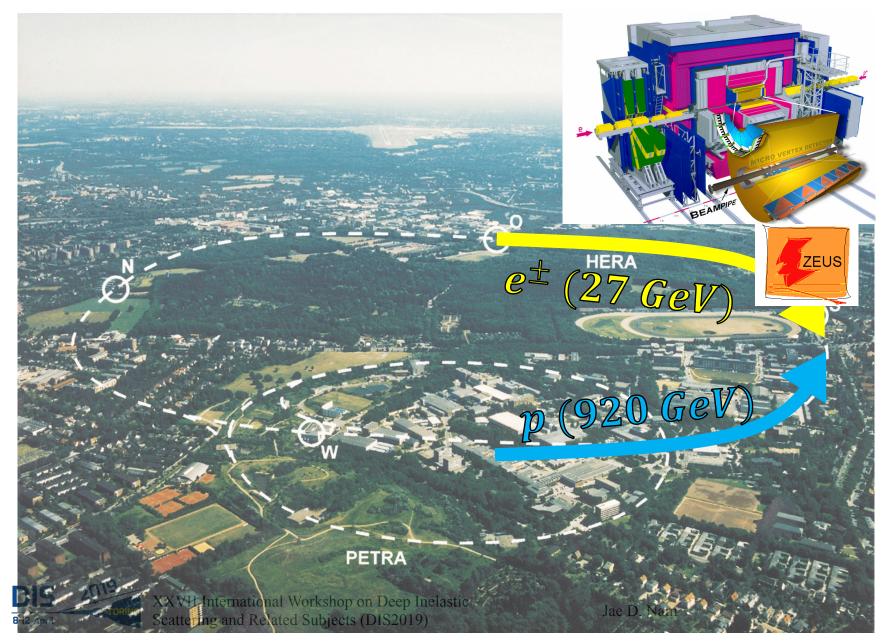


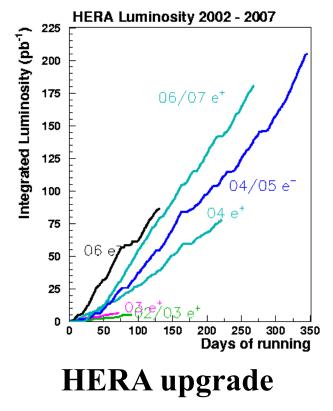
Charm Production in CC DIS at HERA

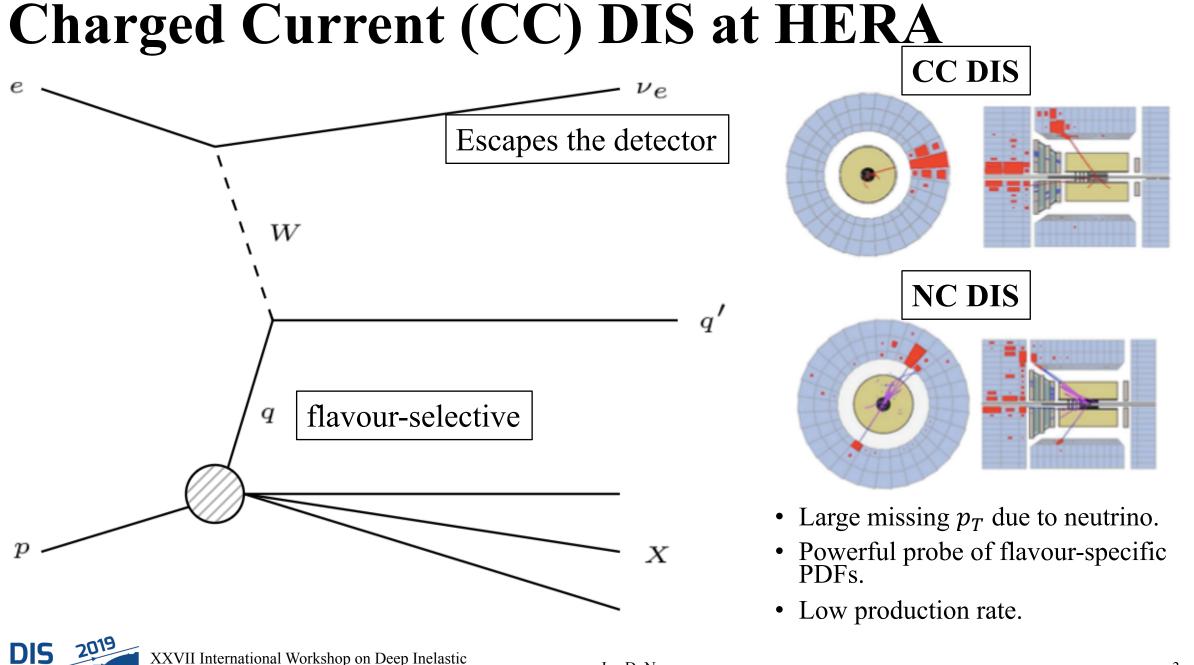
(DESY-19-054, arXiv:1904.03261)

Jae D. Nam

Temple Univ. & ZEUS

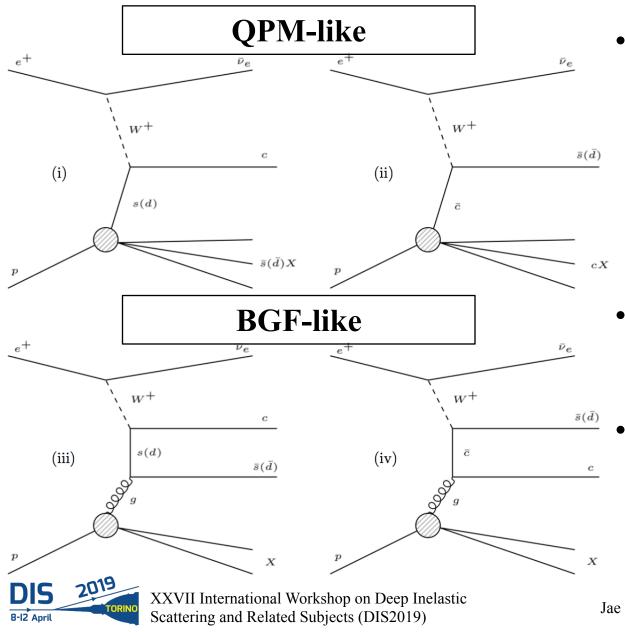



ZEUS


DOE NP contract: DE-SC0013405

Hadron-Electron Ring Accelerater

- Luminosity upgrade.
 - HERA I : $120 \ pb^{-1}$
 - HERA II : $360 \ pb^{-1}$
- Higher particle tagging capabilities through MVD & STT. 2



Scattering and Related Subjects (DIS2019)

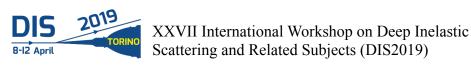
8-I2 Apri

Jae D. Nam

Charm production in CCDIS

• Charm production processes in e^+p CCDIS

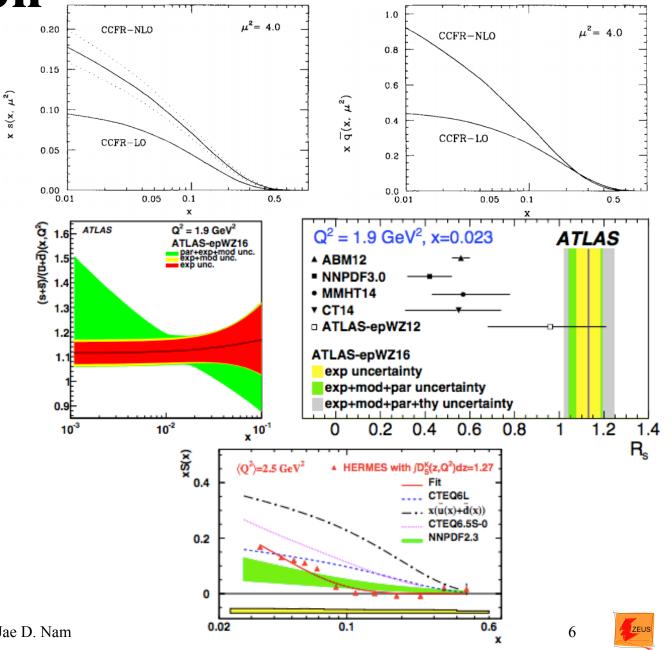
$$QPM-like - \begin{cases} i. & s\bar{s}(d\bar{d})W^+ \to c\bar{s}(\bar{d}) \\ ii. & c\bar{c}W^+ \to c\bar{s}(\bar{d}) \end{cases}$$
$$BGF-like - \begin{cases} iii. & g \to s\bar{s}(d\bar{d}) \\ iv. & g \to c\bar{c} \end{cases}$$


- Subprocess (i) is directly sensitive to the strangeness of the proton.
- However, the distinction of these processes depends on the choice of QCD scheme.
 → Extraction of s(x, Q²) is model dependent.

Motivations

- Charm in CCDIS with high- Q^2 HERA $e^{\pm}p$ collision data collected at ZEUS.
 - Probe strangeness in the proton by measuring EW part of inclusive charm cross section in CCDIS.
 - Charm quark from final-state QCD radiation is indistinguishable due to lack of charm charge measurement & low statistics.

• Theory predictions


- Zero-mass variable-flavour-number scheme (ZM-VFNS)
 - QCDNUM, HERAPDF2.0 & ATLAS *epWZ*16 PDF sets.
 - Used for relative comparison of different assumptions on the strange content.
- Fixed-flavour number scheme (FFN)
 - No charm quark content in the proton & larger gluon content.
 - OPENQCDRAD, ABMP16.3 NLO PDF sets.
- General-mass VFN scheme (GM-VFNS)
 - FONLL-B scheme.
 - APFEL, NNPDF3.1 sets.

 $\bar{\nu}_e$

Strangeness in the proton

- Mass-suppressed strangeness : $f_s\left(\equiv \frac{s}{s+\bar{d}}\right) \sim 0.3$
 - For large x_{Bi} , experimentally supported by neutrino-scattering experiments (CCFR/NuTeV, NOMAD, CHORUS).
- Unsuppressed strangeness : $f_s \sim 0.5$
 - For small x_{Bi} , experimentally supported by highprecision W/Z production measurement (ATLAS) & W + c data (CMS).
- *x*-dependent strangeness
 - As suggested by HERMES
 - $x\bar{s} = f'_{s} 0.5 \tanh(-20 (x 0.07)) x\bar{D}$

DATA & MC

Data

- HERA II $(L \cong 360 \ pb^{-1})$
 - $e^-p: L \cong 185 \ pb^{-1}$
 - $e^+p: L \cong 173 \ pb^{-1}$

Year	Collision	Integrated Luminosity (pb^{-1})
2003/04	e^+p	~ 38
2004/05	e^-p	~ 133
2006	e^-p	~ 52
2006/07	<i>e</i> + <i>p</i>	~ 135

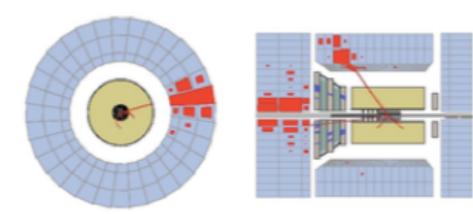
 Kinematic variables (x, y, Q²) defined by using Jacquet-Blondel Method.

$$y_{JB} = \frac{\sum_{h} (E - p_z)_h}{2E_{e,beam}}$$
 $Q_{JB}^2 = \frac{p_{T,h}^2}{1 - y_{JB}}$ $x_{JB} = \frac{Q_{JB}^2}{sy_{JB}}$ _{Jae D.}

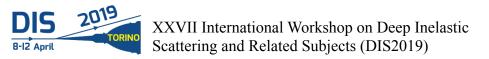
MC

• DIS

Nam

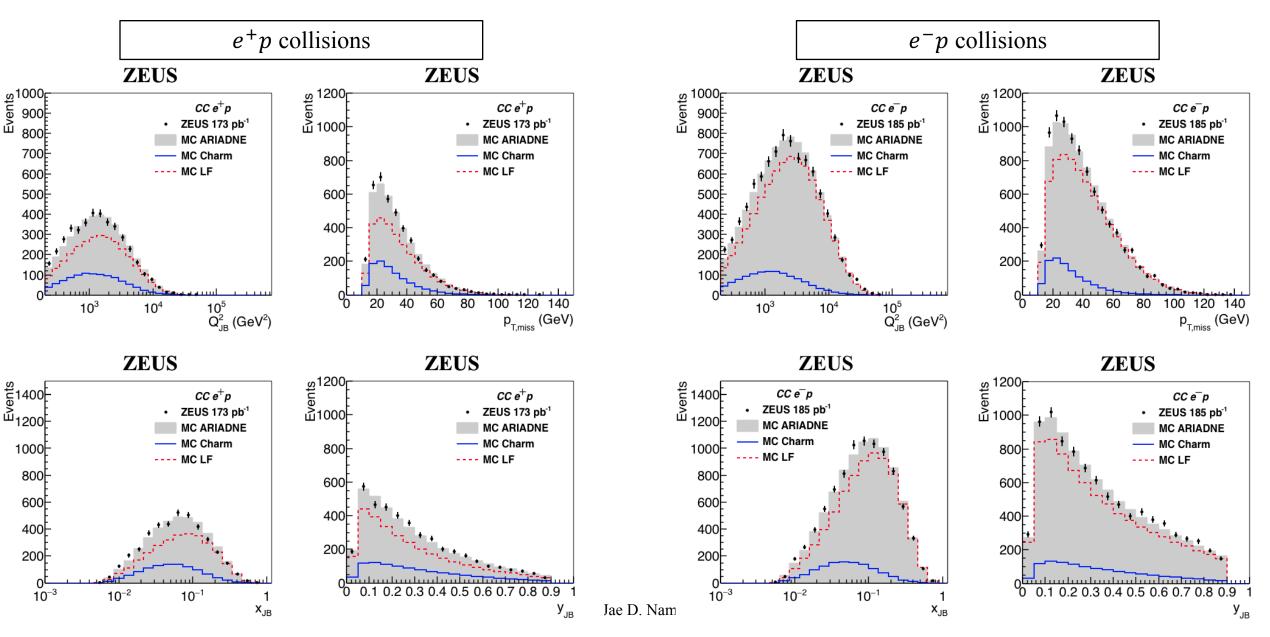

- Inclusive CCDIS MC, DJANGOH 1.6, ARIADNE 4.12, CTEQ-5D.
- Background
 - Inclusive NCDIS MC: DJANGOH 1.6, ARIADNE 4.12, CTEQ-5D
 - Photoproduction MC: HERWIG, resolved & direct
 - Background contribution was found to be negligible.
- The kinematic variables (x, y, Q^2) obtained from the lepton information.

$$Q^{2} = -(k - k')^{2} \qquad x = \frac{Q^{2}}{2pq} \qquad y = \frac{pq}{pk}$$

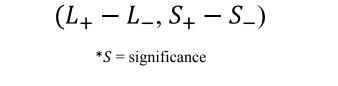


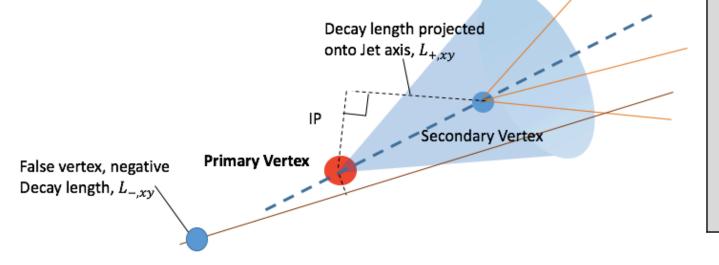
DIS selection

- CCDIS selection based on $p_{T,miss}$
 - $p_{T,miss} > 12 \, GeV$
 - $p'_{T,miss} > 10 \text{ GeV}$ (excld. cells adjacent to beam pipe)
- Non-CC DIS rejection (arXiv:1008.3493)



- Non-ep background (beam-gas, beam-halo muon, cosmic) rejection
- Kinematic selection cut
 - $200 < Q^2 < 60000 \, GeV^2$
 - *y* < 0.9
 - For optimal detector resolution & low background.
 - Full kinematic range of the measurement

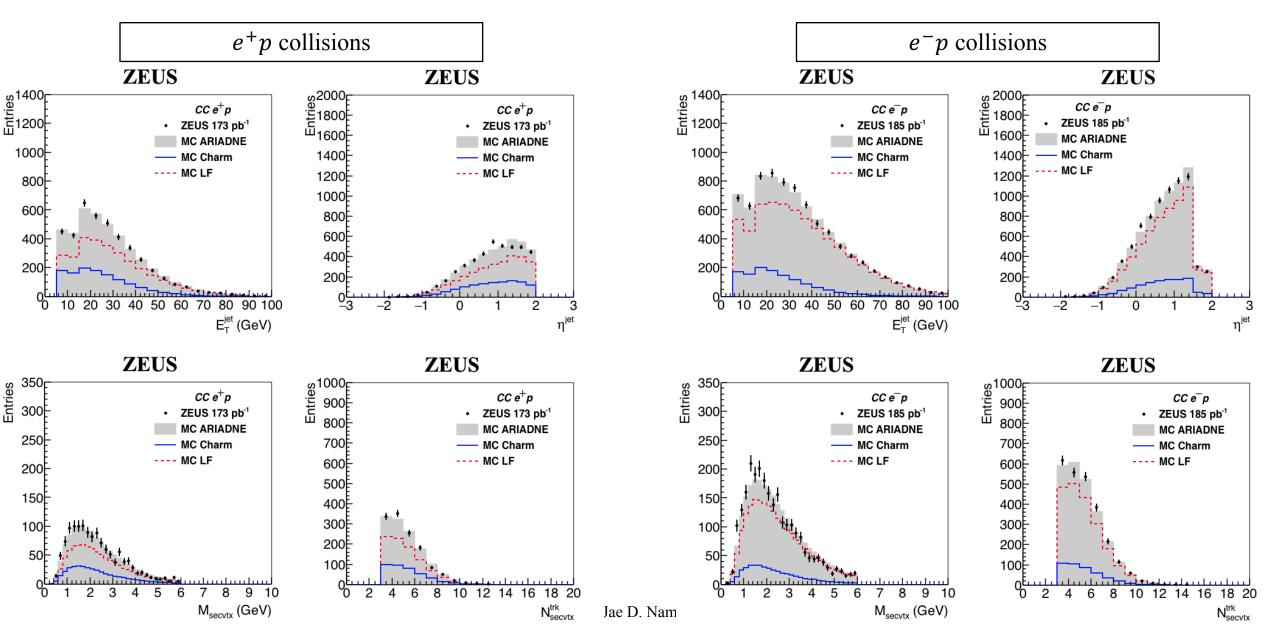

DIS control plots



Charm identification

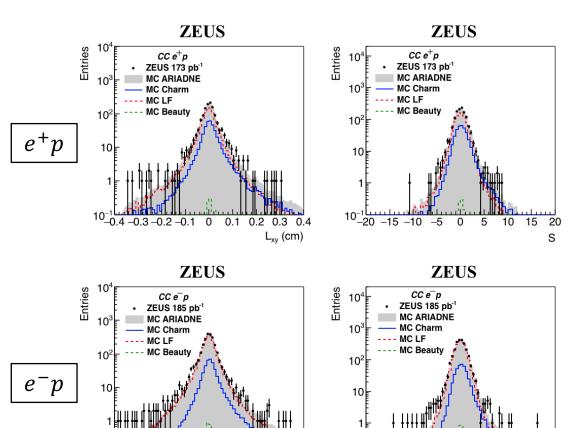
Lifetime-tagging Method

- 2D decay length (L_{xy}) projected onto Jet axis.
 - LF \rightarrow Prompt, Symmetric decay length dist.
 - Charm \rightarrow Weakly-decaying, Asymmetric dist.
- LF contribution (background) suppressed by mirroring decay length distribution about $L_{xy} = 0$.



	Reconstructed by using k_T -cluster algorithm in the massive mode.						
Jet	$E_T^{jet} > 5 GeV$						
Selection	$-2.5 < \eta^{jet} < 2.0 (1.5 for 05e)$						
	Defines "visible" kinematic region.						
	$\chi^2/N_{dof} < 6$						
	$ Z_{secvtx} < 30 \ cm$						
SecVtx Selection	Distance to beam spot $\sqrt{\Delta x^2 + \Delta y^2} < 1 \ cm$						
	$M_{secvtx} < 6 \; GeV$						
	$N_{secvtx}^{trk} > 2$						

S


S

Jet & Secondary vertex

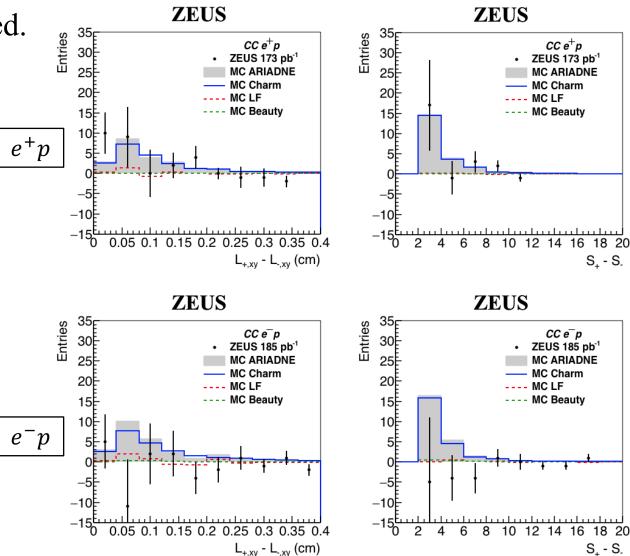
Decay length

- Asymmetric charm distribution observed.
- Significance cut, *S* > 2, to improve statistical uncertainty.

L_{xv} (cm)

10-1.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

10_20 -15 -10 -5


5

0

10 15

20

S

Charm cross section

• Visible charm cross section

$$\sigma_{c,vis} = \frac{N^{data} - N_{bg}^{MC}}{N_{c}^{MC}} * \sigma_{c}^{MC}$$
$$= \frac{N^{data^{c}} - N_{bg}^{MC}}{N_{c}^{MC}} * \frac{N_{vis}}{L}$$

• Visible EW charm cross section is taken from subtracting the QCD part.

 $\sigma_{c^{EW},vis} = \sigma_{c,vis} - \sigma_{c^{QCD},vis}$

	N	MC Contribution (%)						
e^+p	d ightarrow c	s ightarrow c	$ar{c} ightarrow ar{s}(ar{d})$	g ightarrow c ar c				
$\sigma_{c, \mathrm{vis}}^{\mathrm{MC}} + \sigma(g ightarrow c \overline{c})$	9	45	40	6				
$\sigma^{ m MC}_{c^{ m EW}} + \sigma(g ightarrow c ar{c})$	7	31	58	4				
e_m	MC Contribution (%)							
e^-p	$\bar{d} \rightarrow \bar{c}$	$\bar{s} ightarrow \bar{c}$	c ightarrow s(d)	$g ightarrow c \overline{c}$				
$\sigma_{c,\mathrm{vis}}^{\mathrm{MC}} + \sigma(g ightarrow c \overline{c})$	3	45	40	12				
$\sigma^{ m MC}_{c^{ m EW}} + \sigma(g ightarrow c ar{c})$	2	31	57	10				

• EW charm cross section is extrapolated via $C_{ext} = N_{full}^{EW} / N_{vis}^{EW}$

$$\sigma_{c^{EW}} = C_{ext}\sigma_{c^{EW},vis}$$

Charm cross section

• Visible charm cross section

$$\begin{split} \sigma_{c,vis} &= \frac{N^{data} - N_{bg}^{MC}}{N_c^{MC}} * \sigma_c^{MC} \\ &= \frac{N^{data^c} - N_{bg}^{MC}}{N_c^{MC}} * \frac{N_{vis}}{L} \end{split}$$

• Visible EW charm cross section is not measured. Instead, the QCD part is taken as a systematic.

	e^+p	MC Contribution (%)							
	e p	d ightarrow c	s ightarrow c	$ar{c} ightarrow ar{s}(ar{d})$	$g \to c \bar c$				
	$\sigma_{c, \mathrm{vis}}^{\mathrm{MC}} + \sigma(g ightarrow c \overline{c})$	9	45	40	6				
	$\sigma^{ m MC}_{c^{ m EW}} + \sigma(g ightarrow c ar{c})$	7	31	58	4				
	e_m	MC Contribution (%)							
	e^-p	$\bar{d} ightarrow \bar{c}$	$\bar{s} ightarrow \bar{c}$	c ightarrow s(d)	$g ightarrow c \overline{c}$				
	$\sigma_{c,\mathrm{vis}}^{\mathrm{MC}} + \sigma(g ightarrow c \overline{c})$	3	45	40	12				
	$\sigma^{ m MC}_{c^{ m EW}} + \sigma(g ightarrow c ar{c})$	2	31	57	10				
1									

• EW charm cross section is extrapolated via $C_{ext} = N_{full}^{EW} / N_{vis}^{EW}$

$$\sigma_{c^{EW}} = C_{ext}\sigma_{c,vis}$$

• ARIADNE predicts QCD part to be small. But, the QCD calculation here is cannot be considered reliable.

Charm cross section

• Visible charm cross section

$$\sigma_{c,vis} = \frac{N^{data} - N_{bg}^{MC}}{N_{c}^{MC}} * \sigma_{c}^{MC}$$
$$= \frac{N^{data^{c}} - N_{bg}^{MC}}{N_{c}^{MC}} * \frac{N_{vis}}{L}$$

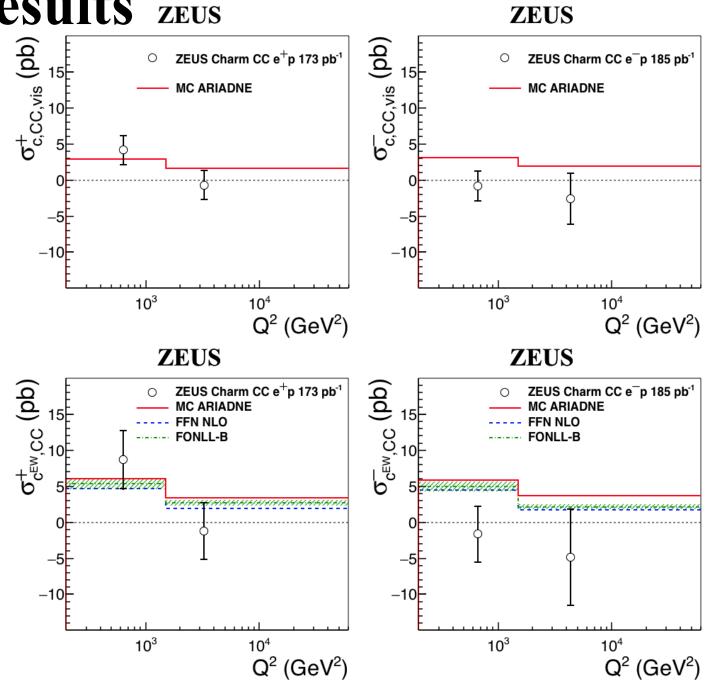
• Visible EW charm cross section is not measured. Instead, the QCD part is taken as a systematic.

e^+p	MC Contribution (%)						
	d ightarrow c	$s \rightarrow c$	$\bar{c} ightarrow \bar{s}(d)$	$g ightarrow c \overline{c}$			
$\sigma_{c,\mathrm{vis}}^{\mathrm{MC}} + \sigma(g \to c\bar{c})$	9	45	40	6			
$\sigma^{ m MC}_{c^{ m EW}} + \sigma(g ightarrow c ar{c})$	7	31	58	4			
e^-p	MC Contribution (%)						
СP	$\bar{d} ightarrow \bar{c}$	$\bar{s} ightarrow \bar{c}$	c ightarrow s(d)	$g ightarrow c \overline{c}$			
$\sigma_{c,\mathrm{vis}}^{\mathrm{MC}} + \sigma(g \to c\bar{c})$	3	45	40	12			
$\sigma^{ m MC}_{c^{ m EW}} + \sigma(g ightarrow c ar{c})$	2	31	57	10			

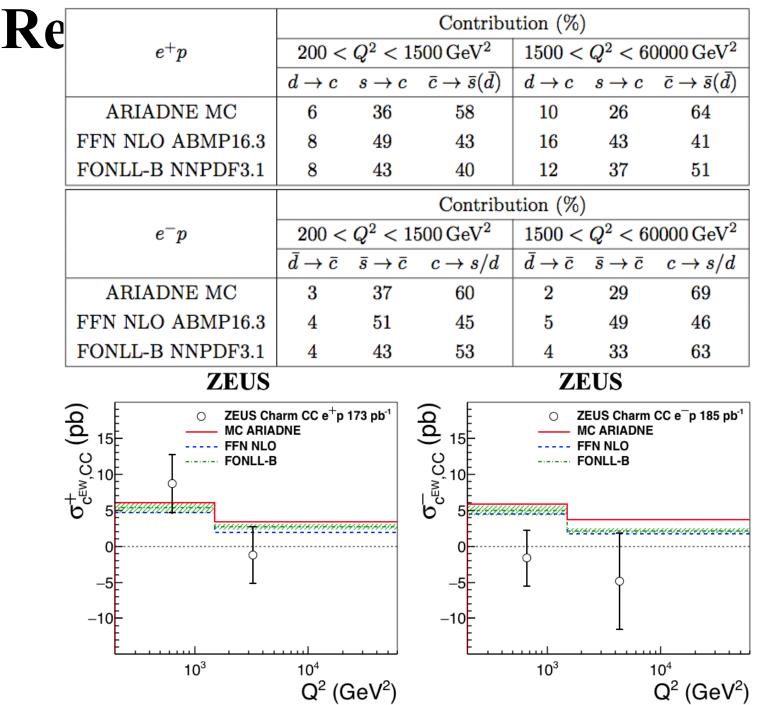
• EW charm cross section is extrapolated via $C_{ext} = N_{full}^{EW} / N_{vis}^{EW}$

$$\sigma_{c^{EW}} = C_{ext}\sigma_{c,vis}$$

• Higher contribution from strange-sensitive QPM process in the visible range.


Systematic uncertainties

- δ_1 Vertex rescaling
- More secondary vertex in MC. For the nominal result, a rescaling is applied for both N_c and N_{bg} . For systematic, this was only applied on N_{bg} .
- δ_2 EW charm fraction
- QCD contribution to MC charm signal is taken as a systematic uncertainty.
- δ_3 LF background
- Uncertainty associated with remaining LF background was estimated by varying N_{bg} by $\pm 30\%$.
- δ_4 CC DIS selection
- Taken from previous ZEUS analysis. (arXiv:1008.3493)
- δ_5 Jet energy scale
- Uncertainty associated with calorimeter is $\sim 3\%$. Measurement was repeated with E_T cut varied by $\sim 3\%$ in the MC.
- δ_6 Luminosity (Not included)
- Uncertainty in ZEUS luminosity measurement is ~2%.
- δ_7 Signal extraction method & secvtx selection (Not included)
- This could only be tested with the low statistics available at the cross section stage and was not included in the final number. It could be as large as $\pm 6 \ pb$.


Sources	$\delta\sigma^+_{c^{EW}}(pb)$	$\delta \sigma_{c^{EW}}^{-}(pb)$		
Rescaling	-1.2	+0.9		
QCD charm fraction	-0.6	-1.1		
LF background	±0.1	±0.3		
DIS selection	±0.2	± 0.1		
Calorimeter	± 0.0	± 0.1		
Tatal	+0.2	+1.0		
Total	-1.3	-1.2		

• In MC, $\sigma_{c^{EW}} \sim 9 \ pb$

Results zeus

- EW charm production in CCDIS is measured with HERA II data.
 - Consistent with theory predictions, although statistically limited.

- EW charm production in CCDIS is measured with HERA II data.
 - Consistent with theory predictions, although statistically limited.
 - About the same contribution shared between QPM-like and BGF-like processes. Varies between different theory models.

Roculte

Κσαιι							_	
Q^2 range			NLO Pr	edictions (pb)				
(GeV^2)			HERAPD	F2.0		ATLAS-]	
(Gev)	$f_s = 0.4$	$f_s = 0.3$	$f_{s} = 0.5$	$f'_s =$	$f'_s =$	epWZ16	E	
	(nominal)	$J_{s} = 0.3$	$J_s = 0.5$	HERMES ⁻	HERMES ⁺		n	
e^+p			-	-	^]	
200 - 1500	5.67	5.40	5.96	5.05	5.38	6.41	1	
1500-60000	2.57	2.47	2.65	2.16	2.20	3.07		
e^-p							1	
200 - 1500	5.41	5.15	5.70	4.79	5.12	6.14	1	
1500-60000	2.30	2.21	2.37	1.89	1.93	2.78		
	ZE	US			ZEUS			
$ \begin{pmatrix} q d \\ 15 \\ m C \\ ARIADNE \\ FFN NLO \\ FFN NLO \\ FFN NLO \\ FFN NLO \\ FONLL-B \\ FONLL-B \\ FONLL-B \\ fond \\ s $								
0 -5 -10				0 0 -5 -10	-	04050556446		
E	10 ³	10 ⁴		E10 ³	10 ⁴			
			(GeV ²)	10	. +	GeV ²)		

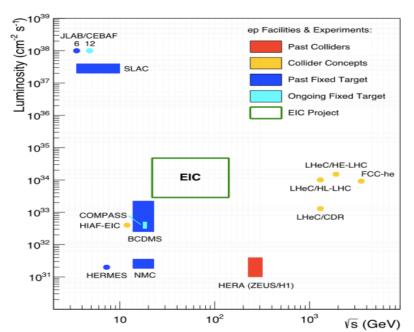
⁶ EW charm production in CCDIS is measured with HERA II data.

- Consistent with theory predictions, although statistically limited.
- About the same contribution shared between QPM-like and BGF-like processes. Varies between different theory models.
- Different assumptions on the strangeness in the proton results in $\Delta \sigma_{c^{EW}} \sim 1 \ pb$.
- \rightarrow ~ 2 orders of magnitude higher statistics to be decisive.

Roculte

	² range				NL	O Pre	edict	tions (1	pb)			
-				HERAPDF2.0								-
((GeV^2)	f_s	= 0.4	6 0		$f_s = 0.5$		$f'_s =$ HERMES ⁻		s' =	epWZ16	3]]
		(no	minal)	$f_s = 0.3$	$3 \mid f_s =$					MES ⁺		1
	e^+p			1							I	
20	00 - 1500	5	5.67	5.40	5.	96		5.05	5	.38	6.41	
15	00–60000	2	2.57	2.47	2.	65		2.16	2	.20	3.07	
	e^-p										1	
20	00 - 1500	5	5.41	5.15	5.15 5.70		4.79		5	5.12		
1500-60000 2		2.30	2.21	2.3	2.37		1.89	1	1.93			
				NLO Predictions (pb)								
	Q^2 ran	ge		FFN ABMP16.3				FONLL-B NNPDF3.1			F3.1	
	(GeV^2)	²)		uncertainties				uncertaint		ties		
			σ	PDF	scale	ma	ss	σ	PDF	scale	mass	
	e^+p											
200 - 1500 4.72		4.72	± 0.05	$^{+0.31}_{-0.23}$	±0.	02	5.37	± 0.21	$^{+0.68}_{-0.73}$	± 0.00		
	1500-60000 1.97		1.97	± 0.03	$+0.18 \\ -0.13$	$\pm 0.$	01	2.66	± 0.23	$^{+0.37}_{-0.26}$	±0.00	
	e^-p											
	200 - 15	500	4.50	± 0.05	$^{+0.31}_{-0.23}$	±0.	02	4.98	± 0.22	$^{+0.66}_{-0.71}$	± 0.00	
	1500-60	000	1.73	± 0.03	$+0.18 \\ -0.13$	$\pm 0.$	01	2.16	± 0.22	$^{+0.33}_{-0.21}$	± 0.00	

6 EW charm production in CCDIS is measured with HERA II data.


- Consistent with theory predictions, although statistically limited.
- About the same contribution shared between QPM-like and BGF-like processes. Varies between different theory models.
- Different assumptions on the strangeness in the proton results in $\Delta \sigma_{c^{EW}} \sim 1 \ pb$.
- \rightarrow ~ 2 orders of magnitude higher statistics to be decisive.
- The uncertainty in the theory predictions $\delta \sigma_{c^{EW}} \sim 1 \ pb$.
- \rightarrow some improvements in theory needed.

Summary & Outlook

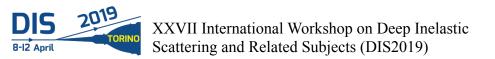
- EW charm production in high- $Q^2 e^{\pm}p$ CCDIS at HERA has been measured for the first time.
 - Consistent with theory predictions, although statistically limited.
 - Manageable systematic uncertainties.
 - Higher contribution from strange-sensitive process in the visible kinematic region than in the full range.
- Theory predictions with different assumptions of the strangeness in the proton.
 - ~ 2 orders of magnitude higher statistics required to investigate the strangeness in the proton, which could be achieved by higher luminosity & better vertex detection resolution in future colliders.

Jae D. Nam

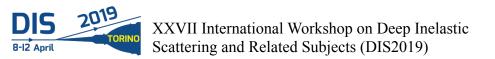
- Some improvements in theory calculations.
- Potential of DIS has been tested.
 - Better understanding of the strangeness in the proton expected in future lepton-ion collider experiments, such as EIC in the U.S., LHeC at CERN, and EicC in China.

21

Backup



Q ² range (GeV ²)			$\sigma_{c,vis}(pb)$)				$\sigma_{c^{EW}}(pb)$)	
					e^+p					
200-1500	4.1	± 2.0	(stat.)	$^{+0.1}_{-0.6}$	(syst.)	8.7	± 4.1	(stat.)	$^{+0.2}_{-1.4}$	(syst.)
1500-60000	-0.7	± 2.0	(stat.)	$^{+0.2}_{-0.0}$	(syst.)	-1.2	± 3.9	(stat.)	$^{+0.3}_{-0.3}$	(syst.)
					e^-p					
200-1500	-0.9	± 2.1	(stat.)	$^{+0.2}_{-0.0}$	(syst.)	-1.7	± 3.9	(stat.)	$^{+0.3}_{-0.3}$	(syst.)
1500-60000	-2.6	± 3.5	(stat.)	$^{+0.5}_{-0.1}$	(syst.)	-4.8	± 6.7	(stat.)	$^{+0.9}_{-0.8}$	(syst.)
$\sigma_{c,\text{vis}}^+ = 4.0 \pm 2.8 \text{ (stat.)} ^{+0.1}_{-0.6} \text{ (syst.) pb},$								(stat.)		
$\sigma_{c,\text{vis}}^- = -3.0$	± 3.8 (s	stat.) <u>+</u>	0.5 0.1 (syst.)) pb,	$\sigma_{c^{EW}}$	= -5.	7 ± 7.2	(stat.)	$^{+1.0}_{-1.2}$ (sy	vst.) pb.



Jae D. Nam

ZEUS

ZEUS