

Measurement of W and Z boson production at ATLAS

Artur Trofymov on behalf of the ATLAS Collaboration

DIS 2019, Torino, 10.04.2019

XXVII International Workshop on Deep Inelastic Scattering and Related Subjects

Introduction

• Single weak-boson production at LHC:

- Precision test of pQCD
- Measurements in rapidity bins ⇒
 information for parton flavour
 parametrisation as a function of x
- Production charge asymmetry between W⁺ and W⁻

• In this talk:

- W and Z boson production at 5.02 TeV
- W cross-section and charge asymmetry at 8TeV

DIS2019

- First W,Z measurements at 5.02 TeV in ATLAS with *pp* collisions, $\int \mathcal{L} dt = 25 \text{ pb}^{-1}$
- Serves as references for Pb+Pb interactions at the LHC
- W, Z event selection:

- Use of Z-boson:
 - Lepton calibration and efficiency correction (tag-and-probe method)
 - **Recoil calibration** (*in situ* corrections to resolution/scale of u_T)
- Use of hadronic recoil (\vec{u}_T) for missing transverse energy definition

$$\vec{E}_{\rm T}^{\rm miss} = -\left(\vec{u}_{\rm T} + \vec{p}_{\rm T}^{\,\ell}\right)$$

• Selected events:

► ~38k
$$W^+ \rightarrow e^+ \nu$$
 and ~44k $W^+ \rightarrow \mu^+ \nu$
► ~24k $W^- \rightarrow e^- \nu$ and ~28k $W^- \rightarrow \mu^- \nu$

Background contributions:

▶ ~4.8k $Z \rightarrow ee$ and ~7.4k $Z \rightarrow \mu\mu$

DIS2019

ERIMEN

- Predictions are at $O(\alpha_s^2)$ in QCD (NNLO) and LO in EW
- Predicted cross sections are **systematically lower** than measured
 - At low η region for W^- In most of η range for W^+

DIS2019

Eur. Phys. J. C 79 (2019) 128

W and Z boson production at 3.02 is V_{μ}

υ

UQ

0.D

• Lepton charge asymmetry: $A_{\ell}(|\eta_{\ell}|) = \frac{d\alpha}{d\ell}$

 $\frac{\mathrm{d}\sigma_{W^+}/\mathrm{d}|\eta_{\ell}| - \mathrm{d}\sigma_{W^-}/\mathrm{d}|\eta_{\ell}|}{\mathrm{d}\sigma_{W^+}/\mathrm{d}|\eta_{\ell}| + \mathrm{d}\sigma_{W^-}/\mathrm{d}|\eta_{\ell}|}$

1.D

2

Z.J

- Precision of measurements does **not** allow to **discriminate among PDFs**
- In most of $|\eta_{\ell}|$ range predictions tend to **underestimate the measured**

ERIMENT

Artur Trofymov

Eur. Phys. J. C 79 (2019) 128

- Ouse data collected in pp collisions at √s = 8 TeV, luminosity: ∫L dt = 20.2 fb⁻¹
 Outer Integrated and differential cross-sections for W⁺ → µ⁺ν and W⁻ → µ⁻ν̄
 Outer Dominant background contributions µ⁺(µ⁻):
 - Multijet ~ 2% (3%) $V \to \mu^+ \mu^- \sim 3\%$ (4%) $V \to \tau \nu \sim 2\%$ (2%)

• Dominant sources: E_T^{miss} miss-modelling, modelling uncertainty \rightarrow comparing several generators (Powheg+Pythia8 and Sherpa1.4.1), muon efficiency

- Measurement in μ^+ and μ^- channels provide a check of corrections procedure
- Most sources are treated as correlated between μ^+ and μ^- (reduce impact on A_l)

DIS2019

To be submitted to Eur. Phys. J. C

• Shape of W differential cross section is well described with predictions

• ATLAS data discriminate among PDFs

DIS2019

• Predictions with NNPDF3.1 are closest to the measured data

To be submitted to Eur. Phys. J. C

• Predictions with CT14nnlo are systematically lower then the measured A_l

Similar trend as for **7 TeV** measurement Eur. Phys. J. C 77 (2017) 367

• ATLASepWZ2016 is generally closer to data than the alternatives

• Given PDF set includes ATLAS W charge asymmetry data at 7 TeV, which is

uncorrelated to the given measurement

DIS2019

ERIMENT

To be submitted to Eur. Phys. J. C

Summary

• W and Z boson production at 5.02 TeV

- First W,Z measurements at 5.02 TeV in ATLAS are performed
- Fiducial W^+ , W^- and Z cross sections are measured with a precision of 1.2–1.7%
- Measured differential cross sections show $1-2\sigma$ deviations from the predictions based on different PDF sets.

• W cross-section and charge asymmetry at 8TeV

- Cross-sections are measured with the precision of 0.8–1.5% in bins of η
- Precision of measured charge asymmetry is higher than the predictions
- The measured data demonstrate sensitivity to the performance of PDF selection

Backup slides

DIS2019

• Lepton efficiencies

DIS2019

• Di-lepton invariant mass (log-scale)

DIS2019

Recoil corrections

$$u_{\parallel}^{W,\text{corr}} = \langle u_{\parallel}^{Z} + p_{\mathrm{T}}^{Z} \rangle^{\text{data}} - \langle u_{\parallel}^{Z} + p_{\mathrm{T}}^{Z} \rangle^{\text{MC}} + \langle u_{\parallel}^{Z,\text{data}} \rangle + \left(u_{\parallel}^{W,\text{MC}} - \langle u_{\parallel}^{Z,\text{data}} \rangle \right) \cdot \frac{\sigma_{u_{\perp}}^{u_{\perp}}}{\sigma_{u_{\perp}}^{\text{MC}}};$$
$$u_{\perp}^{W,\text{corr}} = u_{\perp}^{W,\text{MC}} \cdot \frac{\sigma_{u_{\perp}}^{data}}{\sigma_{u_{\perp}}^{\text{MC}}}.$$

• Background:

Background	$W^+ \rightarrow e^+ \nu \; (W^+ \rightarrow \mu^+ \nu)$	$W^- \rightarrow e^- \nu \; (W^- \rightarrow \mu^- \nu)$	$Z \to e^+ e^- (Z \to \mu^+ \mu^-)$
	[%]	[%]	[%]
$\overline{Z \to \ell^+ \ell^-, \ell = e, \mu}$	0.1 (2.8)	0.2 (3.8)	_
$W^{\pm} \rightarrow \ell^{\pm} \nu, \ell = e, \mu$	_	—	<0.01 (<0.01)
$W^{\pm} \rightarrow \tau^{\pm} \nu$	1.8 (1.8)	1.8 (1.8)	<0.01 (<0.01)
$Z \to \tau^+ \tau^-$	0.1 (0.1)	0.1 (0.1)	0.07 (0.07)
Multi-jet	0.9 (0.1)	1.4 (0.2)	<0.01 (<0.01)
Top quark	0.1-0.2 (0.1-0.2)	0.1-0.2 (0.1-0.2)	0.06 (0.08)
Diboson	0.1 (0.1)	0.1 (0.1)	0.14 (0.08)

data

• Ratios:

• Charge asymmetry (comparison to 7TeV results)

DIS2019

• Cross sections (comparison of electron and muon channels)

DIS2019