rightarrow highest precision using a single observable only
 - \rightarrow consistent with expectation

Grid distribution

Grids will be mad publically available

Dedicated website was set up

ploughshare.web.cern.ch

- Inclusive jet and dijet grids
- H1 & ZEÚS
- grids in fastNLO format with flexible scale choice
- Also Applgrid files will become available applgrid's are converted fastNLO grids
- First grids for testing purposes have already been made public

hosted by CERN	Home About Operations Grid summary Grid download Search grids Code download help Code download Documentation Statistics Contact
Physical Section 1997	T.S.
	Ploughshare
	for all your interpolation grid
	needs
	Ploughshare allows users from the HEP community to share
	PDF fitters and those from the experimental collaborations are
	able to upload their validated grids and access the grids of others quickly and with minimal fuss

Group: ap	plfast						
Experiment ↑↓	Collision type $^{\uparrow\downarrow}$	Energy †↓	Process $\uparrow\downarrow$	Calculation $\uparrow\downarrow$	arxiv ↑↓	link to paper details and grids	ţţ
ATLAS	pp	7 TeV	1jet-R06- dev-fn	NNLOJET	1410.8857	applfast-atlas-1jet-r06-dev-fn-arxiv-1410.8857	
						applfast-atlas-1jet-r06-dev-fn-arxiv-1410.8857-x	sec000.tab.gz
ATLAS	pp	8 TeV	ZJ-dev-ap	NNLOJET	1512.02192	applfast-atlas-zj-dev-ap-arxiv-1512.02192	
						applfast-atlas-zj-dev-ap-arxiv-1512.02192-xsec	000.root
						applfast-atlas-zj-dev-ap-arxiv-1512.02192-xsec	001.root
						applfast-atlas-zj-dev-ap-arxiv-1512.02192-xsec	002.root
ATLAS	рр	8 TeV	ZJ-dev-fn	NNLOJET	1512.02192	applfast-atlas-zj-dev-fn-arxiv-1512.02192	
						applfast-atlas-zj-dev-fn-arxiv-1512.02192-xsec0	00.tab.gz
						applfast-atlas-zj-dev-fn-arxiv-1512.02192-xsec0	01.tab.gz
						applfast-atlas-zj-dev-fn-arxiv-1512.02192-xsec0	02.tab.gz
CMS	pp	7 TeV	1jet-ptj-dev	NNLOJET	1212.6660	applfast-cms-1jet-ptj-dev-arxiv-1212.6660	
						applfast-cms-1jet-ptj-dev-arxiv-1212.6660-xsec	000.tab.gz
H1	ер	0.319 TeV	ptj-dev	NNLOJET	1406.4709	applfast-h1-ptj-dev-arxiv-1406.4709	
						applfast-h1-ptj-dev-arxiv-1406.4709-xsec000.tal	b.gz

Summary

Interpolation grids for DIS jets have been calculated using NNLOJET

- All HERA running periods: 820GeV, HERA-I, HERA-II
- H1 and ZEUS measurements
- Inclusive jet and dijet cross sections
- low-Q² and high-Q² kinematic regions

Grid features

- flexible scale choice (Q², pTjet, <pT>)
- High numerical accuracy, at moderate file sizes and fast convolution speed
- O(1M) CPU hours have been spent

Grids are made publically available on ploughshare.web.cern.ch

H1 grids have been used in EPJ C77 (2017) 791 ZEUS grids have now been exploited for α_s determination

Strong coupling from all of HERA inclusive jet data

 $\alpha_{s}(m_{z}) = 0.1169 (14)_{exp} (25)_{scale}$