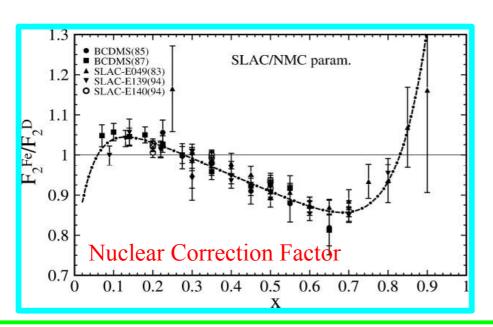
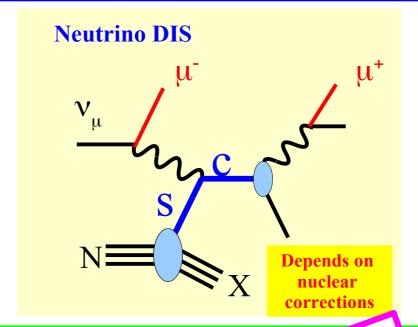
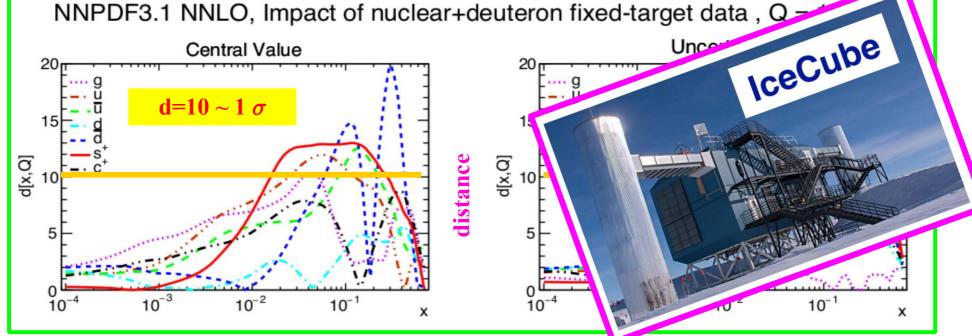
nCTEQ and PDFs at LHC

Challenges and Opportunities for QCD

Fred Olness SMU


Thanks to my nCTEQ colleagues


A. Kusina, B. Clark, E. Godat, T.J. Hobbs, **T. Jezo, C. Keppel,** J.Kent F. Lyonnet, J.G. Morfin, K. Kovarik, J.F. Owens, I. Schienbein, J.Y. Yu,



DIS2019 Torino, Italy April 18-12, 2019

Impact of Nuclear Corrections on Proton PDF

"... for the time being it is still appears advantageous to retain nuclear target data in the global dataset for general-purpose PDF determination"

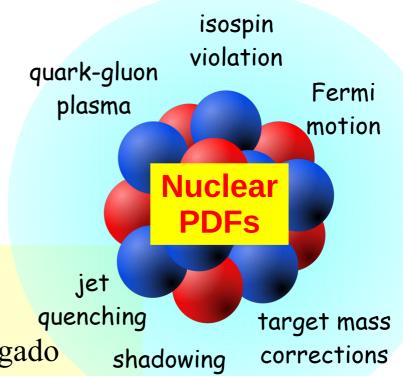
Nuclear PDFs

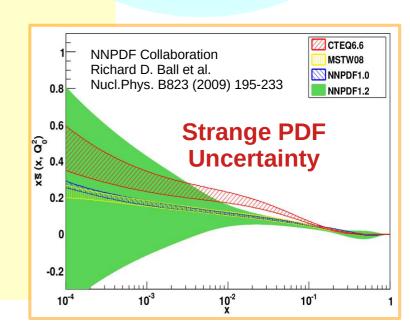
The Cast

nPDFs

nuclear parton distribution functions

HKN'07: Hirai, Kumano, Nagai [PRC 76, 065207 (2007)]


EPPS'16: Eskola, Paakkinen, Paukkunen, Salgado Eur. Phys. J. C77 (2017) no.3, 163 (supersedes EPS'09)


DSSZ'11: de Florian, Sassot, Stratmann, Zurita [PRD 85, 074028 (2012)]

nCTEQ'15: nCTEQ Collaboration [PRD 93, 085037 (2016)]

nNNPDF1.0: Khalek, Ethier, Rojo,

[arXiv:1904.00018]

Nuclear PDF

The Ingredients

Data sets & cuts for nPDF fits

NC DIS & DY

SLAC E-139 & E-049

N = (D, Ag, Al, Au, Be, C, Ca, Fe, He)

CERN BCDMS & EMC & NMC

N = (D, Al, Be, C, Ca, Cu, Fe, Li, Pb, Sn, W)

DIS Cuts:

nCTEQ: Q>2.0 & W>3.5

EPPS16: Q>2.0 & W>3.5

EPS09: Q>1.3

HKN: Q>1.0

DSSZ: Q>1.0

DESY Hermes

N = (D, He, N, Kr)

FNAL E-665

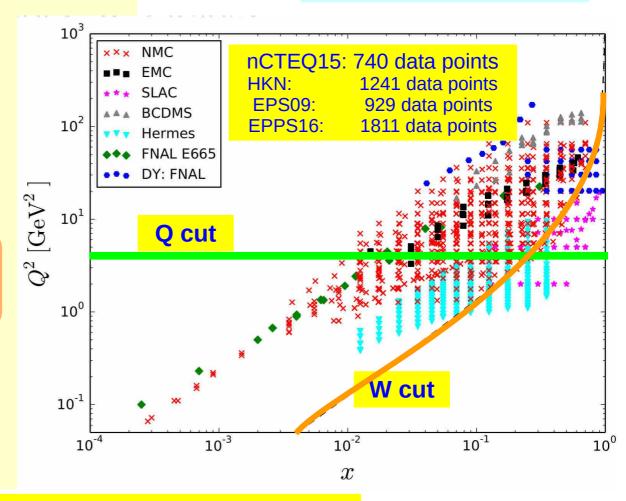
N = (D, C, Ca, Pb, Xe)

FNAL E-772 & E-886

N = (D, C, Ca, Fe, W)

Neutrino DIS*

NuTeV CHORUS CCFR & NuTeV


N = Pb & Fe

Pion Production:

RHIC: PHENIX & STAR

N = Au

will show comparision w/ LHC pPb

Data sets & cuts for nPDF fits

NC DIS & DY

SLAC E-139 & E-049

N = (D, Ag, Al, Au, Be, C, Ca, Fe, He)

CERN BCDMS & EMC & NMC

N = (D, Al, Be, C, Ca, Cu, Fe, Li, Pb, Sn, W)

DIS Cuts:

nCTEQ: Q>2.0 & W>3.5

EPPS16: Q>2.0 & W>3.5

EPS09: Q>1.3

HKN: Q>1.0

DSSZ: Q>1.0

DESY Hermes

N = (D, He, N, Kr)

FNAL E-665

N = (D, C, Ca, Pb, Xe)

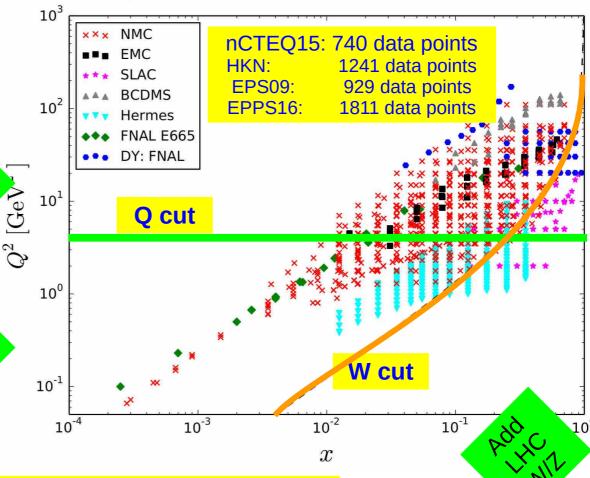
FNAL E-772 & E-886

N = (D, C, Ca, Fe, W)

[GeV]

Neutrino DIS*

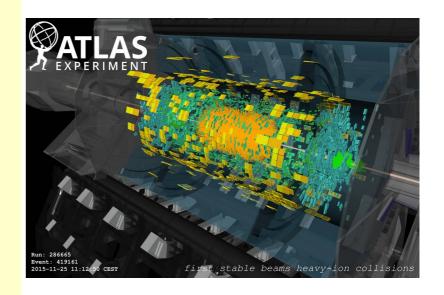
NuTeV CHORUS CCFR & NuTeV

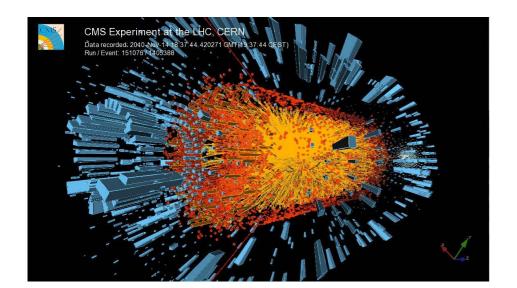

N = Pb & Fe

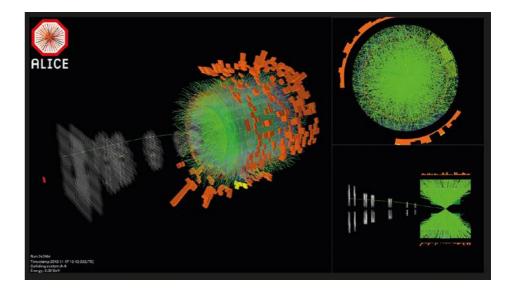
Pion Production:

RHIC: PHENIX & STAR

N = Au

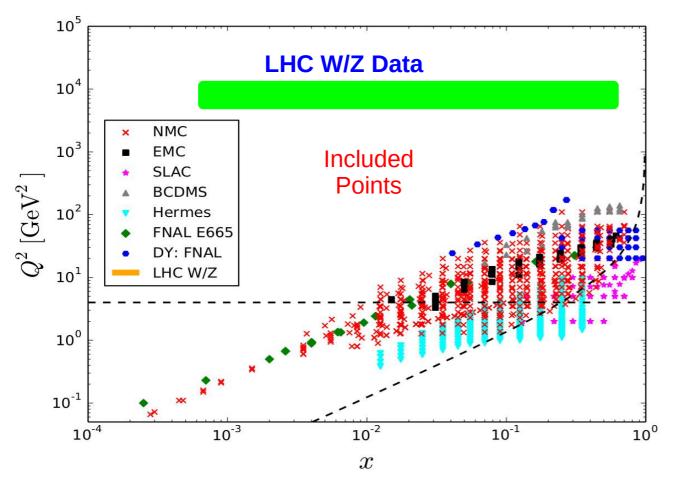

will show comparision w/ LHC pPb




proton vs nuclear: fewer data and more DOF ... impose assumptions on nPDFs

Heavy Ions at the LHC CMS LHC LHCb ALICE SPS **ATLAS** AWAKE ΑD **ISOLDE** LINAC 2 LINAC 3 Antiproton Decelerator Proton Synchrotron n-TOF Neutron Time Of Flight Super Proton Synchrotron protons antiprotons AWAKE Advanced Wakefield Experiment LHC Large Hadron Collider electrons CTF3 CLIC Test Facility 3 neutrinos

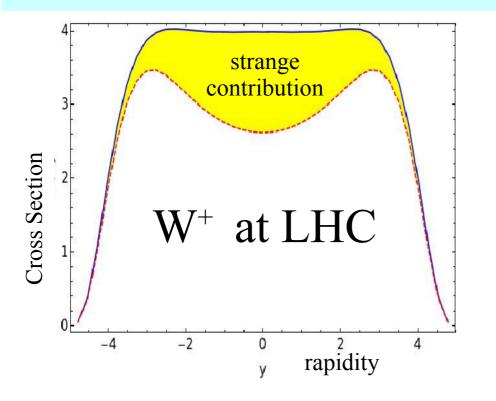
... focus on pPb Production

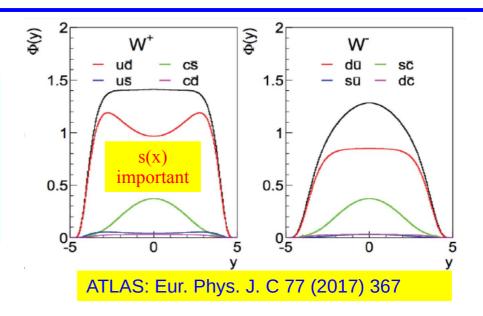


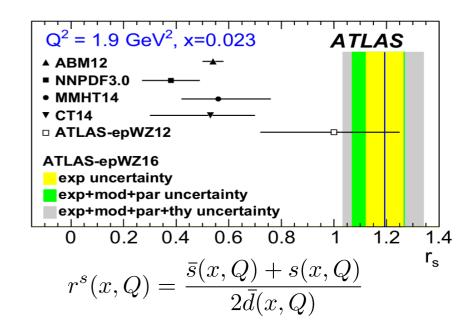
pPb Data for nCTEQ+LHC

TM

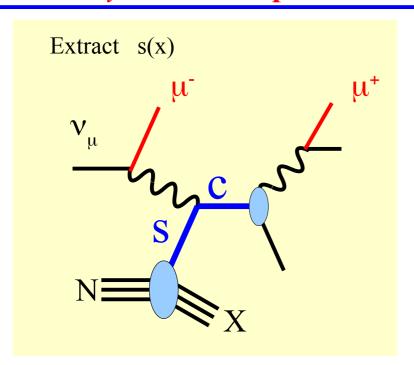
No LHC data in any previous nCTEQ fit

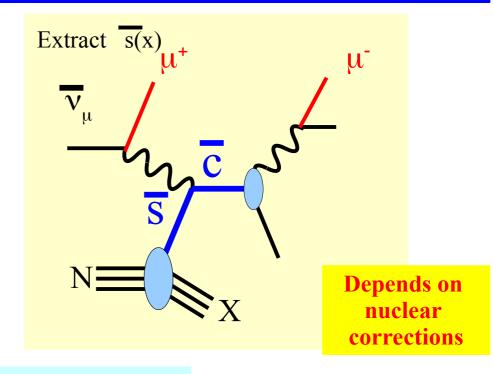

• New nCTEQ++ code using ApplGrid predictions make this possible



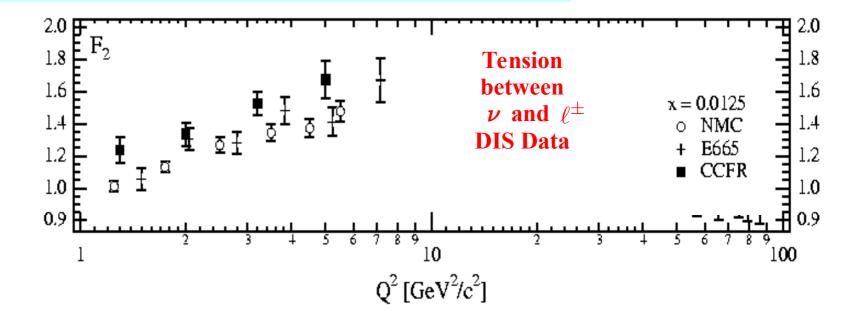

CMS	W+
CMS	W-
CMS ATLAS	Z W+
ATLAS	W-
ATLAS ALICE	Z W+
ALICE LHCb	W- Z
CMS_II	W+
CMS_II	W-

Fred Olness - SMU

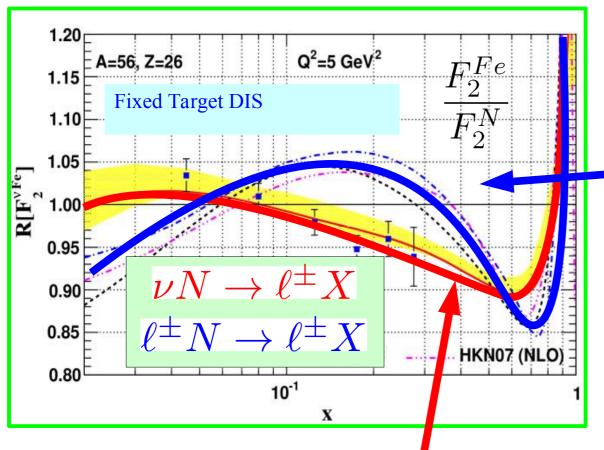

W/Z Production Channels



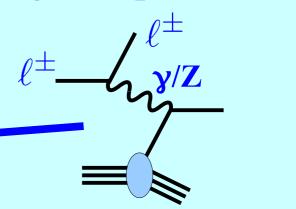
"The ATLAS and CMS inclusive W and Z differential cross section data... support unsuppressed strangeness... The result is dominated by the ATLAS data but is not in contradiction with the CMS data."

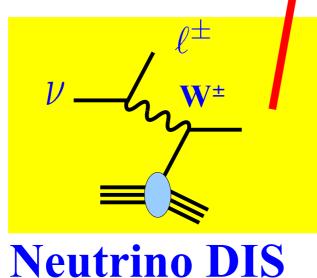


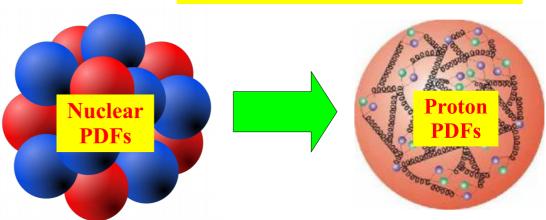
Can extract s(x) and $\overline{s}(x)$ separately


Used in CTEQ Fits

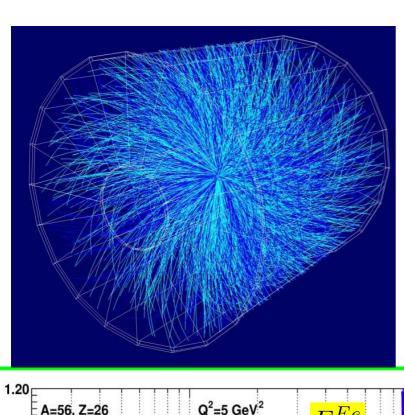
The CTEQ List of Challenges in Perturbative QCD

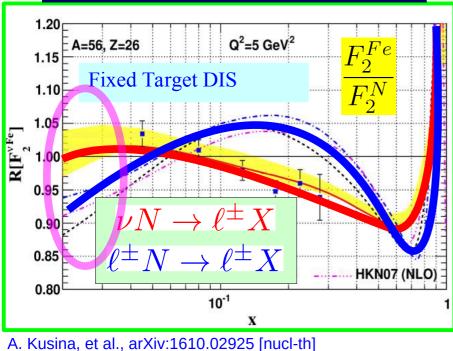

~1995

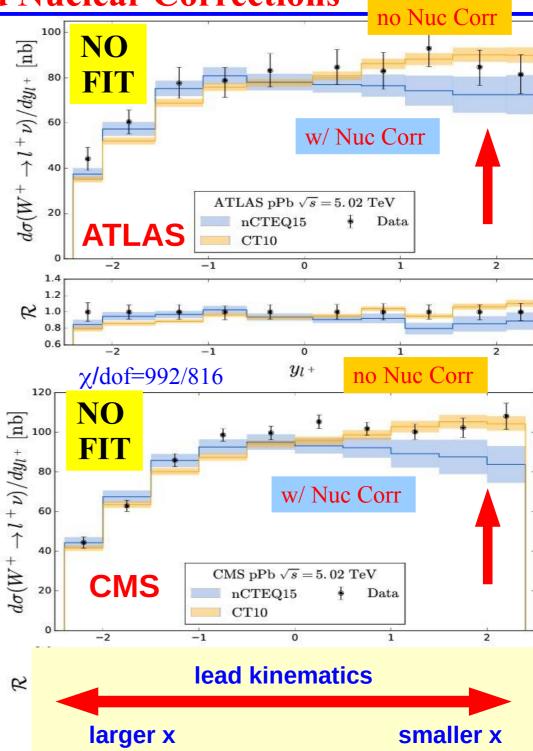

CTEQ


Charged Lepton DIS

some caveats
... correlated errors

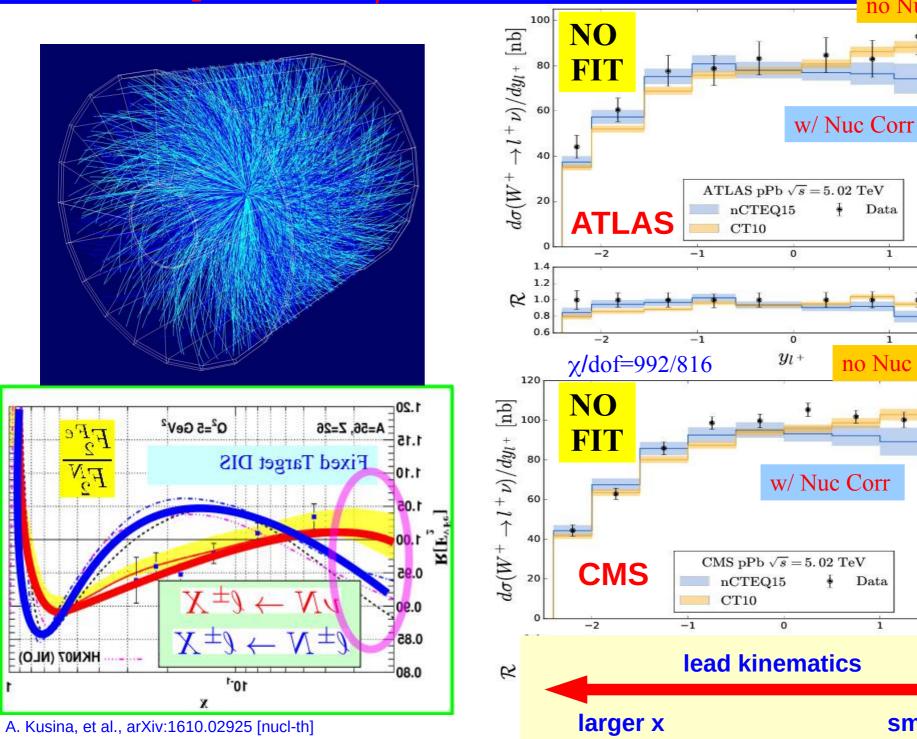






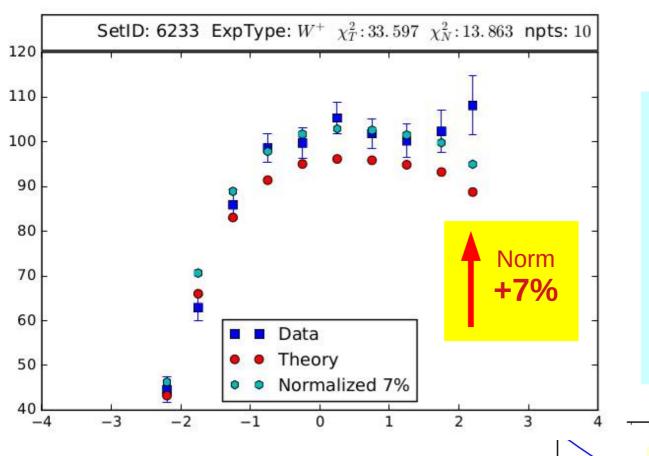
Including W/Z Heavy Ion Data

$p Pb \rightarrow W/Z$ and Nuclear Corrections


Data

no Nuc Corr

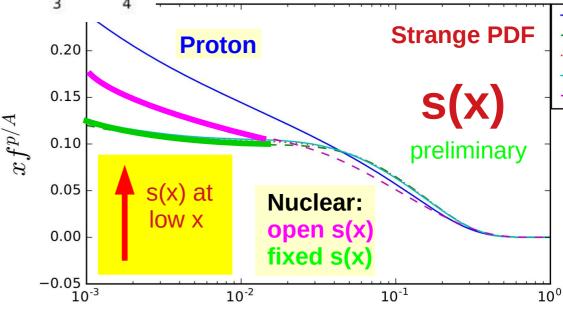
Data


smaller x

$p Pb \rightarrow W/Z$ and Nuclear Corrections

Fit to LHC W/Z Data w/ Normalization

Frec



Fit + Normalization

- Improved $\chi^2/d.o.f.$
- Seems to prefer larger strange PDF

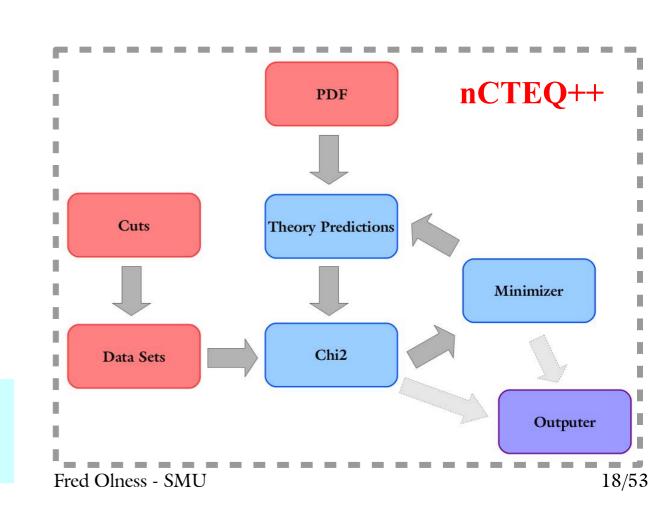
The <u>preliminary</u> result is if we fit strange, the data prefers a larger s(x)

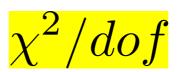
include in fit w/ nCTEQ++

(using ApplGrids)

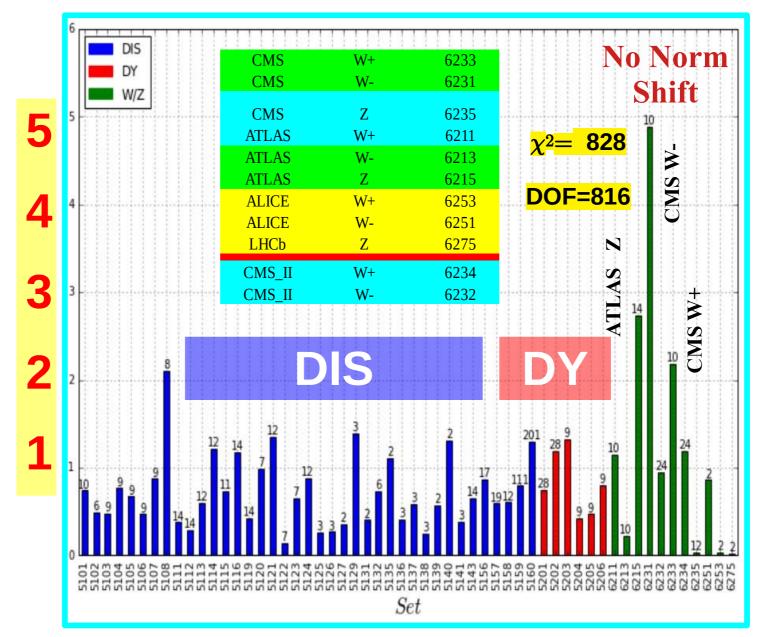
What is nCTEQ++?

- A complete rewrite of the nCTEQ FORTRAN fitting code in C++
- Changed the code to allow for modules when building a PDF

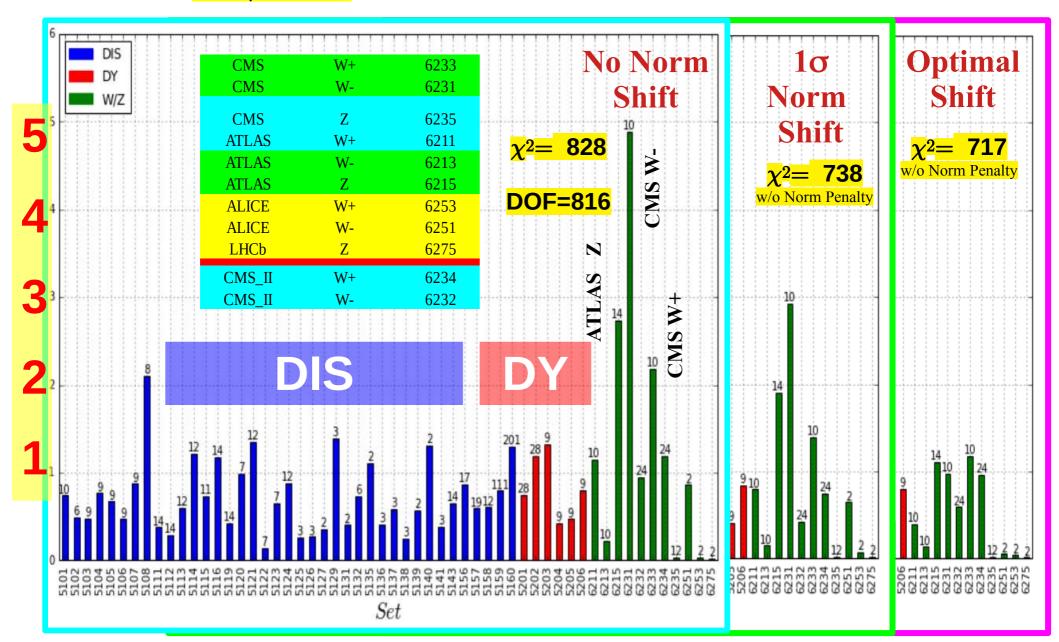

Evolution

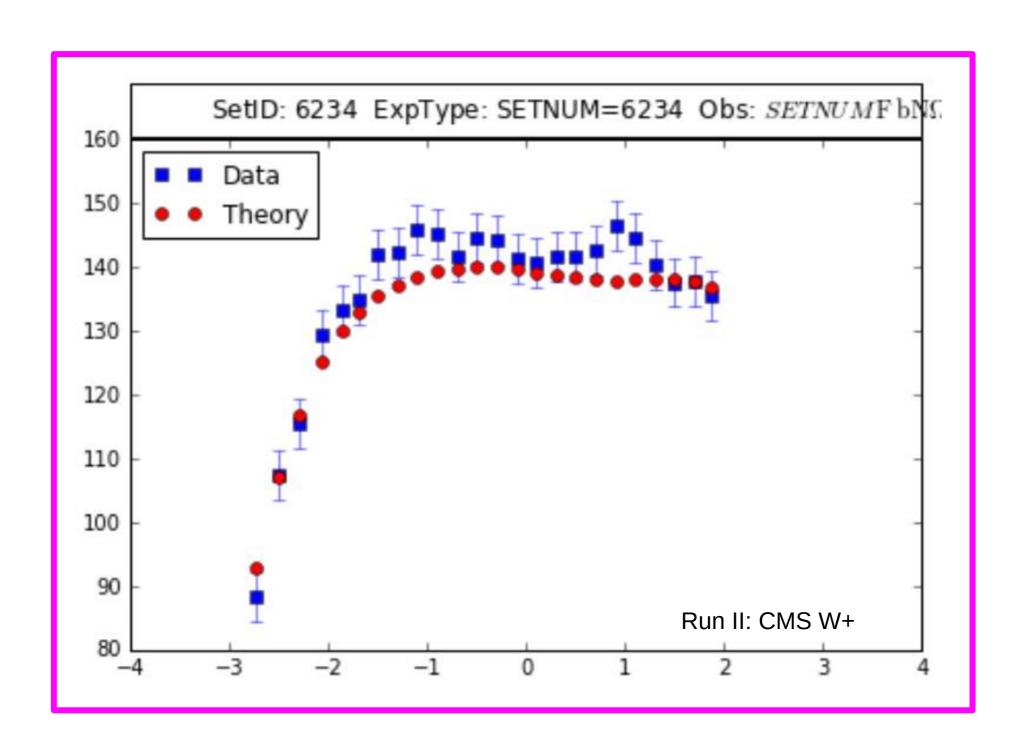

Interpolation

Parameterization

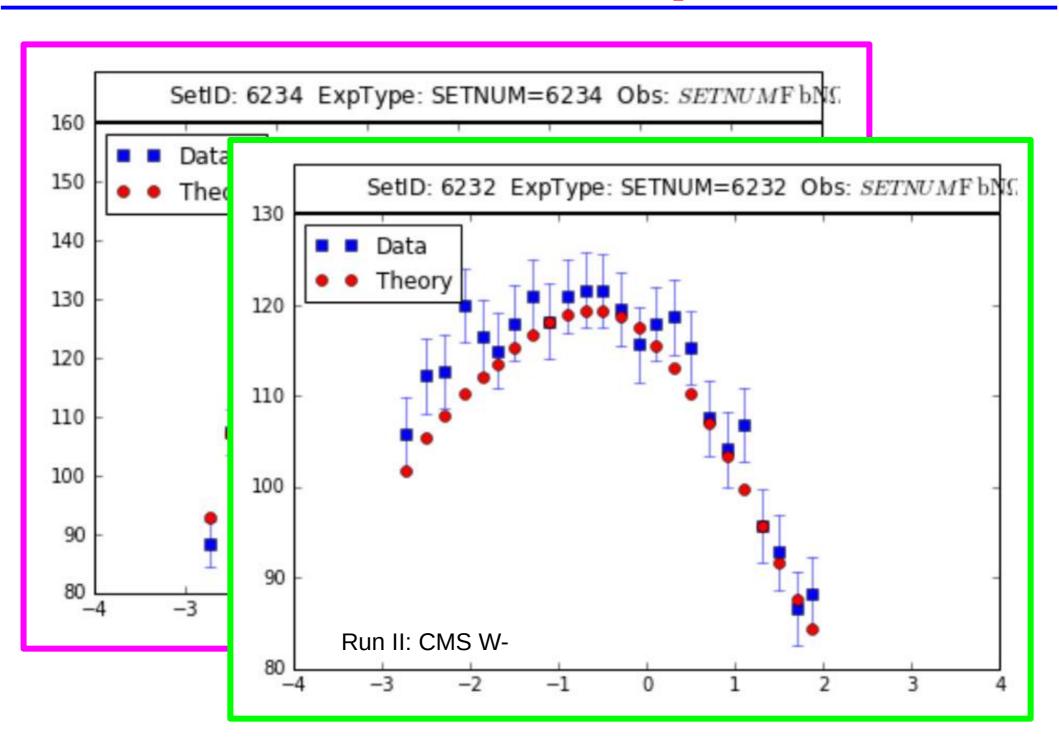

- Use external programs
 - Minuit
 - HOPPET
 - MCFM
 - APPLgrid

Special thanks to:
Florian Lyonnet
Tomas Jezo
Aleksander Kusina

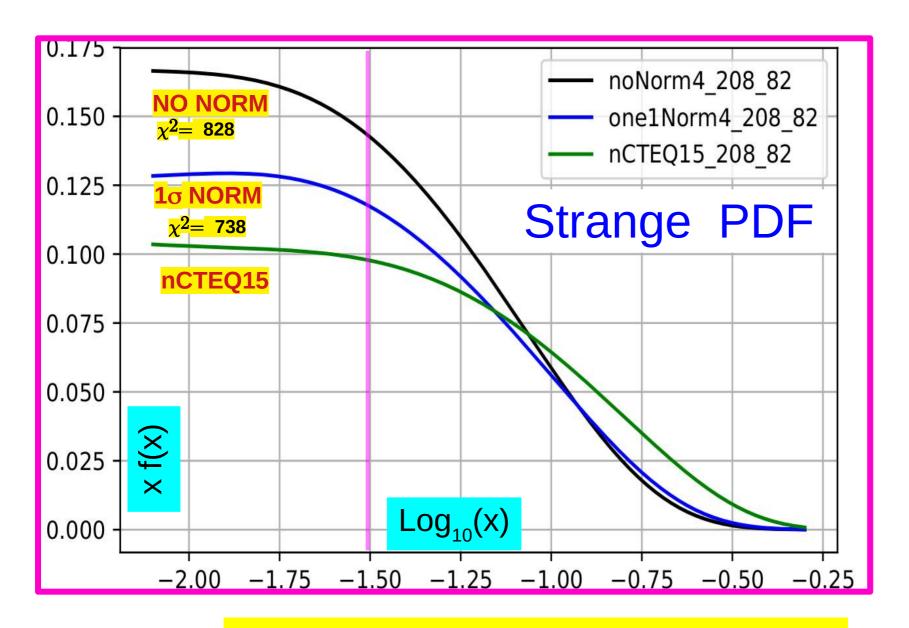




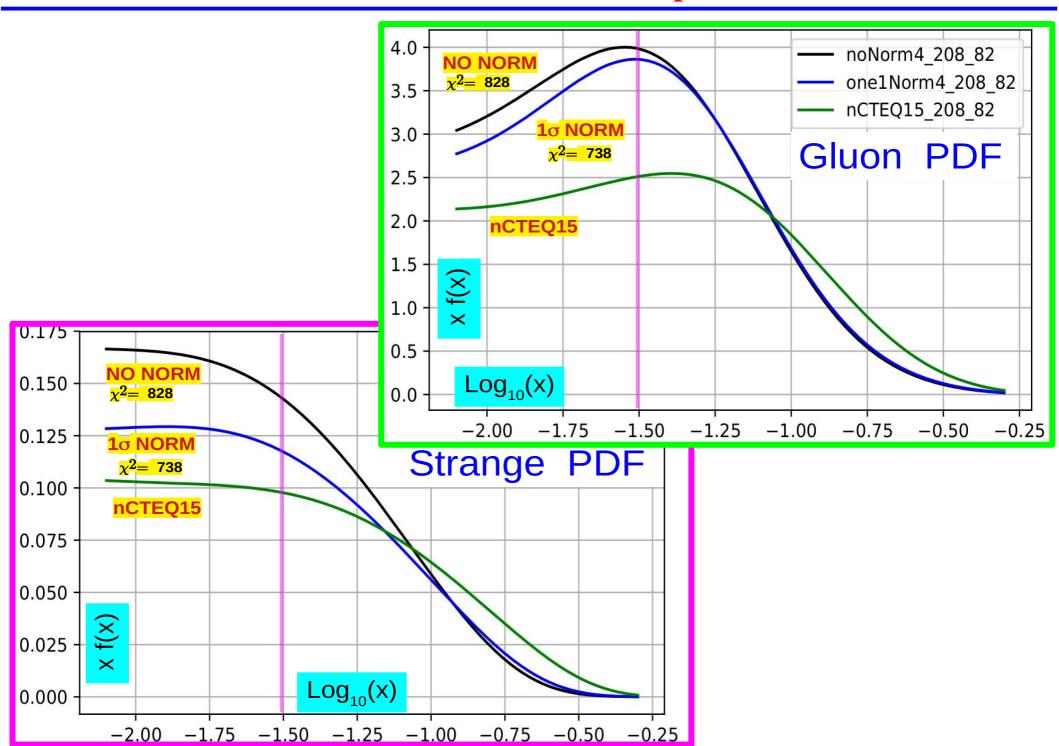
 χ^2 992 \rightarrow 828



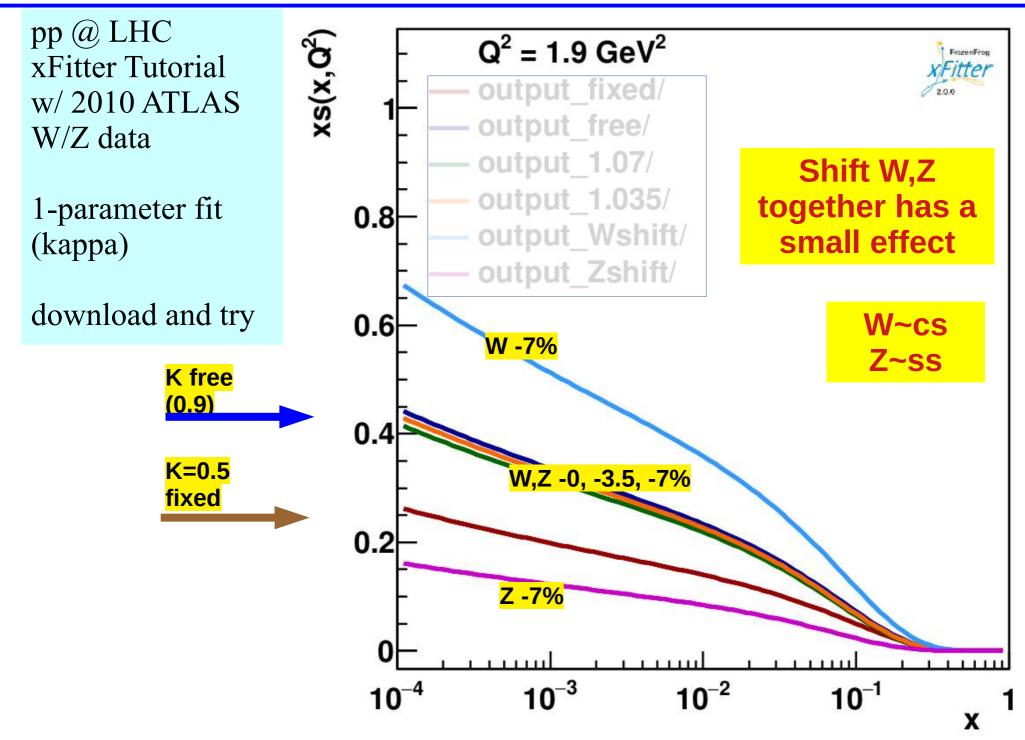
χ^2/dof



W/Z Data in fit: LHC p-Pb



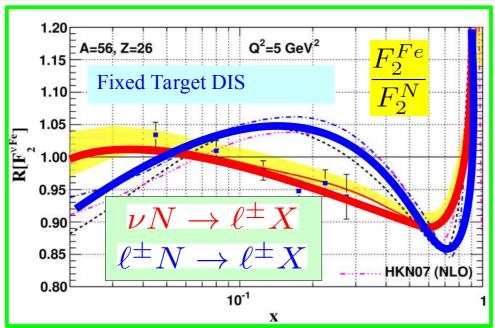
W/Z Data in fit: LHC p-Pb


Is the strange PDF driving the data Or is the data driving the strange ???

W/Z Data in fit: LHC p-Pb

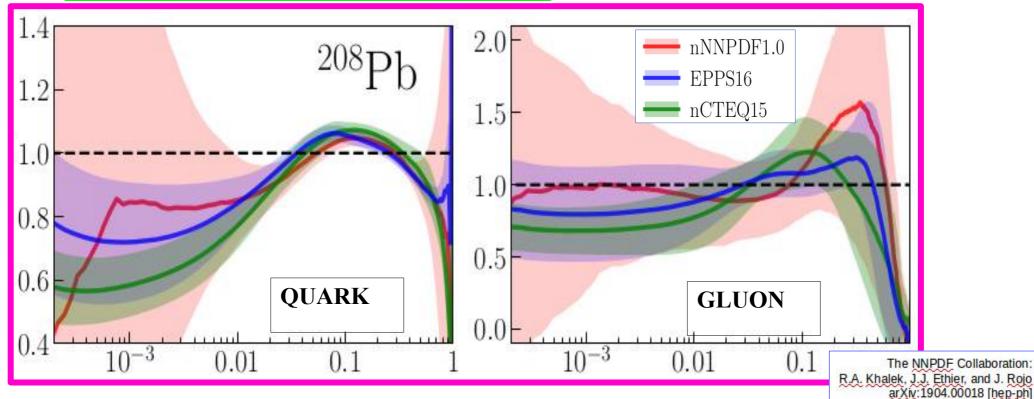
a "toy" fit with xFitter

A Toy Fit with xFitter: (only 1 free parameter: κ)

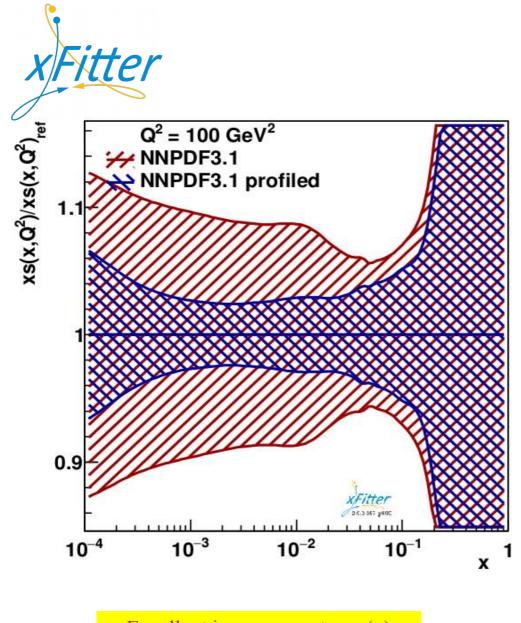


Disentangling

S(X)

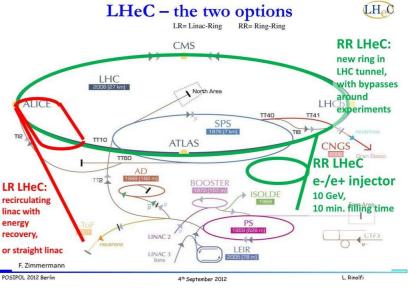

and the

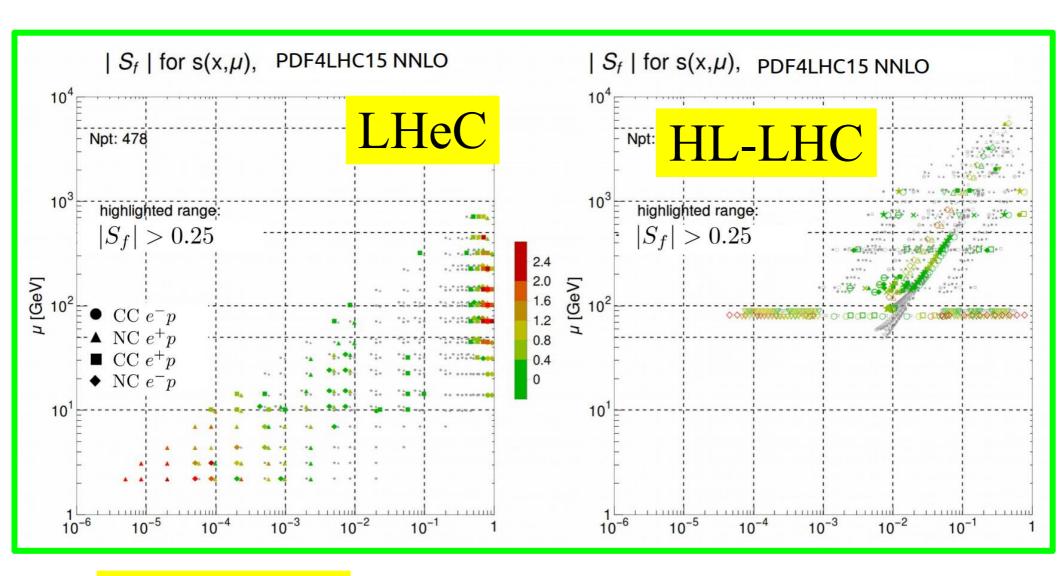
nuclear corrections



NCTEQ15 fit uses NC DIS

... interesting to try with Neutrino-DIS


Future Facilities

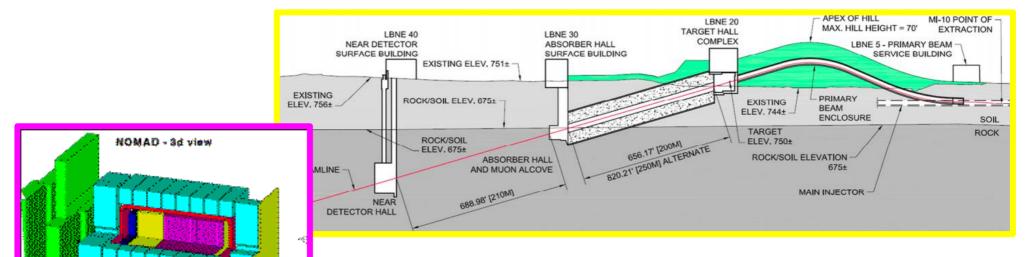

Excellent improvement on s(x) Additional improvement on g(x)

Sensitivity S_t : Extend concept of correlation (C) to include both pull and precision of experiment. (Technically, weight by scaled residual.)

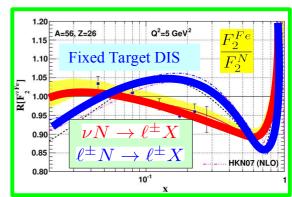
See Talk By: Pavel Nadolsky (SMU)

Linked from: https://metapdf.hepforge.org/

DIS at **DUNE**

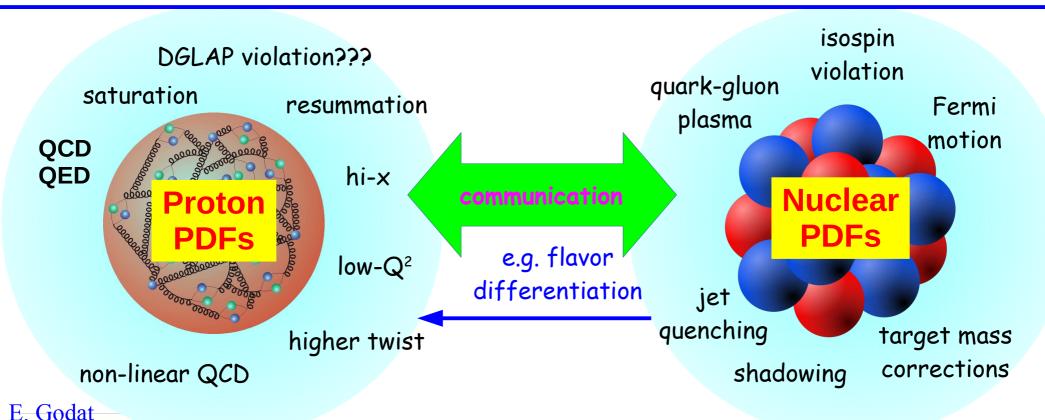

Extract vH from C and CH2 targets:

$$\nu H \to \ell^{\pm} X$$


Enhancing the LBNF/DUNE Physics Program

EPPSU 2020 Contribution

P. Bernardini¹, S. Bertolucci², M. Bhattacharjee³, B. Bhuyan³, S. Biagi¹¹,
A. Caminata¹³, A. Cervelli⁶, S. Davini¹³, S. Di Domizio¹³, L. Di Noto¹³,
M. Diwan⁴, C. Distefano¹¹, H. Duyang⁵, F. Ferraro¹³, A. Gabrielli², M. Guerzoni⁶,
B. Guo⁵, M.A. Iliescu^{12,14}, G. Laurenti⁶, G. Mandrioli⁶, N. Mauri², S.R. Mishra⁵,
N. Moggi², A. Montanari⁶, M. Pallavicini¹³, L. Pasqualini², L. Patrizii⁶, R. Petti⁵,*
M. Pozzato⁶, P. Sapienza¹¹, F. H. Sawy⁷, G. Sirri⁶, L. Stanco⁸, A. Surdo⁹, M. Tenti¹⁰,
F. Terranova¹⁰, G. Testera¹³, M. Torti¹⁰, N. Tosi⁶, R. Travaglini⁶, and S. Zucchelli²



See Presentation by R. Petti Wednesday WG7

Conclusions

... the motivation for nCTEQ

T.J. Hobbs
T. Jezo,
J. Kent
C. Keppel,
K. Kovarik
A Kusina,
F. Lyonnet,
J. Morfin,
F. Olness
J. Owens,
I. Schienbein.

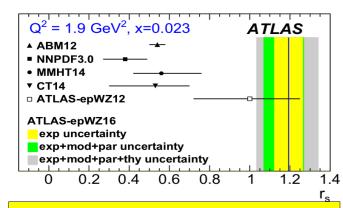
J. Yu

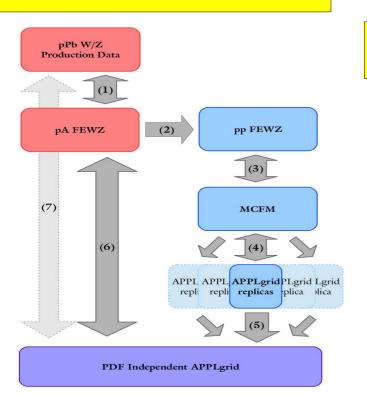
Data from nuclear targets play a key role in the flavor differentiation

nuclear parton distribution functions

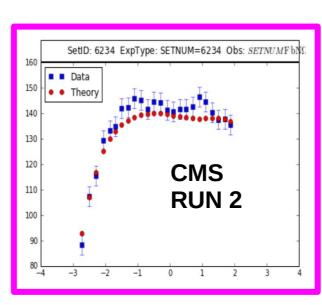
Thanks to my nCTEQ & xFitter colleagues

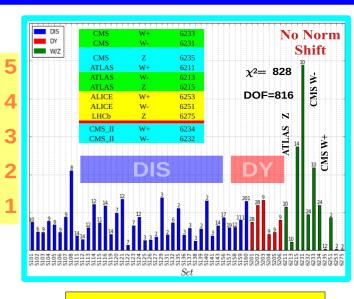
nctear parton distribution functions

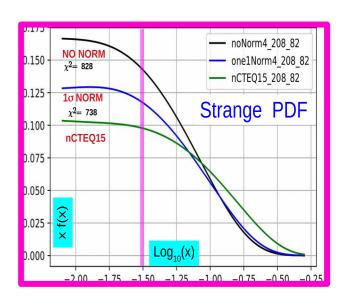




New Data & New Theoretical Tools


The Strange PDF Puzzle


New Theory Tools


Nuclear Data Essential for PDFs

New Analyses

Tensions Evident

New Perspectives

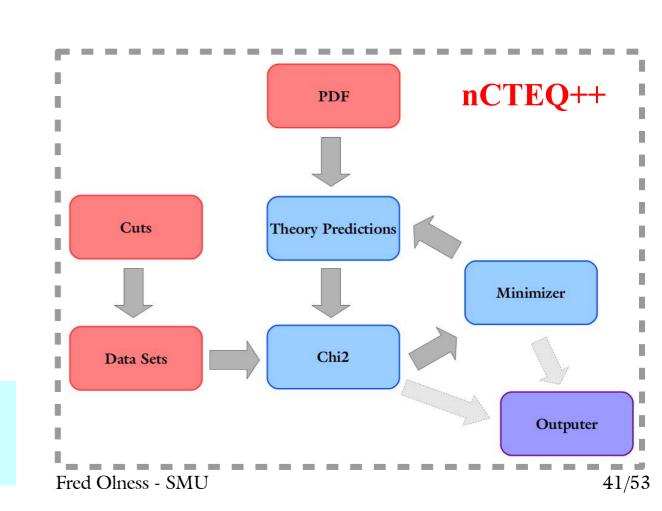
F. Olness DIS April 2019 36

Extras

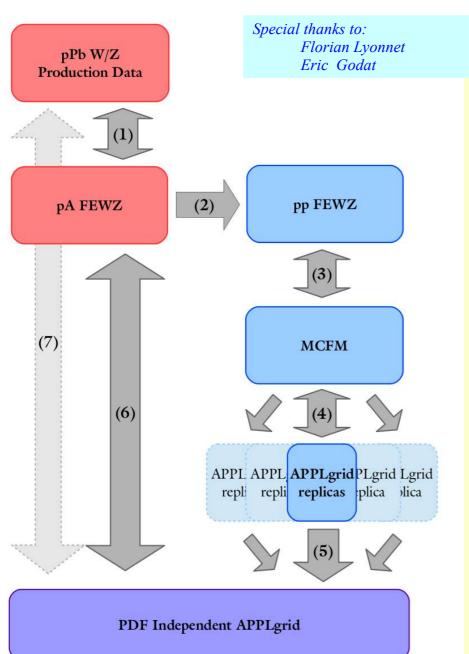
How can we include these new processes into the fit directly???

What is nCTEQ++?

- A complete rewrite of the nCTEQ FORTRAN fitting code in C++
- Changed the code to allow for modules when building a PDF


Evolution

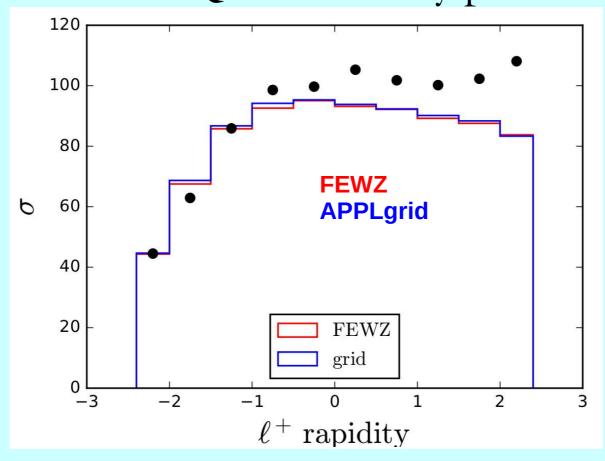
Interpolation


Parameterization

- Use external programs
 - Minuit
 - HOPPET
 - MCFM
 - APPLgrid

Special thanks to:
Florian Lyonnet
Tomas Jezo
Aleksander Kusina

Use MCFM + APPLgrid for pPb


- (1)Data matched to pA-FEWZ in reweighting
- (2) Run FEWZ in symmetric pp mode
- (3)Compare pp FEWZ to pp MCFM
- (4) Generate APPLgrid grids
 - · Using mcfm-bridge
- · Different Monte Carlo seeds
- (5) Combine replica grids into a single PDF independent grid
- · Using applgrid-combine
- (6)Convolute PDF independent grid with asymmetric PDFs to compare to pAFEWZ
- (7)Add data and grid in nCTEQ++ to fit W/Z LHC data

They Match!!!

Grids generated for pp can be used for pPb !!!

Convoluted grids can then be compared to data and used in nCTEQ++ as theory predictions

MCFM Processes Library (v6.8)

MCFM: Vector boson pair production at the LHC, J. M.Campbell, R. K.Ellis and C.Williams, JHEP 1107, 018 (2011)

The APPLGRID Project: Tancredi Carli, Dan Clements, Amanda Cooper-Sarkar, Claire Gwenlan, Gavin P.

Salam, Frank Siegert, Pavel Starovoitov, Mark Sutton. Eur. Phys. J. C66 (2010) 503-524

nproc	$f(p_1) + f(p_2) \rightarrow \dots$	Order
1	$W^+(\to \nu(p_3) + e^+(p_4))$	NLO [
6	$W^-(\to e^-(p_3) + \bar{\nu}(p_4))$	NLO
11	$W^+(\to \nu(p_3) + e^+(p_4)) + f(p_5)$	NLO
12	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{b}(p_5)$	NLO
13	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{c}(p_5)$	NLO
14	$W^{+}(\to \nu(p_3) + e^{+}(p_4)) + \bar{c}(p_5)$ [massless]	LO
16	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + f(p_5)$	NLO
17	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + b(p_5)$	NLO
18	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + c(p_5)$	NLO
19	$W^-(o e^-(p_3) + ar{ u}(p_4)) + c(p_5)[{ m massless}]$	LO

	, , , , ,	
nproc	$f(p_1) + f(p_2) \rightarrow$	Order
1	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4}))$	NLO
6	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4}))$	NLO
11	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + f(p_5)$	NLO
12	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + \tilde{b}(p_{5})$	NLO
13	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + \bar{c}(p_{5})$	NLO
14	$W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \bar{c}(p_5)$ [massless]	LO
16	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + f(p_5)$	NLO
17	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5)$	NLO
18	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + c(p_5)$	NLO
19	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + c(p_{5})[\text{massless}]$	LO
20	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + b(p_{6})$ [massive]	NLO
21	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + b(p_5) + \bar{b}(p_6)$	NLO
22	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + f(p_5) + f(p_6)$	NLO
23	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + f(p_5) + f(p_6) + f(p_7)$	LO
24	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7)$	LO
25	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6)[massive]$	NLO
26	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6)$	NLO
27	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6)$	NLO
28	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6) + f(p_7)$	LO
29	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7)$	LO
31	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4}))$	NLO
32	$Z^0(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4)))$	NLO
33	$Z^0(\rightarrow b(p_3) + \bar{b}(p_4))$	NLO
34	$Z^0(\rightarrow 3 \times (d(p_5) + \bar{d}(p_6)))$	NLO
35	$Z^0(\rightarrow 2 \times (u(p_5) + \bar{u}(p_6)))$	NLO
36	$Z \rightarrow t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{b}(p_6) + e^-(p_7) + \bar{\nu}(p_8))$	LO
41	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5})$	NLO
42	$Z_0(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + f(p_5)$	NLO
43	$Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + f(p_{5})$	NLO
44	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5}) + f(p_{6})$	NLO
45	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5}) + f(p_{6}) + f(p_{7})$	LO
46	$Z^{0}(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6)$	NLO
47	$Z^{0}(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6) + f(p_7)$	LO
50	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + b(p_{6})[massive]$	LO
51	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$	NLO
52	$Z_0(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + b(p_5) + \bar{b}(p_6)$	NLO
53	$Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$	NLO
54	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + \bar{b}(p_{6}) + f(p_{7})$	LO

	_		_
	101	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + H(\rightarrow b(p_{5}) + b(p_{6}))$	NLO
	102	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) + H(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO
	103	$Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + H(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO
	104		NLO
	105		NLO
	106		NLO
	107		NLO
	108		NLO
ı	109		NLO
ŀ	111		NLO
ı	112		NLO
	113		NLO
	114		NLO
H	115		NLO
H	116		NLO
	117		NLO
			NLO
	118		NLO
	120		NLO
-			
Į	121	$H(\rightarrow Z^{0}(3 \times (\nu(p_{3}) + \bar{\nu}(p_{4})))) + \gamma(p_{5}))$	NLO
_			
	56	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + c(p_{5}) + \bar{c}(p_{6})$	NLO
	61	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + W^{-}(\rightarrow e^{-}(p_5) + \bar{\nu}(p_6))$	NLO
ŀ	62	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + W^{-}(\rightarrow q(p_5) + \bar{q}(p_6))$	NLO
ŀ	63	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + W^{-}(\rightarrow q(p_5) + \bar{q}(p_6))[rad.in.dk]$	NLO
Į,	64	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4))W^{+}(\rightarrow q(p_5) + \bar{q}(p_6))$	NLO
١,	65	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4}))W^{+}(\rightarrow q(p_{5}) + \bar{q}(p_{6}))[rad.in.dk]$	NLO
١,	66	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + W^{-}(\rightarrow e^{-}(p_5) + \bar{\nu}(p_6)) + f(p_7)$	LO
	69	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + W^{-}(\rightarrow e^{-}(p_{5}) + \bar{\nu}(p_{6}))[\text{no pol}]$	LO
	71	$W^+(\rightarrow \nu(p_3) + \mu^+(p_4)) + Z^0(\rightarrow e^-(p_5) + e^+(p_6))$	NLO
	72	$W^{+}(\rightarrow \nu(p_{3}) + \mu^{+}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu_{e}(p_{5}) + \bar{\nu}_{e}(p_{6})))$	NLO
	73	$W^+(\rightarrow \nu(p_3) + \mu^-(p_4)) + Z^-(\rightarrow 3 \times (\nu_e(p_5) + \nu_e(p_6)))$ $W^+(\rightarrow \nu(p_4) + \mu^+(p_4)) + Z^0(\rightarrow b(p_5) + \bar{b}(p_e))$	NLO
	74		NLO
		$W^{+}(\rightarrow \nu(p_3) + \mu^{+}(p_4)) + Z^{0}(\rightarrow 3 \times (d(p_5) + \bar{d}(p_6)))$	
	75	$W^{+}(\rightarrow \nu(p_3) + \mu^{+}(p_4)) + Z^{0}(\rightarrow 2 \times (u(p_5) + \bar{u}(p_6)))$	NLO
	76	$W^-(\rightarrow \mu^-(p_3) + \bar{\nu}(p_4)) + Z^0(\rightarrow e^-(p_5) + e^+(p_6))$	NLO
	77	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\rightarrow 3 \times (\nu_e(p_5) + \bar{\nu}_e(p_6)))$	NLO
l.	78	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\rightarrow b(p_5) + \bar{b}(p_6))$	NLO
l.	79	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + Z^0(\rightarrow 3 \times (d(p_5) + \bar{d}(p_6)))$	NLO
1.	80	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\rightarrow 2 \times (u(p_5) + \bar{u}(p_6)))$	NLO
T.	81	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow \mu^{-}(p_{5}) + \mu^{+}(p_{6}))$	NLO
	82	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))$	NLO
	83	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO
	84	$Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))$	NLO
	85	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6}))) + f(p_{7})$	LO
	86	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{-}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6}))) + J(p_{7})$ $Z^{0}(\rightarrow \mu^{-}(p_{3}) + \mu^{+}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6}))[\text{no gamma*}]$	NLO
	87		
		$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))[\text{no gamma*}]$	NLO
	88	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow b(p_{5}) + \bar{b}(p_{6}))[\text{no gamma*}]$	NLO
	89	$Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))[\text{no gamma*}]$	NLO
	90	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6}))$	NLO
	91	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + H(\rightarrow b(p_5) + \bar{b}(p_6))$	NLO
	92	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + H(\rightarrow W^{+}(\nu(p_5), e^{+}(p_6))W^{-}(e^{-}(p_7), \bar{\nu}(p_8)))$	NLO
1	93	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + H(\rightarrow Z(e^{-}(p_5), e^{+}(p_6)) + Z(\mu^{-}(p_7), \mu(p_8)))$	NLO
1	94	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + H(\rightarrow \gamma(p_5) + \gamma(p_6)$	NLO
1	96	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + H(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO
	97	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + H(\rightarrow W^{+}(\nu(p_5), e^{+}(p_6))W^{-}(e^{-}(p_7), \bar{\nu}(p_8)))$	NLO
	98	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + H(\to Z(e^-(p_5), e^+(p_6)) + Z(\mu^-(p_7), \mu^+(p_8)))$	NLO
		$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + H(\to \gamma(p_5) + \gamma(p_6))$	NLO
	99		

123	$H(\rightarrow W^{+}(\nu(p_{3}) + e^{+}(p_{4})) + W^{-}(e^{-}(p_{5}) + \bar{\nu}(p_{6})))$ [top, bottom loops, exact]	LO
124	$H(\rightarrow W^{+}(\nu(p_{3}) + e^{+}(p_{4})) + W^{-}(e^{-}(p_{5}) + \bar{\nu}(p_{6})))$ [only H, gg \rightarrow WW intf.	LO
125	$H(\rightarrow W^{+}(\nu(p_{3}) + e^{+}(p_{4})) + W^{-}(e^{-}(p_{5}) + \bar{\nu}(p_{6})))$ [$ H ^{2}$ and $H,gg\rightarrow WW$ intf.]	LO
126	$W^{+}(\nu(p_3) + e^{+}(p_4)) + W^{-}(e^{-}(p_5) + \bar{\nu}(p_6))$ [gg only, (H + gg \rightarrow WW) squared]	LO
127	$W^{+}(\nu(p_3) + e^{+}(p_4)) + W^{-}(e^{-}(p_5) + \bar{\nu}(p_6))$ [(gg \rightarrow WW) squared]	LO
128	$H(\rightarrow Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6))$ [top, bottom loops, exact]	LO
129	$H(\rightarrow Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6))$ [only H, gg \rightarrow ZZ intf.]	LO
130	$H(\rightarrow Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6))$ [$ H ^{2}$ and H,gg \rightarrow ZZ intf.]	LO
131	$Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6))$ [gg only, (H + gg \rightarrow ZZ) squared]	LO
132	$Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6))$ [(gg \rightarrow ZZ) squared]	LO
1281	$H(\rightarrow e^{-}(p3) + e^{+}(p4)\nu_{e}(p5) + \bar{\nu}_{e}(p6)$ [top, bottom loops, exact]	LO
1311	$e^-(p3) + e^+(p4) + \nu_e(p5) + \bar{\nu}_e(p6)$ [gg only, (H + gg \rightarrow ZZ) squared]	LO
1321	$e^{-}(p3) + e^{+}(p4) + \nu_{e}(p5) + \bar{\nu}_{e}(p6)$ [(gg \to ZZ) squared]	LO
1282	$H(\rightarrow e^{-}(p3) + e^{+}(p4) + \nu(p5) + \bar{\nu}(p6)$ [top, bottom loops, exact]	LO
1312	$e^{-}(p3) + e^{+}(p4) + \nu(p5) + \bar{\nu}(p6)$ [gg only, (H + gg \rightarrow ZZ) squared]	LO
1322	$e^{-}(p3) + e^{+}(p4) + \nu(p5) + \bar{\nu}(p6)$ [(gg \to ZZ) squared]	LO
133	$H(\rightarrow Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6) + f(p7))$ [intf,no p_{7} cut]	LO
136	$H(\rightarrow b(p_3) + b(p_4)) + b(p_5)(+g(p_6))$	NLO
137	$H(\rightarrow b(p_3) + \bar{b}(p_4)) + \bar{b}(p_5)(+b(p_6))$	(REAL)
138	$H(\rightarrow b(p_3) + \bar{b}(p_4)) + b(p_5) + \bar{b}(p_6)[both observed]$	(REAL)
141	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8))$	NLO
142	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.dk]	NLO
143	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b(p_6) + e^-(p_7) + \bar{\nu}(p_8)) + f(p_9)$	LO
144	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ (uncorr)	NLO
	4(- u(u) + u+(u) + U(u) + T(- U(u) + u-(u) + T(u) (u	- NLO

141	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8))$	NLO
142		NLO
143		LO
144		NLO
145		NLO
146		NLO
147	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b\ (p_6) + q(p_7) + \bar{q}(p_8))$ [rad.in.top.dk]	NLO
148	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b\ (p_6) + q(p_7) + \bar{q}(p_8))$ [rad.in.W.dk]	NLO
149	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8))$	NLO
150	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.top.dk]	NLO
151	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.W.dk]	NLO
157	$t\bar{t}$ [for total Xsect]	NLO
158	$b\bar{b}[\text{for total Xsect}]$	NLO
159	cc[for total Xsect]	NLO
160	$t\bar{t} + g[\text{for total Xsect}]$	LO
161	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)[t\text{-channel}]$	NLO
162		NLO
163		NLO
166		NLO
167	$\bar{t}(\rightarrow e^{-}(p_{5}) + \bar{\nu}(p_{4}) + \bar{b}(p_{5})) + q(p_{6})[rad.in.dk]$	NLO
168	$\bar{t}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + q(p_6)[\text{t-channel}]mb > 0$	NLO
171	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{b}(p_6))$ [s-channel]	NLO
172		NLO
176	$\bar{t}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4}) + \bar{b}(p_{5})) + b(p_{6}))$ [s-channel]	NLO
177	$\bar{t}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + b(p_6))$ [rad.in.dk]	NLO
180	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + t(p_5)$	NLO
181	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7))$	NLO
182	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7))$ [rad.in.dk]	NLO
183	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + b(p_8)$	LO
184	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + t(p_5) + b(p_6)$ [massive b]	LO
185	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + \bar{t}(p_{5})$	NLO
186	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \bar{t}(e^{-}(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7)$	NLO
187	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \bar{t}(e^{-}(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7)[rad.in.dk]$	NLO

270	$H(\gamma(p_3) + \gamma(p_4)) + f(p_5) + f(p_6)$ in heavy top limit	NLO	Г
271	$H(b(p_3) + \bar{b}(p_4)) + f(p_5) + f(p_6) in \text{ heavy top limit} $	NLO	
272		NLO	
273	$H(\rightarrow W^{+}(\nu(p_3), e^{+}(p_4))W^{-}(e^{-}(p_5), \bar{\nu}(p_6))) + f(p_7) + f(p_8)$	NLO	ı
274	$H(\rightarrow Z(e^{-}(p_3), e^{+}(p_4))Z(\mu^{-}(p_5), \mu^{+}(p_6))) + f(p_7) + f(p_8)$	NLO	
275	$H(b(p_3) + \bar{b}(p_4)) + f(p_5) + f(p_6) + f(p_7)$ [in heavy top limit]	LO	
276		LO	Γ
278	$H(\rightarrow W^{+}(\nu(p_3), e^{+}(p_4))W^{-}(e^{-}(p_5), \bar{\nu}(p_6))) + f(p_7) + f(p_8) + f(p_9)$	LO	
279	$H(\rightarrow Z(e^-(p_3), e^+(p_4))Z(\mu^-(p_5), \mu^+(p_6))) + f(p_7) + f(p_8) + f(p_9)$	LO	
280		NLO+F	
282		LO	- 1
283		LO	ŀ
284		LO	
285		NLO+F	
286		NLO+F	
287		NLO+F	
290		NLO+F	
292	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \gamma(p_5) + f(p_6)$	LO	- 1
295	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + \gamma(p_5)$	NLO+F	
297		LO	
300	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5})$	NLO+F	
301	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + \gamma(p_{6})$	NLO +F	
302	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + f(p_{6})$	NLO + F	ŀ
303	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + \gamma(p_{6}) + f(p_{7})$	LO	
304	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + f(p_{6}) + f(p_{7})$	LO	- 1
305		NLO + F	
306		NLO + F	
307	$Z^{0}(\rightarrow 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{5}) + f(p_{6})$	NLO + F	
308	$Z^{0}(\rightarrow 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{5}) + \gamma(p_{6}) + f(p_{7})$	LO	
309	$Z^{0}(\rightarrow 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{5}) + f(p_{6}) + f(p_{7})$	LO	
311	$f(p_1) + b(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4)) + b(p_5) + f(p_6)$	LO	
316	$f(p_1) + b(p_2) \rightarrow W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + f(p_6)$	LO	- 1
321	$f(p_1) + c(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4)) + c(p_5) + f(p_6)$	LO	
326		LO	
331	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + c(p_{5}) + f(p_{6})[c-s interaction]$	LO	
336	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + c(p_5) + f(p_6)$ [c-s interaction]	LO	
341	$f(p_1) + b(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + b(p_5) + f(p_6)[+f(p_7)]$	NLO	
342		(REAL)	
346		LO	- 1
347	$f(p_1) + b(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) \ 84e^+(p_4)) + b(p_5) + f(p_6) + \bar{b}(p_7)$	LO	Ļ
351	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) +f(p_7) $	NLO	
352		(REAL)	
	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6)[+\bar{c}(p_7)]$		
356	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + f(p_7)$	LO	

	351	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6)[+f(p_7)]$	NLO
- 1	352	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6)[+\bar{c}(p_7)]$	(REAL)
	356	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + f(p_7)$	LO
- 1	357	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + \bar{c}(p_7)$	LO
Ì	361	$c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4))[mc=0 \text{ in NLO}]$	NLO
- 1	362	$c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4))$ [massless corrections only]	NLO
	363	$c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4))$ [massive charm in real]	NLO
Ī	370	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \gamma(p_5) + \gamma(p_6)$	LO
	371	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + \gamma(p_5) + \gamma(p_6)$	LO
Ī	401	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + b(p_5)$ [1,2 or 3 jets, 4FNS]	NLO
- 1	402	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + (b + \bar{b})(p_{5})$ [1 or 2 jets, 4FNS]	NLO
	403	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + b(p_5) + \bar{b}(p_6)$ [2 or 3 jets, 4FNS]	NLO
	406	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5)$ [1,2 or 3 jets, 4FNS]	NLO
	407	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + (b + \bar{b})(p_5)$ [1 or 2 jets, 4FNS]	NLO
	408	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6)$ [2 or 3 jets, 4FNS]	NLO
Î	411	$f(p_1) + b(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4)) + b(p_5) + f(p_6)$ [5FNS]	NLO
	416	$f(p_1) + b(p_2) \rightarrow W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + f(p_6)$ [5FNS]	NLO
Ī	421	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + b(p_5)$ [1,2 or 3 jets, 4FNS+5FNS]	NLO
	426	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + b(p_5)$ [1,2 or 3 jets, 4FNS+5FNS]	NLO
Ī	431	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + b(p_5) + b(p_6) + f(p_7)$ [massive]	LO
	436	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7)$ [massive]	LO
ſ	500	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + t(p_{5}) + \bar{t}(p_{6})[\text{massive}]$	NLO
	501	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^+(\nu(p_9), \mu^+(p_{10}))$	NLO
	502	(same as process 501 but with radiation in decay)	NLO
	503	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b\ (p_6) + q(p_7) + q\ (p_8)) + W^+(\nu(p_9), \mu^+(p_{10}))$	NLO
	506	$t(\rightarrow q(p_3) + q(p_4) + b(p_5)) + \bar{t}(\rightarrow b(p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^+(\nu(p_9), \mu^+(p_{10}))$	NLO
ſ	510	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + t(p_5) + \bar{t}(p_6)[massive]$	NLO
- 1	511	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$	NLO
	512	(same as process 511 but with radiation in decay)	NLO
	513	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + q(p_7) + q (p_8)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$	NLO
	516	$t(\rightarrow q(p_3) + q^-(p_4) + b(p_5)) + \bar{t}(\rightarrow b^-(p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$	NLO
	529	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + t(p_{5}) + \bar{t}(p_{6})$	LO
	530	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow e^-(p_7) + \bar{\nu}(p_8) + b(p_6)) + Z(e^-(p_9), e^+(p_{10}))$	LO
	531	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow e^-(p_7) + \bar{\nu}(p_8) + b(p_6)) + Z(b(p_9), b(p_{10}))$	LO
	532	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow q(p_7) + \bar{q}(p_8) + b(p_6)) + Z(e^-(p_9), e^+(p_{10}))$	LO
Į	533	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow e^-(p_7) + \bar{\nu}(p_8) + b(p_6)) + Z(e^-(p_9), e^+(p_{10}))$	LO

540	$H(b(p_3) + \bar{b}(p_4)) + t(p_5) + q(p_6)$	NL
541	$H(b(p_3) + \bar{b}(p_4)) + \bar{t}(p_5) + q(p_6)$	NL
544	$H(b(p_3) + \bar{b}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + q(p_9)$	NL
547	$H(b(p_3) + \bar{b}(p_4)) + \bar{t}(e^-(p_5) + \bar{\nu}(p_6) + b(p_7)) + q(p_9)$	NL
550	$H(\gamma(p_3) + \gamma(p_4)) + t(p_5) + q(p_6)$	NL
551	$H(\gamma(p_3) + \gamma(p_4)) + \bar{t}(p_5) + q(p_6)$	NL
554	$H(\gamma(p_3) + \gamma(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + q(p_9)$	NL
557	$H(\gamma(p_3) + \gamma(p_4)) + \bar{t}(e^-(p_5) + \bar{\nu}(p_6) + b(p_7)) + q(p_9)$	NL
560	$Z(e - (p_3) + e + (p_4)) + t(p_5) + q(p_6)$	NL
561	$Z(e - (p_3) + e + (p_4)) + \bar{t}(p_5) + q(p_6)$	NL
562	$Z(e - (p_3) + e + (p_4)) + t(p_5) + q(p_6) + f(p_7)$	LO
563	$Z(e - (p_3) + e + (p_4)) + \bar{t}(p_5) + q(p_6) + f(p_7)$	LO
564	$Z(e - (p_3) + e + (p_4)) + t(\rightarrow \nu(p_5) + e^+(p_6) + b(p_7)) + q(p_8)$	NL
566	$Z(e - (p_3) + e + (p_4)) + t(\rightarrow \nu(p_5) + e^+(p_6) + b(p_7)) + q(p_8) + f(p_9)$	LO
567	$Z(e - (p_3) + e + (p_4)) + \bar{t}(\rightarrow e^-(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7)) + q(p_8)$	NL
569	$Z(e - (p_3) + e + (p_4)) + \bar{t}(\rightarrow e^-(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7)) + q(p_8) + f(p_9)$	LO
601	$H(b(p_3) + \bar{b}(p_4)) + H(\tau^-(p_5) + \tau^+(p_6))$	LO
602	$H(b(p_3) + \bar{b}(p_4)) + H(\gamma(p_5) + \gamma(p_6))$	LO
640	$t(p_3) + \bar{t}(p_4) + H(p_5)$	LO
641	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(b(p_9) + \bar{b}(p_{10}))$	LO
644	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{q}(p_7) + q(p_8) + \bar{b}(p_6)) + H(b(p_9) + \bar{b}(p_{10}))$	LO
647	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(b(p_9) + \bar{b}(p_{10}))$	LO
651	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10}))$	LO
654	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{q}(p_7) + q(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10}))$	LO
657	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10}))$	LO
661	$t(\rightarrow \nu(p_3)e^+(p_4)b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7)e^-(p_8)\bar{b}(p_6)) + H(W^+(p_9, p_{10})W^-(p_{11}, p_{12}))$	LO
664	$t(\rightarrow \nu(p_3)e^+(p_4)b(p_5)) + \bar{t}(\rightarrow \bar{q}(p_7)q(p_8)\bar{b}(p_6)) + H(W^+(p_9, p_{10})W^-(p_{11}, p_{12}))$	LO
667	$t(\rightarrow q(p_3)\bar{q}(p_4)b(p_5)) + \bar{t} \rightarrow (\bar{\nu}(p_7)e^-(p_8)\bar{b}(p_6)) + H(W^+(p_9,p_{10})W^-(p_{11},p_{12}))$	LO

107	$t(\rightarrow q(p_3)q(p_4)b(p_5)) + t \rightarrow (\nu(p_7)e^-(p_8)b(p_6)) + H(W^+(p_9,p_{10})W^-(p_{11},p_{12}))$) LO
800	$V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Vector Mediator]	NLO
801	$A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Axial Vector Mediator]	NLO
802	$S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Scalar Mediator]	NLO
803	$PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Pseudo Scalar Mediator]	NLO
804	$GG \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Gluonic DM operator]	NLO
805	$S(\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Scalar Mediator, mt loops]	NLO
820	$V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)$ [Vector Mediator]	NLO + F
821	$A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)[\text{Axial Vector Mediator}]$	NLO + F
822	$S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)[\text{Scalar Mediator}]$	NLO + F
823	$PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)$ [Pseudo Scalar Mediator]	NLO + F
840	$V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Vector Mediator]	LO
841	$A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Axial Vector Mediator]	LO
842	$S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Scalar Mediator]	LO
843	$PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Pseudo Scalar Mediator]	LO
844	$GG \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Gluonic DM operator]	LO
845	$V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Vector Mediator]	LO
846	$A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Axial Vector Mediator]	LO
847	$S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Scalar Mediator]	LO
848	$PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Pseudo Scalar Mediator]	LO
902	Check of Volume of 2 particle phase space	
903	Check of Volume of 3 particle phase space	
904	Check of Volume of 4 particle phase space	
905	Check of Volume of 5 particle phase space	
906	Check of Volume of 6 particle phase space	
908	Check of Volume of 8 particle phase space	
909	Check of Volume of 4 particle massive phase space	
910	Check of Volume of 3 particle (2 massive) phase space	
911	Check of Volume of 5 particle W+t (with decay) massive phase space	
912	Check of Volume of 5 particle W+t (no decay) massive phase space	
913	Check of Volume of 5 particle W+t+g (in decay) massive phase space	
914	Check of Volume of 5 particle W+t+g (in production) massive phase space	

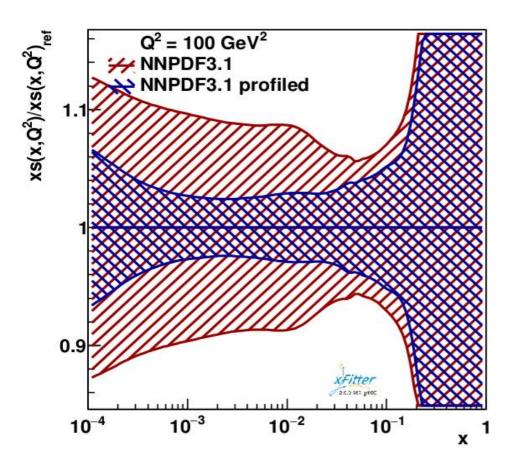
LHC

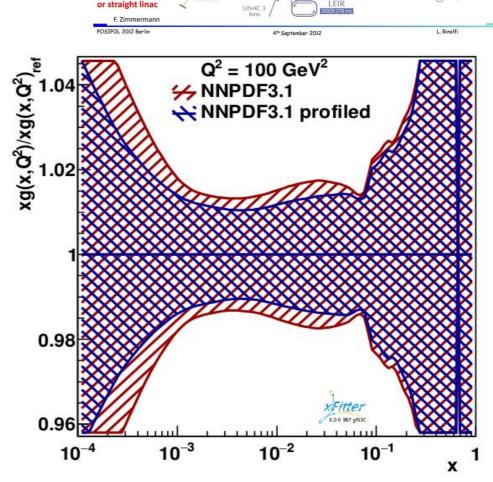
RR LHeC:

new ring in LHC tunnel,

LHCberperiments

10 min. filling time


RR LHeC e-/e+ injector


10 GeV,

with bypasses

Additional improvement on g(x)

LHeC - the two options

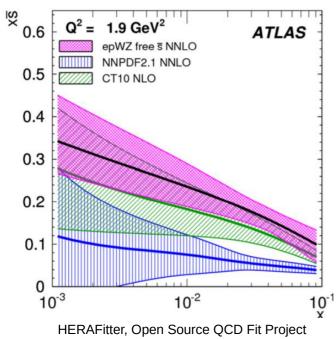
CMS

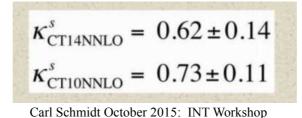
ATLAS

LINAC 2

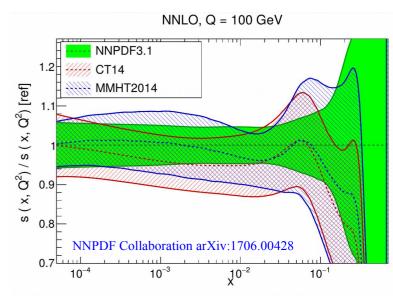
LHC 2008 (27 km)

LR LHeC:


recirculating


... I want a second opinion, ...

$$\kappa(Q) = \frac{\int_0^1 x \left[s(x,Q) + \bar{s}(x,Q) \right] dx}{\int_0^1 x \left[\bar{u}(x,Q) + \bar{d}(x,Q) \right] dx} \quad r^s(x,Q) = \frac{\bar{s}(x,Q) + s(x,Q)}{2\bar{d}(x,Q)} \quad R^s(x,Q) = \frac{s(x,Q) + \bar{s}(x,Q)}{\bar{u}(x,Q) + \bar{d}(x,Q)}$$


$$r^{s}(x,Q) = \frac{\overline{s}(x,Q) + s(x,Q)}{2\overline{d}(x,Q)}$$

$$R^{s}(x,Q) = \frac{s(x,Q) + \overline{s}(x,Q)}{\overline{u}(x,Q) + \overline{d}(x,Q)}$$

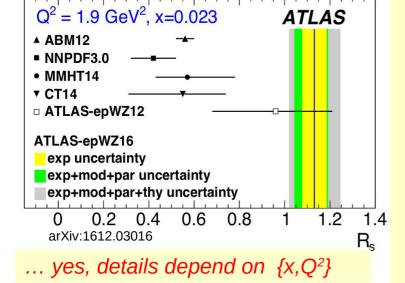
... whatever you want it to be

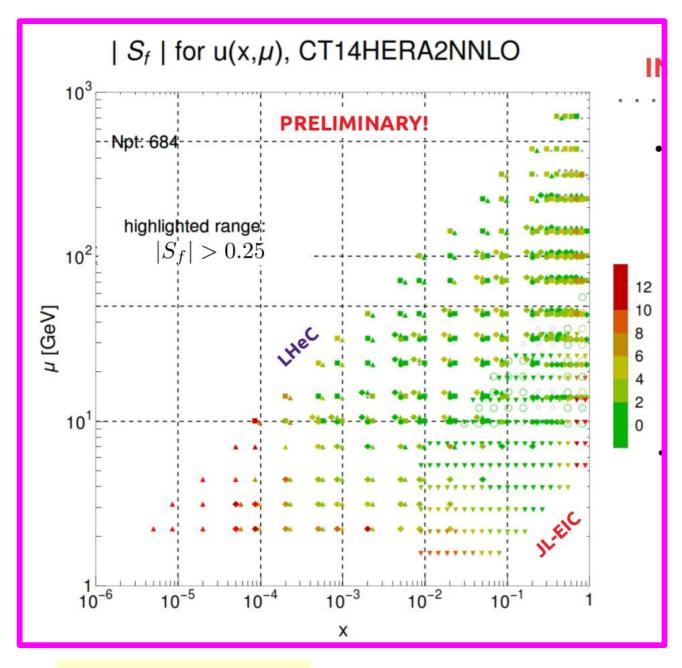
NuTeV
$$\kappa = 0.477^{+0.063}_{-0.053}$$

Z.Phys.C65:189-198,1995

NOMAD
$$\kappa = 0.591 \pm 0.019$$

arXiv:1308.4750


CMS
$$\kappa = 0.52^{+0.12+0.05+0.13}_{-0.10-0.06-0.10}$$
 Q²=20 GeV²


PhysRevD.90.032004 (exp)(model)(param)

ATLAS
$$R_s = 1.13 \pm 0.05 \pm 0.02 +0.01 -0.06$$

$$Q_0^2 = 1.9 \text{ GeV}^2 \text{ at } x = 0.023$$

EPJC (2107) 77:367 (exp)(model)(param)

See Talk By: Tim Hobbs (SMU) A new measure:

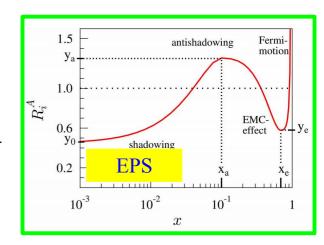
Sensitivity S,

Extend concept of correlation (C) to include both pull and precision of experiment.

(Technically, weight by scaled residual.)

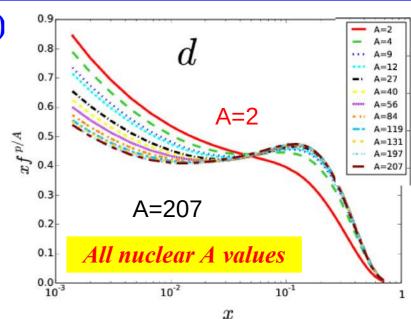
New insights on experimental impacts

https:// metapdf.hepforge.org/

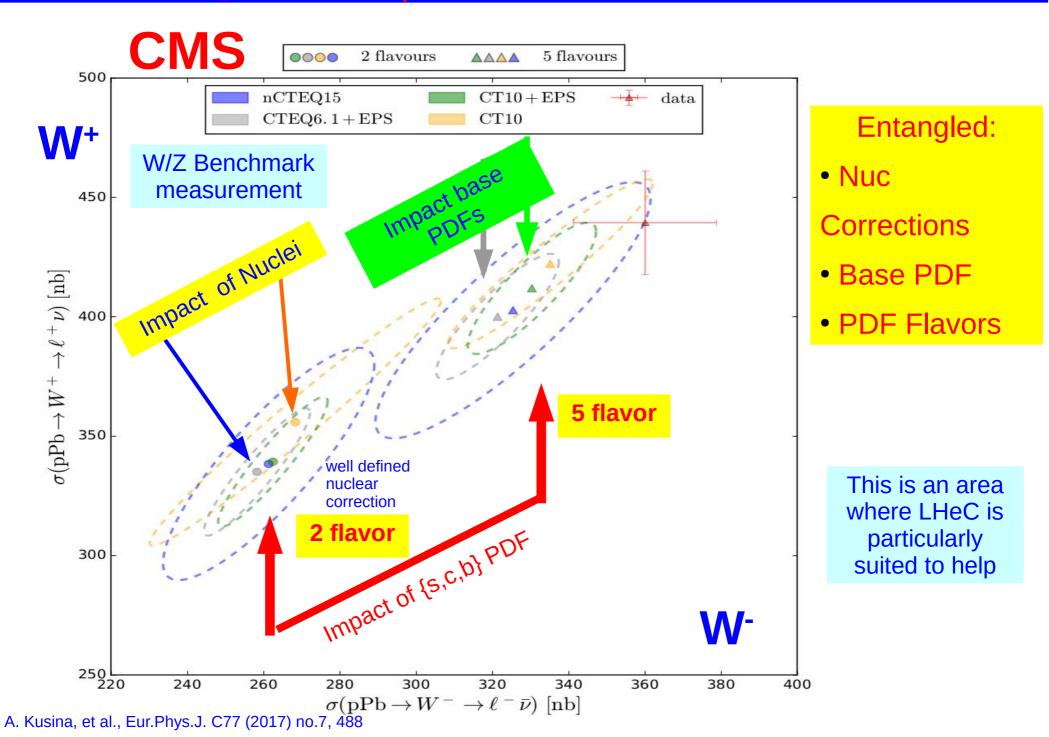

1) Multiplicative nuclear correction factors (HKN, EPPS, DSSZ)

$$f_i^{p/A}(x_N, Q_0) = R_i(x_N, Q_0, A) f_i^{free\ proton}(x_N, Q_0)$$

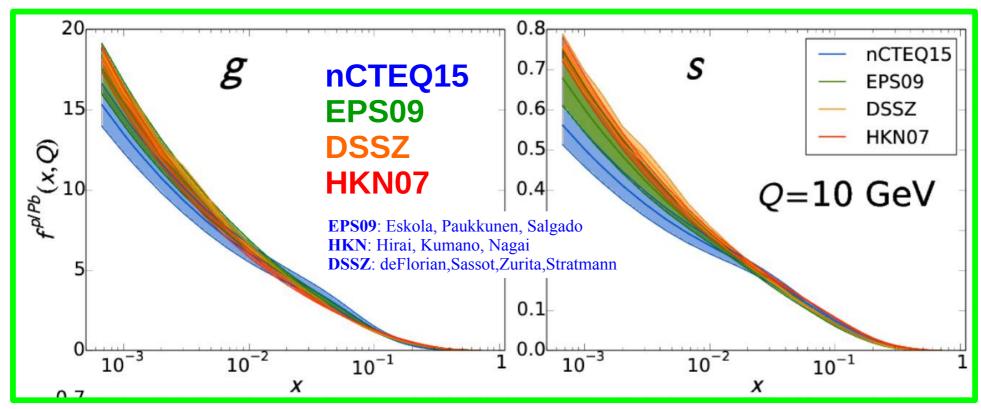
... for example


HKN

$$R_i(x, Q_0, A) = 1 + \left(1 - \frac{1}{A^{\alpha}}\right) \frac{a_i + b_i x + c_i x^2 + d_i x^3}{(1 - x)^{\beta_i}}$$

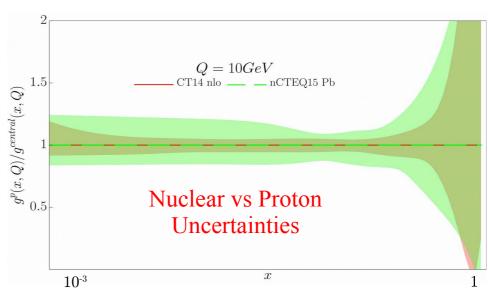

2) Generalized A-parameterization (nCTEQ)

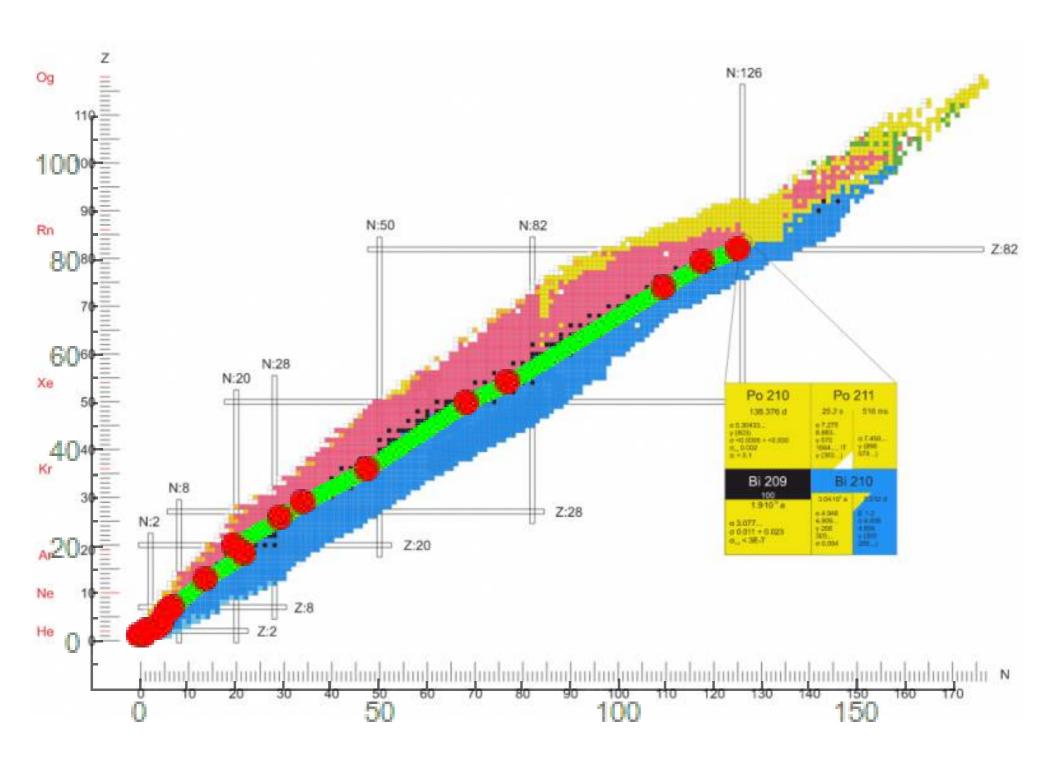
$$f_i^{p/A}(x_N, \mu_0) = f_i(x_N, A, \mu_0)$$
 $f \sim ...x^{c_1(A)}(1-x)^{c_2(A)}...$
 $c_k \sim c_{k,0} + c_{k,1} \left(1 - A^{-c_{k,2}}\right)$
Proton Nuclear

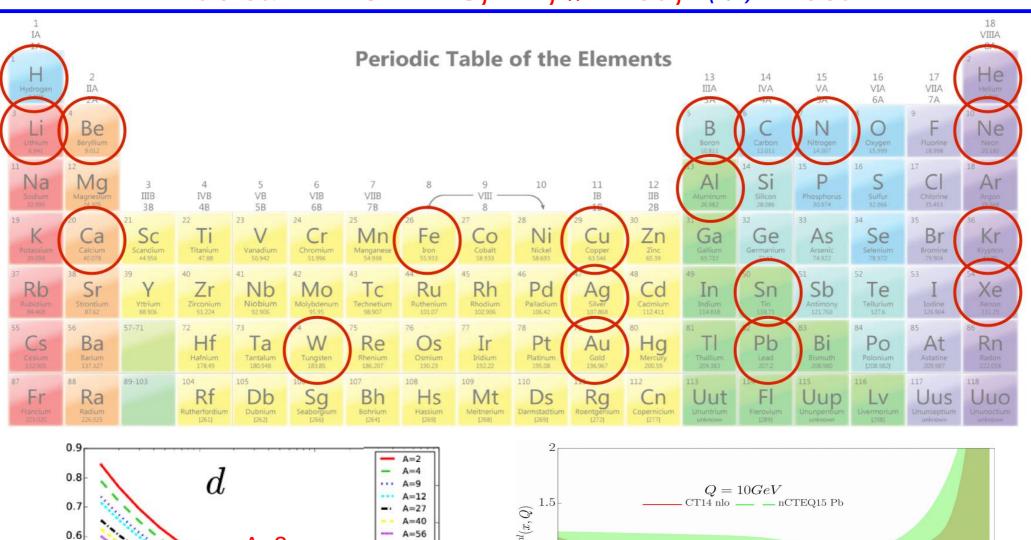


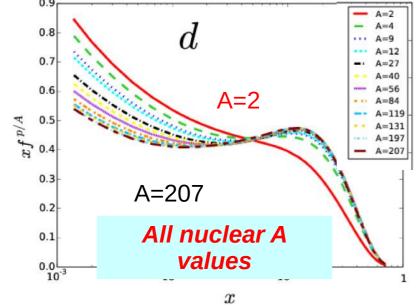
use proton as a Boundary Condition

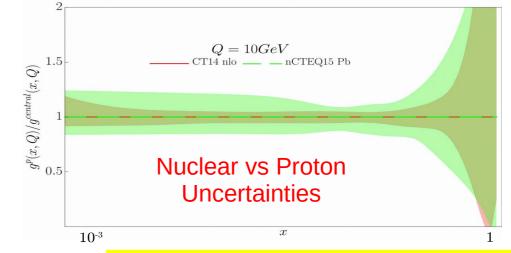
$p Pb \rightarrow W/Z$: Impact of {s,c,b} PDF

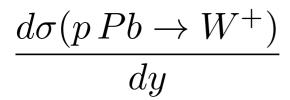


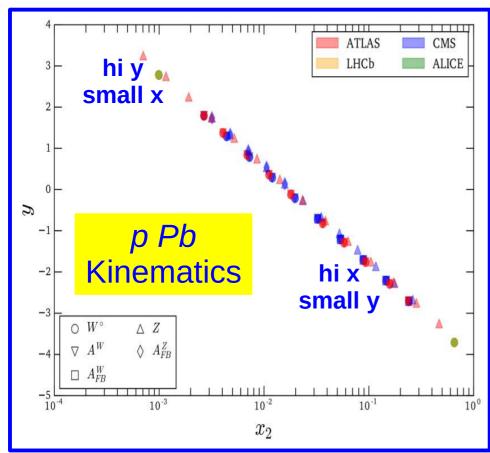

Nuclear PDFs: Complementary efforts in general agreement

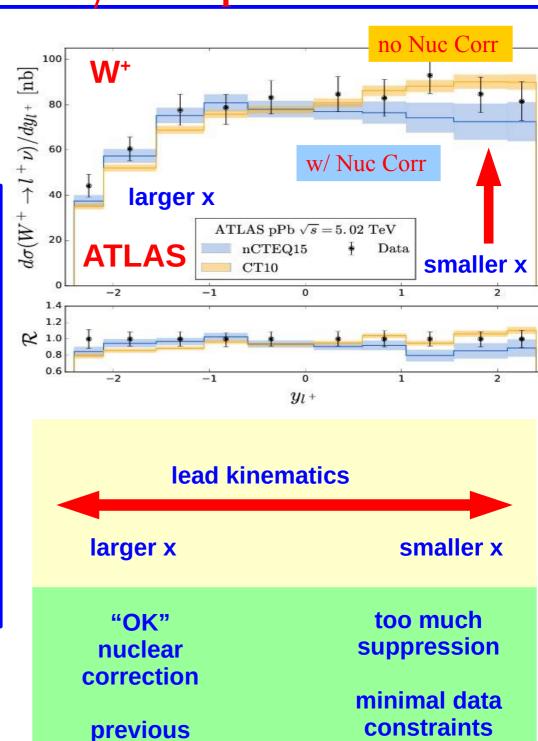



Nuclear PDFs are more complex


more DOF than Proton case more "issues" to consider more work to do ...







EIC can expand our knowledge of the nuclear A dimension

Vector boson production in pPb & PbPb A. Kusina, F. Lyonnet, D. B. Clark, E. Godat, T. Jezo, K. Kovarik, F. I. Olness, I. Schienbein, J. Y. Yu, Eur.Phys.J. C77 (2017) no.7, 488

