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Preface
• The excellent performance of the LHC is leading to ever higher precision measurements

• Recent significant developments in the precision of QCD calculations also significantly improve the description of the LHC cross section

• However, such calculations have significantly increased CPU requirements, so that more than ever, fast grid techniques such as fastNLO and APPLgrid are required to be 
able to use these data and calculations in QCD fits

• In the past NNLO k-factors have been the standard, but with the APPLfast interface, using the full NNLO calculations becomes possible

• Increasingly, all PDF fitters are reliant on these fast interpolation grids from APPLgrid and fastNLO, but the extensive CPU required means that we, as a communittee would 
benefit greatly from more extensive sharing of the products of our grid calculations

• Into the fray, enters the Ploughshare project - a grid sharing which will be the primary source for the distribution of all the NNLO grids developed as part of the APPLfast 
project…
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• Began as a joint project between the fastNLO, APPLgrid and NNLOJET developers at QCD@LHC

• Interface between the NNLOJET Code and both the APPLgird and fastNLO filling routines

• Original aim was to interface with the NNLOJET code in a minimally intrusive way

• Since then the interface has developed in a number of ways to improve in the efficiency - has included developments to fastNLO, APPLgrid and NNLOJET

The APPLfast project

3

      The XXVII International Workshop on DIS, Torino, Italy, April 2019

0 163 177 191 205 206 245 246 285 301 317 347 377 391 405 435 449 450 489 490 529 530 569 593 617 647 677 707 737
767 899 905 906 935 941 942

(d, d̄) + (s, s̄) + (b, b̄)

1 164 178 192 207 208 247 248 286 302 318 348 378 392 406 436 451 452 491 492 531 532 570 594 618 648 678 708 738
768 900 907 908 936 943 944
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28 228 268 342 372 430 472 512 552 642 672 702 732 762 792 828 839 840 872 883 884 (ū, u) + (ū, c) + (c̄, u) + (c̄, c)
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• Typically many hundreds of separate processes at 
NNLO

• Automated generation of subprocess contributions 
and book keeping

• Sub process combinations which share the same 
input partons are automatically combined

• Many processes generated for the same phase 
space point, so weights are cached before filling the 
grids to reduce duplication of calculation of 
interpolating coefficients

• Grid generation typically in three stages …

• VEGAS warmup -  just run NNLOJET (no grid 
filling), optimise and fix generation phase space

• Grid warmup - run NNLOJET with reduced phase 
space but filling grids to allow optimisation of grid 
node phase space

• Grip production run - run NNLOJET with full 
statistics and full grid filling
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Master formula for hadron-hadron convolution at NLO
• The master cross section for the convolution at the central scale just involved the convolution of the weight grids for each order with the sub process combination vector …

• In practice the number of sub processes, nodes etc are different for each order

• At NLO the scale variation just requires the additional log terms times the LO weight grid including the convolution of the splitting function with the PDF for the factorisation 
scale dependent terms …

• At NNLO the central scale is hardly more complicated - just the extra term for the NNLO weight grid, but the scale variations are more involved …
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2.4 The case of two incoming hadrons

In hadron-hadron scattering one can use analogous proce-
dures but with one more dimension. Besides Q2, the weight
grid depends on the momentum fractions of the first (x1) and
second (x2) hadrons.

The analogue of Eq. 7 is given by:

W =
∑

p
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l=0

∑

iy1

∑

iy2

∑

iτ

W
(p)(l)
iy1 ,iy2 ,iτ

(
αs(Q

2(iτ )
)

2π

)p

× F (l)
(
x

(iy1 )

1 , x
(iy1 )

2 ,Q2(iτ ))
, (11)

where nsub is the number of sub-processes and the initial
state parton combinations F are specified in Eqs. 12, 20
and 18.

The combinations of the incoming parton densities
(defining the number of sub-processes) often can be sim-
plified by making use of the symmetries in the weights.
In the case of jet production only seven sub-processes are
needed (see Sect. 2.4.1). The case of W -boson and Z-boson
production is treated in Appendix A. The case of b-quark
production is discussed in Ref. [11].

An automated way to find the sub-processes is discussed
in Appendix B.

2.4.1 Sub-processes for jet production in hadron-hadron
collisions

In the case of jet production in proton-proton collisions the
weights generated by the Monte Carlo program can be or-
ganised in seven possible initial-state combinations of par-
tons:

gg: F (0)
(
x1, x2;Q2) = G1(x1)G2(x2),

qg: F (1)
(
x1, x2;Q2) =

(
Q1(x1) + Q̄1(x1)

)
G2(x2),
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− D(x1, x2),

qq: F (4)
(
x1, x2;Q2) = D(x1, x2),
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(
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(
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− D̄(x1, x2),

(12)

where g denotes gluons, q , quarks and r , quarks of differ-
ent flavour, q ′ ≠ r and we have used the generalised PDFs

defined as:
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(13)

where fi/H is the PDF of flavour i = −6, . . . ,6 for hadron
H and H1 (H2) denotes the first or second hadron.4

2.5 Including scale dependence in the case of two
incoming hadrons

It is again possible to choose arbitrary renormalisation and
factorisation scales. Specifically for NLO accuracy:
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where F
(l)
q1→P0⊗q1

is calculated as F (l), but with q1 replaced

with P0 ⊗ q1, and analogously for F
(l)
q2→P0⊗q2

.

2.6 Reweighting to a different center-of-mass energy

From a weight grid W calculated at a particular centre-of-
mass energy

√
s it is also possible to calculate a cross-

section at a different centre-of-mass energy
√

s′ by using

4In the above equation and in the following we follow the standard
PDG Monte Carlo numbering scheme [12], where gluons are denoted
as 0, quarks have values from 1–6 and anti-quarks have the correspond-
ing negative values.
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fi/H1

(
x1,Q

2)fi/H2

(
x2,Q

2),

D̄(x1, x2) =
6∑

i=−6i≠0
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where nsub is the number of sub-processes and the initial
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plified by making use of the symmetries in the weights.
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needed (see Sect. 2.4.1). The case of W -boson and Z-boson
production is treated in Appendix A. The case of b-quark
production is discussed in Ref. [11].

An automated way to find the sub-processes is discussed
in Appendix B.
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fi/H1

(
x1,Q

2)fi/H2

(
x2,Q

2),

D̄(x1, x2) =
6∑

i=−6i≠0
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fi/H1

(
x1,Q

2)fi/H2

(
x2,Q

2),

D̄(x1, x2) =
6∑

i=−6i≠0
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section at a different centre-of-mass energy
√
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PDG Monte Carlo numbering scheme [12], where gluons are denoted
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fi/H1

(
x1,Q

2)f−i/H2

(
x2,Q

2),

(13)

where fi/H is the PDF of flavour i = −6, . . . ,6 for hadron
H and H1 (H2) denotes the first or second hadron.4

2.5 Including scale dependence in the case of two
incoming hadrons

It is again possible to choose arbitrary renormalisation and
factorisation scales. Specifically for NLO accuracy:

W(ξR, ξF )

=
nsub−1∑

l=0

∑

iy1

∑

iy2

∑

iτ

{(
αs(ξ

2
RQ2(iτ )

)

2π

)pLO

× W
(pLO)(l)
iy1 ,iy2 ,iτ

F (l)
(
x

(iy1 )

1 , x
(iy1 )

2 , ξ2
F Q2(iτ ))

+
(

αs(ξ
2
RQ2(iτ )

)

2π

)pNLO

×
[(

W
(pNLO)(l)
iy1 ,iy2 ,iτ

+ 2πβ0pLO ln ξ2
RW

(pLO)(l)
iy1 ,iy2 ,iτ

)

× F (l)
(
x

(iy1 )

1 , x
(iy1 )

2 , ξ2
F Q2(iτ ))

− ln ξ2
F W

(pLO)(l)
iy1 ,iy2 ,iτ

(
F

(l)
q1→P0⊗q1

(
x

(iy1 )

1 , x
(iy1 )

2 , ξ2
F Q2(iτ ))

+ F
(l)
q2→P0⊗q2

(
x

(iy1 )

1 , x
(iy1 )

2 , ξ2
F Q2(iτ )))]

}
, (14)

where F
(l)
q1→P0⊗q1

is calculated as F (l), but with q1 replaced

with P0 ⊗ q1, and analogously for F
(l)
q2→P0⊗q2

.

2.6 Reweighting to a different center-of-mass energy

From a weight grid W calculated at a particular centre-of-
mass energy

√
s it is also possible to calculate a cross-

section at a different centre-of-mass energy
√

s′ by using

4In the above equation and in the following we follow the standard
PDG Monte Carlo numbering scheme [12], where gluons are denoted
as 0, quarks have values from 1–6 and anti-quarks have the correspond-
ing negative values.

506 Eur. Phys. J. C (2010) 66: 503–524

2.4 The case of two incoming hadrons

In hadron-hadron scattering one can use analogous proce-
dures but with one more dimension. Besides Q2, the weight
grid depends on the momentum fractions of the first (x1) and
second (x2) hadrons.

The analogue of Eq. 7 is given by:

W =
∑

p

nsub∑

l=0

∑

iy1

∑

iy2

∑

iτ

W
(p)(l)
iy1 ,iy2 ,iτ

(
αs(Q

2(iτ )
)

2π

)p

× F (l)
(
x

(iy1 )

1 , x
(iy1 )

2 ,Q2(iτ ))
, (11)

where nsub is the number of sub-processes and the initial
state parton combinations F are specified in Eqs. 12, 20
and 18.

The combinations of the incoming parton densities
(defining the number of sub-processes) often can be sim-
plified by making use of the symmetries in the weights.
In the case of jet production only seven sub-processes are
needed (see Sect. 2.4.1). The case of W -boson and Z-boson
production is treated in Appendix A. The case of b-quark
production is discussed in Ref. [11].

An automated way to find the sub-processes is discussed
in Appendix B.

2.4.1 Sub-processes for jet production in hadron-hadron
collisions

In the case of jet production in proton-proton collisions the
weights generated by the Monte Carlo program can be or-
ganised in seven possible initial-state combinations of par-
tons:

gg: F (0)
(
x1, x2;Q2) = G1(x1)G2(x2),

qg: F (1)
(
x1, x2;Q2) =

(
Q1(x1) + Q̄1(x1)

)
G2(x2),

gq: F (2)
(
x1, x2;Q2) = G1(x1)

(
Q2(x2) + Q̄2(x2)

)
,

qr: F (3)
(
x1, x2;Q2) = Q1(x1)Q2(x2) + Q̄1(x1)Q̄2(x2)

− D(x1, x2),

qq: F (4)
(
x1, x2;Q2) = D(x1, x2),

qq̄: F (5)
(
x1, x2;Q2) = D̄(x1, x2),

qr̄: F (6)
(
x1, x2;Q2) = Q1(x1)Q̄2(x2) + Q̄1(x1)Q2(x2)

− D̄(x1, x2),

(12)

where g denotes gluons, q , quarks and r , quarks of differ-
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as 0, quarks have values from 1–6 and anti-quarks have the correspond-
ing negative values.
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2.4 The case of two incoming hadrons

In hadron-hadron scattering one can use analogous proce-
dures but with one more dimension. Besides Q2, the weight
grid depends on the momentum fractions of the first (x1) and
second (x2) hadrons.

The analogue of Eq. 7 is given by:
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where nsub is the number of sub-processes and the initial
state parton combinations F are specified in Eqs. 12, 20
and 18.

The combinations of the incoming parton densities
(defining the number of sub-processes) often can be sim-
plified by making use of the symmetries in the weights.
In the case of jet production only seven sub-processes are
needed (see Sect. 2.4.1). The case of W -boson and Z-boson
production is treated in Appendix A. The case of b-quark
production is discussed in Ref. [11].

An automated way to find the sub-processes is discussed
in Appendix B.

2.4.1 Sub-processes for jet production in hadron-hadron
collisions

In the case of jet production in proton-proton collisions the
weights generated by the Monte Carlo program can be or-
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where g denotes gluons, q , quarks and r , quarks of differ-
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fi/H1

(
x1,Q

2)f−i/H2

(
x2,Q

2),

(13)

where fi/H is the PDF of flavour i = −6, . . . ,6 for hadron
H and H1 (H2) denotes the first or second hadron.4

2.5 Including scale dependence in the case of two
incoming hadrons

It is again possible to choose arbitrary renormalisation and
factorisation scales. Specifically for NLO accuracy:
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section at a different centre-of-mass energy
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4In the above equation and in the following we follow the standard
PDG Monte Carlo numbering scheme [12], where gluons are denoted
as 0, quarks have values from 1–6 and anti-quarks have the correspond-
ing negative values.
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• NNLO cross section calculation at central scale … 

• Full NNLO scale variation includes multiple log terms and convolutions with the splitting function

• APPLgrid …

• Stores only the three grids for LO, NLO and NNLO

• Calculates the log terms and convolutions with splitting functions dynamically (using hoppet) as required 

• Computationally more complex, but smaller grids - fewer terms in the a posteriori summation

• fastNLO …

• Stores additional grids for each of the coefficients for the logs

• 6 grids for the LO coefficients ( NNLO contribution is NNLO + NLO × log + LO × log log etc )

• 3 grids for the NLO coefficients

• 1 grid for the NNLO coefficients

• Less complex, but ~ 3 times larger grids for a single scale, more terms in the a posteriori convolution, but 
more straightforward when storing multiple scales

NNLO scale variation
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Grid closure
• How well the grids reproduce the full calculation depends entirely on the quality of the 

interpolation

• Does not improve with higher statistics - precision determined by the precision of the 
interpolation for each individual weight

• More grid nodes improves the interpolation - particularly in x, Grid size scales with Nx2

• A little over half of the time for the standard convolution from to the evaluation of the PDF on 
the grid nodes 

• Scales with 2 × Nx 

• NB: don’t actually store grids in x and Q2, use transformed variables, eg y = log(x) + k(1-x)
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Z + Jet production

Jet productionJet production
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APPLfast test 
grids

• Applfast has made available several test grids, on the 
ploughshare platform …

• These consist of a small number of processes - Z0 
transverse momenta, inclusive jets, and DIS jets

• These grids are all fully functional, but significantly have 
intentionally reduced statistics, or missing contributions for 
the NNLO calculation parts

• Mostly, datasets with …

• “ap” are applgrid (.root files), 

• “fn” are are fastnlo (.tag.gz files)

• They are provided for developers to develop and test 
functionality, but should not be used for physics  

7M. Sutton - Recent developments with APPLfast - NNLO
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reduced stats developer grid

Some example processes

• Available as both APPLgrid and 
fastNLO tables

• CMS and ATLAS inclusive 
jets at 7 TeV

• ATLAS  Z(pT) at 8 TeV

• NB: Note the reduced 
statistics for the NNLO 
contributions
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To look forward to …

• Of course with more reasonable statistics the cross sections look very good - the grid closure is typically around 0.1 per mille file for reasonable grid sizes

• Scale variations and evaluation with the full error sets for multiple PDF sets is very fast
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pT jet [GeV] pT jet [GeV]



Scale variation - detailed variations for single bins

• Horizontal axis - renormalisation scale

• Shaded bands - factorisation scale variations from original NNLOJET paper

• Unshaded, hatched bands - a-posterioi scale valuation using the grids

• Scale variations cross checked between both APPLgrid and fastNLO tables - in very good agreement with the full NNLOJET 
calculations
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PTjet scale PTlead scale



ploughshare.web.cern.ch
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Configuration continued
• In the “extra” lookup, the lookup information must be pairs of strings, containing

• The name of the grid file,  additional information about that file, if Table in paper is specified, the link to hepdata for that table will be included 

• After upload, all the grid files are decoded and automatically renamed into the standard ploughshare naming convention, namely …

• Database also distributes a standard combined tgz file containing these grids with a .tgz extension

• Grids within the tgz file …
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Index of the cross section 
within the tgz file

preprint id

submitting group

short info
experiment



Full analysis records
• Full title and abstract

• Links to …

• Journal paper (DOI)

• Preprint

• Inspire

• HepData

• Table with all available grids

• This information is determined 
automatically from the required preprint 
ID when you upload grids 

• For grids with no corresponding paper, 
a dummy arrive number arxiv: 
0000.00000 can be used

• Users will be able to  provide an 
additional HTML fragment in the tgz file 
if they require

• In the case of no available preprint the 
HTML fragment will be used as the 
analysis record …
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links to individual grids

link to full tarball

optional grid desciption

links to specific hep data table



Grid download library - basic example
• A few lines in the code will create the ploughshare instance

• Any requested grids are automatically downloaded if they are not already 
present locally … 
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Grid download library - 
fortran interface
• Fortran interface acts the same way as the c++ interface but with a 

caveat

• Since fortran can not store separate classes, the list of grids is not 
returned in a vector, but the path is returned by requesting each 
grid path individually
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Search facility 
• Detailed search facility is also available 

• Provides basic list output with information

• Also provides output in forms directly usable as code fragments for either 
FORTRAN or C++ 

• May extend the functionality to include command line or C++ interfaces
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Great expectations …
• Initial proof of concept code is fully functional

• Fast convolution, including the full renormalisation and factorisation scale variations are complete and have been tested

• Some full statistics grids for LHC processes have been produced, others are underway

• Limited statistics fully NNLO grids for a number of LHC cross sections have been made available in both APPLgrid and fastNLO formats

• The next few years will be an extremely interesting time for grid technologies, already fits using full NNLO calculations are possible - see presentations from Daniel Britzger 
and Mandy Cooper-Sarkar

• Fits including HERA inclusive data, and jet data, and LHC cross sections at full NNLO precision should be here very soon, and then What larks!
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Afterword: ploughshare notification twitter stream … 
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• ploughshare related notifications will be 
posted to the ploughshare twitter 
stream

http://www.apple.com

