Results from proton-lead and fixed target collisions at LHCb

Óscar Boente García on behalf of the LHCb Collaboration DIS2019 - Turin

Instituto Galego de Física de Altas Enerxías - Universidade de Santiago de Compostela Contact: <u>oscar.boente@usc.es</u>

08/04/2019 - 12/04/2019

XUNTA DE GALICIA

> EXCELENCIA MARÍA

DE MAEZTU

USC

UNIVERSIDADE

DE COMPOSTELA

DE SANTIAGO

Óscar Boente Results from pPb and fixed target collisions at LHCb 11/04/2019

DE CIENCIA, INNOVACIÓN

IGFAE

The LHCb detector

- One-arm spectrometer at LHC fully instrumented in
- $2 < \eta < 5$

LH

Designed for heavy flavour physics but acts as a general-purpose detector in the forward region

Fixed-target mode

Unique Fixed-Target configuration at the LHC

- Access to high Bjorken-*x* region in the target nucleon
- Can probe: antishadowing/EMC region, intrinsic heavy quark content in nucleons

- Exploits fixed-target like geometry of LHCb
- SMOG system: initially for luminosity, now physics
- Gas injection at VErtex LOcator (VELO)
- p-gas and ion-gas collisions with many targets: He, Ne, Ar and more in the future
 - Energies in centre-of-mass system: $\sqrt{s_{NN}} = 68.8 \text{ GeV}, 86.6 \text{ GeV}, 110.4 \text{ GeV}$

Óscar Boente

The Results from pPb and fixed target collisions at LHCb 11/04/2019 3

Collider mode at LHCb

- Unique perspectives due to forward acceptance
- Access to low (pPb) and medium (Pbp) Bjorken-x region
- Data from different runs & configurations:

	year	$\sqrt{s_{NN}}$	Ľ
pPb/Pbp	2013	5.02 TeV	$1.6 \mathrm{nb}^{-1}$
PbPb	2015	5.02 TeV	$10 \mu b^{-1}$
pPb/Pbp	2016	8.16 TeV	$34 \mathrm{nb}^{-1}$
XeXe	2017	5.44 TeV	$0.4 \mu b^{-1}$
PbPb	2018	5.02 TeV	$210 \mu b^{-1}$

Collider mode results:

- Heavy flavour production in *p*Pb:
 - B-hadron production in pPb Phys. Rev. D99 052011 (2019)
 - $\Upsilon(ns)$ production in *p*Pb JHEP 11 (2018) 194
 - Λ_c^+ production in *p*Pb JHEP 02 (2019) 102
- Exclusive photo nuclear J/ψ production in UPC in PbPb LHCb-CONF-2018-003

B hadron production in pPb

Phys. Rev. D99 052011 (2019)

- Data sample: *p*Pb 2016, $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ (30x data Run I)
- Uses exclusive decay modes for B^+ , B^0 and Λ^0_b production

B hadron production in pPb

Phys. Rev. D99 052011 (2019)

- Suppression at forward rapidity decreasing with $p_{\rm T}$, no suppression in backward { JHEP 04 (2009) 065, EPJ C77 (2017) 1, CPC. 198 (2016) 238
- Good agreement with nonprompt J/ψ data and nPDFs -----
- Consistent with R_{pA} of D^0 hadron
- Ratio Λ_{b}^{0}/B^{0} consistent with measurement in pp collisions in forward, tensions in backward

Óscar Boente **Results from pPb and fixed target collisions at LHCb** 11/04/2019 7

$\Upsilon(nS)$ production in *p*Pb

$\Upsilon(nS)$ production in pPb

*y**

 v^*

 $p_{\rm T}$ <25 GeV/c

 $\sqrt{s_{\rm NN}} = 8.16 \, {\rm Te}$

2

JHEP 11 (2018) 194

0.8

0.6

0.4

0.2

0

_4

- Double ratio of $\Upsilon(2S)$ and $\Upsilon(3S)$ over $\Upsilon(1S)$ in pp and pPb|Pbp
- Consistent with comovers model

0

-2

 $p_{\rm T}$ <25 GeV/c

 $\sqrt{s_{\rm NN}}$ =8.16 TeV

 v^*

2

0.8

0.6

0.4

0.2

 $\mathbf{0}$

-2

0

Prompt Λ_c^+ production in *p*Pb

- 2013 $p Pb \sqrt{s_{NN}} = 5 TeV$ data sample
- Reconstruct with $\Lambda_c^+ \to p K^- \pi^+$
- Measured $R_{FB} = \sigma(y^* > 0) / \sigma(y^* < 0)$ similar suppression as D^0
- Measured $R_{\Lambda_c^+/D^0} = \sigma_{\Lambda_c^+}/\sigma_{D^0}$ for charm hadronisation mechanism
 - Consistent with expectations from pp data (~0.3)
 - Comparison with nPDFs, hint of discrepancy at high p_T in the forward region

EPS09LO: Comput. Phys. Commun. 184 (2013) 2562EPS09NLO: Comput. Phys. Commun. 198 (2016) 238nCTEQ15: Phys. Rev. D93 (2016) 085037

JHEP 02 (2019) 102

LH Coherent J/ψ photo-production in PbPb in UPC

- Interaction between the electromagnetic field of the ions
- First result with PbPb sample with small luminosity $\mathscr{L} = 0.4 \,\mu b^{-1}$

 $\sigma = 5.3 \pm 0.2(stat) \pm 0.5(syst) \pm 0.7(lumi) \text{ mb}$

Very good prospects with 2018 data sample

LHCb Preliminary Candidates / (13 MeV 10^{3} Pb-Pb $\sqrt{s_{NN}} = 5 \text{ TeV}$ 10^{2} 10-3000 3500

🔶 data

 $-J/\psi$

 $\psi(2S)$

sum

non-resonan

4000

Óscar Boente

Fixed-target results

- Antiproton production in *p*He
 - Phys. Rev. Lett. 121 (2018) 222001
- Charm production in fixed target
- Phys. Rev. Lett. 122 (2019) 132002

Antiproton production in pHe

LHCb

- Motivation comes from dark matter searches in cosmic rays
- Hint of a possible excess in 10-100 GeV kinetic energy range

 $\bar{p}~~{\rm production}~{\rm in}~{\rm pHe}~{\rm never}~{\rm directly}~~{\rm measured}~{\rm at}~{\rm these}~{\rm energies}$

- Data from *p*He 2016 at $\sqrt{s_{NN}} = 110 \text{ GeV}$ • Kinematic range: $\begin{cases} 12 0.4 \text{ GeV/c} \end{cases}$
- ▶ RICH detectors separate \bar{p} from K^- and π^-
- Luminosity from pe⁻ elastic scattering

Antiproton production in pHe

- Comparison of the result with MC generators:
 - <u>EPOS LHC</u> <u>QGSJETII-04m</u>
 - <u>EPOS 1.99</u> <u>HIJING 1.34</u>
 - <u>QGSJET-II-04</u> <u>PYTHIA 6.4</u>
- Error bar smaller than predictions spread
- EPOS LHC underestimates \bar{p} production

Decisive contribution to reduce background uncertainties in dark matter searches

Charm production in fixed target

Phys. Rev. Lett. 122 (2019) 132002

 Coverage of unique region at LHC due to unique kinematics

Large Bjorken-x in the target

- Access nPDF in anti-shadowing region
- Probe intrinsic charm in the nucleon

Charm production in fixed target

Q66CaV

Phys. Rev. Lett. 122 (2019) 132002

• Data from 2016: -

pHe at
$$\sqrt{s_{NN}} = 80.0 \text{ GeV}$$

pAr at $\sqrt{s_{NN}} = 110.4 \text{ GeV}$

- Cross-sections with $J/\psi \rightarrow \mu^+\mu^-$ and $D^0 \rightarrow K^-\pi^+$ $\sigma_{J/\psi}^{86.6 \text{ GeV}} = 1225.6 \pm 62.0(stat.) \pm 81.6(syst) \text{ nb/nucleon}$ $\sigma_{D^0}^{86.6 \text{ GeV}} = 156.0 \pm 4.6(stat.) \pm 12.3(syst) \mu \text{b/nucleon}$
- Scaling D^0 cross-section with global fragmentation ratio $f(c \rightarrow D^0) = 0.542 \pm 0.024$

 $\sigma_{c\bar{c}}^{86.6 \,\text{GeV}} = 287.8 \pm 8.5(stat.) \pm 25.7(syst) \,\mu\text{b/nucleon}$

- Cross-section measurements in agreement with theoretical predictions
- Shape of differential cross-sections compared with HELAC-ONIA model predictions (rescaled) without intrinsic charm

No evidence for large valence-like intrinsic charm contribution

(pp) CT14NLO: <u>Phys. Rev. D93 (2016) 033006</u> (pHe) CT14NLO+nCTEQ15: <u>Phys. Rev. D93 (2016) 085037</u>

Óscar Boente Results from pPb and fixed target collisions at LHCb 11/04/2019 16

Summary and outlook

- Latest measurements with heavy ions at LHCb have been reported:
 - Fixed-target mode: $\begin{cases} \star \bar{p} \text{ production in } p \text{He} \\ \star \text{Charm production} \end{cases}$
- - *p*Pb and PbPb: Coherent J/ψ production in UPC PbPb collisions Heavy flavour production in *p*Pb (Λ_c^+ , B hadron, $\Upsilon(nS)$)
- Not everything covered, full list <u>here</u>
- Prospects for the future...
 - 2018 PbPb data sample to be analysed! (x20 data w.r.t 2015)
 - Studies in view of Run3/4 with new detector (Prospects in <u>LHCb-CONF-2018-005</u>)
- Upgrade of SMOG system for Run3
 More gases, including H₂ for reference
 Up to a factor 100 more in
- integrated luminosity Much more to come in *p*Pb & PbPb & fixed target at LHCb!

Backup slides

Centrality in PbPb

- Current centrality reach in PbPb limited to ~50% due to VELO and tracking system saturation
- Limit for current measurements in PbPb
- Studies with 2018 data set
- After Upgrade-I:
 - Improved performance in VELO and tracking system
 - Upgrade of SMOG system
 - More gases, including H₂ for reference
 - x 10 100 integrated luminosity
 - Precise determination of the pressure

Óscar Boente **Results from pPb and fixed target collisions at LHCb** 11/04/2019 19

Preliminar yields from 2018 PbPb run

Antiproton production in pHe

Phys. Rev. Lett. 121 (2018) 222001

- Luminosity determination in fixed-target configuration not trivial
- Not possible to measure directly gas pressure inside VELO

Solution: *pe*⁻elastic scattering

Nuclear modification factor in pPb

 Nuclear modification factor: scaled ratio between particle production cross-sections in pPb collisions and pp collisions

$$R_{pPb}^{X}(\eta^{*}, p_{T}) = \frac{1}{A} \frac{d^{2}\sigma_{pPb}^{X}/dp_{T}d\eta^{*}}{d^{2}\sigma_{pp}^{X}/dp_{T}d\eta^{*}} \quad A = 208$$

Deviations from unity → Cold Nuclear Matter Effects (CNM)

- Many different sources: initial state effects (nPdF), coherent parton energy loss, interaction with comovers, p_T broadening...
- CNM effects must be disentangled from QGP
 Importance of pPb collisions