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Not only a world-expert in spin and 3D structure, 
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Midterm Review, Part I: Overview – Jianwei Qiu 17

QCD and the Structure of Nucleons and Nuclei
  Understanding the structure of hadrons in terms of QCD’s quarks and 

gluons is one of the central goals of modern nuclear physics  !
        – 2015 NSAC Long-Range Plan !

  QCD – the Last Frontier of the Standard Model
A relativistic quantum theory of strong interacting quarks and gluons!!
BUT, we do not see any quarks and gluons in isolation!

"  Unprecedented intellectual challenge: 
           How to test a theory without seeing the players?
"  Understanding QCD fully is still beyond the reach of the best minds we have! 
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“
Finding 1: An EIC can uniquely address 
three profound questions about nucleons
—neutrons and protons—and how they 
are assembled to form the nuclei of atoms: 

• How does the mass of the nucleon arise? 

• How does the spin of the nucleon arise? 

• What are the emergent properties of 
dense systems of gluons?
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The field of “spin and 3D structure” is prominently 
included in the strategic plans of the US

We hope that the EU will give an equally 
strategic support!
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Quark TMDs
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum
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FIG. 17: Comparison of the JAM15 PDFs �u
+, �d

+, �s
+ and �g at Q

2 = 1 GeV2 with PDFs

from other parametrizations in the literature, including DSSV09 [21], NNPDF14 [28], BB10 [22],

AAC09 [24], LSS10 [23], and JAM13 [20].

initial sampling to be as large as 10; however, the Monte Carlo fits prefer smaller values. In

contrast to the negative �s
+ obtained from the analysis of DIS asymmetries, inclusion of the

semi-inclusive kaon production data in the DSSV09 and LSS10 fits induces a positive �s
+

at x & 0.05. Currently the tension between the inclusive and semi-inclusive DIS data and

their impact on the sign of the polarized strange distribution is not completely understood

[88, 89], and the definitive extraction of �s
+ will require careful treatment of all processes

to which strange quarks contribute, as well as a reliable determination of fragmentation

functions.

For the much better determined �u
+ and �d

+ distributions, the shapes and magnitudes

from the JAM15 fit are generally similar to those found in previous analyses, but with some

important features. The �u
+ PDF is slightly higher at intermediate x ⇡ 0.3 � 0.5 than

in most of the other analyses, as was the case for the JAM13 distribution, but overall the

spread between the di↵erent parametrizations is relatively small. The BB10 and AAC09

�u
+ distributions have the smallest magnitude at the peak, ⇡ 20% smaller than JAM15.
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Figure 2.6: Same as Fig. 2.4, but for the polarized NNPDFpol1.1 NLO PDFs [18].
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Figure 2.7: (Left) The polarized gluon momentum distribution x�g from the DSSV14 (with 90% C.L. uncer-
tainty band) and NNPDFpol1.1 PDF sets at Q2 = 10 GeV2. The NNPDF3.1 positivity bound is also shown.
(Right) 90% C.L. areas in the plane spanned by the truncated moments of �g computed for 0.05  x  1 and
0.001  x  0.05 at Q2 = 10GeV2 [29].

• The 2012 STAR data sets on W production [232], included in NNPDFpol1.1, provide evidence of
a positive �ū distribution and a negative �d̄ distribution, with |�d̄| > |�ū| [18]. The size of the
flavor symmetry breaking for polarized sea quarks is quantified by the asymmetry �ū��d̄, which,
in the NNPDFpol1.1 analysis, turn out to be roughly as large as its unpolarized counterpart (in
absolute value) [13], though much more uncertain [234]. Even within this uncertainty, polarized
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Figure 2.7: (Left) The polarized gluon momentum distribution x�g from the DSSV14 (with 90% C.L. uncer-
tainty band) and NNPDFpol1.1 PDF sets at Q2 = 10 GeV2. The NNPDF3.1 positivity bound is also shown.
(Right) 90% C.L. areas in the plane spanned by the truncated moments of �g computed for 0.05  x  1 and
0.001  x  0.05 at Q2 = 10GeV2 [29].

• The 2012 STAR data sets on W production [232], included in NNPDFpol1.1, provide evidence of
a positive �ū distribution and a negative �d̄ distribution, with |�d̄| > |�ū| [18]. The size of the
flavor symmetry breaking for polarized sea quarks is quantified by the asymmetry �ū��d̄, which,
in the NNPDFpol1.1 analysis, turn out to be roughly as large as its unpolarized counterpart (in
absolute value) [13], though much more uncertain [234]. Even within this uncertainty, polarized
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COMPARISON WITH LATTICE
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Moment Lattice QCD Global Fit

gA ⌘ h1i�u+��d+
1.195(39) (Nf = 2 + 1 + 1)

1.275(12)
1.279(50) (Nf = 2)

h1i�u+ 0.830(26)† 0.813(25)

h1i�d+ �0.386(17)† �0.462(29)

h1i�s+ �0.052 – �0.014 �0.114(43)

hxi�u���d� 0.146–0.279 0.199(16)

Table 3.8: Same as Table 3.7, but for the polarized benchmark moments.
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Figure 3.3: Same as Fig. 3.2, but for the polarized benchmark moments.

All these remarks apply irrespective of the benchmark value used for global fits, either the PDF4LHC
or the unweighted average. They also still hold if individual lattice-QCD and/or global-fit results in
Tables 3.1–3.5 are compared instead of their benchmark values in Table 3.7. These results suggest
that both greater accuracy and greater precision are required in lattice-QCD calculations to match the
accuracy and precision of the first moments of unpolarized PDFs determined from a global fit.

Polarized parton distributions. The benchmark values of the first moments of the unpolarized
PDFs, obtained as described in Secs. 3.1.2–3.1.3, are summarized in Table 3.8. Results from a single
lattice calculation, which might underestimate some sources of uncertainty, are denoted with a super-
script †. In the case of gA, we report the two values with Nf = 2 + 1 + 1 and Nf = 2 sea quarks from
lattice QCD. The value of gA is scale-independent, and we quote all other results at µ2 = 4 GeV2. For
ease of comparison, these values are also displayed in Fig. 3.3 in the same format as in Fig. 3.2. In the
case of gA, the result with Nf = 2+ 1 + 1 is used as normalization factor in the right panel of Fig. 3.3.
Results from the JAM17 analysis [167], see Table 3.6, are displayed separately. The reason for this is
that, in contrast with the NNPDFpol1.1, DSSV08 and JAM15 fits, in the JAM17 fit the experimental
value of gA, Eq. (2.54), is not an input of the fit, but it is fitted alongside the PDFs. Furthermore, in
JAM17 PDFs are fitted alongside FFs.

As is apparent from Table 3.8 and Fig. 3.3, the size of the uncertainties on the moments is in general
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Remarkable agreement between extracted moments of helicity 
distributions and lattice QCD calculations 
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Figure 9: 90% C.L. uncertainty estimates for the running integrals of the gluon helicity (left), quark helicity
(middle), and orbital angular momentum (right) distribution at Q2 = 10 GeV2 as a function of xmin. The gray-
shaded band denotes the DSSV08 [17] fit which includes primarily DIS data. The blue-shaded band is based on
the DSSV14 fit [18], which includes polarized p+p data from RHIC collected prior to 2012. The yellow-shaded
band is a projection, which accounts for the most recent RHIC data [19]. The region constrained by current data
lies to the right of the vertical dashed lines.

Q2, the spin of the proton can be written in terms
of its constituents using the Ja↵e–Manohar sum
rule [21]

1

2
=

1

2

Z 1

0
dx�⌃

�
x,Q2

�
+

Z 1

0
dx�g

�
x,Q2

�
+ L(Q2) , (2)

where 1
2�⌃(x,Q2) represents the quark helicity

contribution, and �g(x,Q2) represents the gluon
helicity contribution to the total spin of the pro-
ton. The respective orbital angular momenta of
quarks and gluons are represented by L(Q2) =P

q

⇥
Lq(Q2) + Lq̄(Q2)

⇤
+ Lg(Q2).

Figure 9 shows an extraction of the integrals of
the quark and gluon contributions in Eq. 2, run-
ning between x = xmin and x = 1 with their 90%
confidence level (C.L) uncertainties. The gray-
shaded band is the outcome of the DSSV08 [17]
analysis, which is almost exclusively based on
the existing DIS data. The blue-shaded band
shows the result of the DSSV14 [18] fit, which in-
cludes polarized p+p data from RHIC. The yellow-
shaded region shows the projected constraints on
the parton distributions once all RHIC data col-
lected through 2015 is included. In the plots, the
region to the right of the dashed vertical line is
constrained by current data. It is clear that preci-

sion data are needed to determine the parton con-
tribution to the proton’s spin, especially at low x.
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Figure 10: Present knowledge of the evolution in x of
the structure function g1, based on the DSSV14 ex-
traction [19]. The dotted lines show the results for
alternative fits that are within the 90% C.L. limit.

The fraction of the spin from angular mo-
menta can be obtained by subtracting 1

2�⌃(Q2)
and �G(Q2) from the total spin of the proton, us-
ing the sum rule in Eq. 2. The right panel in Fig. 9
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Aschenauer et al., arXiv:1708.01527 and arXiv:1509.06489

gluon spin quark spin
orbital  
angular momentum

We are constantly improving the 
knowledge of the contributions to the  
spin of the proton

6

tion g1(x,Q2) (solid line) and 90% C.L. estimates of its
uncertainties (dotted lines) as a function of the momen-
tum fraction x at Q2 = 10GeV2. Unlike in Fig. 2, the
alternative fits at 90% C.L. now include combined vari-
ations of quark and gluon helicity PDFs away from the
DSSV 2014 best fit [17] which lead to uncertainties at
least twice as large as for the variations just based on ∆g
shown in Fig. 2. We note that throughout our paper the
allowed ranges of variations at 90% C.L. are determined
for each of the shown results by the robust Lagrange
multiplier technique and dynamic tolerances for the ap-
propriate increase in the χ2 of the fit similar to what is
done in most of the recent PDF fits [24].
To illustrate once again the accuracy of future mea-

surements at an EIC, we also show here a few repre-
sentative projected data points taken from Fig. 2 in the
relevant Q2 regime around 10GeV2 for the three differ-
ent c.m.s. energies we consider. Clearly, measurements
of g1(x,Q2) at small x will dramatically reduce the un-
certainties in the quark helicity PDFs and, indirectly,
through the coupled QCD scale evolution of quarks and
gluons also in ∆g(x,Q2). At any given x, scaling viola-
tions for g1(x,Q2) will further constrain ∆g(x,Q2). As
was already shown in Fig. 2, they are numerically not
very pronounced for the optimum DSSV 2014 fit, which
can be also inferred from Fig. 3, where we show g1(x,Q2)
at Q2 = 1 and 100GeV2 in addition to our default scale
of 10GeV2. However, each of the alternative fits exhibits
a somewhat different Q2 dependence driven by the uncer-
tainties in the x shapes of the quark and gluon densities.
For x ! 0.01, the scale dependence of g1(x,Q2) in the
range from Q2 = 1 to 100GeV2 is typically larger than
the uncertainty on g1(x,Q2) from present data.

III. PRESENT STATUS OF ∆g AND IMPACT
OF PROJECTED RHIC AND EIC DATA

Before addressing the question of how precisely an EIC
will constrain the total gluon and quark polarizations in
the spin decomposition (2), and, indirectly, also the total
OAM L, it is important to first make a precise assessment
of how well these quantities are expected to be known by
the end of the current experimental programs, in partic-
ular, RHIC spin. This will set the best possible baseline
to judge on the impact a future EIC could have in the
field of QCD spin physics.
Different indicators and measures can be adopted to

quantify how well the gluon helicity density and the re-
sulting contribution ∆g(Q2) to the proton’s spin are con-
strained by data. The standard way to study uncertain-
ties as a function of the parton’s momentum fraction x
at a given Q2 in a global QCD fit to all available data
is certainly the most obvious possibility, however, it nei-
ther provides an immediate idea of the accuracy for the
phenomenologically interesting x-integral (1) that is the
focus of our study, nor does it indicate the relevance of
the different regions in x probed by the different experi-

-0.5

0

0.5

1

1.5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

DSSV 2014
with 90% C.L. band

DIS + SIDIS data
no pp data in fit

RHIC spin
projected data up to 2015

EIC projections:
√s = 77.5 GeV

+ √s = 122.7 GeV
+ √s = 141.4 GeV∫ d

x 
Δ

g(
x,

Q
2 )

x m
in

1

Q2 = 10 GeV2

xmin

FIG. 4: [color online] The running integral of the gluon he-
licity distribution at Q2 = 10GeV2 as a function of xmin ac-
cording to the DSSV 2014 analysis [17] (solid line) and 90%
C.L. uncertainty estimates (shaded bands) based on global
QCD fits utilizing different sets of existing and projected pp
and EIC data (see text).

ments used in the fit.
Instead, we choose to present most of our results in

terms of the “running integral” of, for instance, the gluon
helicity density, defined analogously to Eq. (1) as

∆g(Q2, xmin) ≡
∫ 1

xmin

dx∆g(x,Q2) , (3)

which represents the share of the proton spin (2) from
gluons as a function of the lower integration limit xmin.
Its uncertainty takes into account the non-trivial corre-
lations between the different regions of x contributing to
(3). By varying xmin in (3), one can explore how low in x
– or, alternatively, how high in

√
s – one likely needs to go

with future experiments to reduce x → 0 extrapolation
uncertainties to a level small enough to make meaningful
statements about how gluons and quarks in the proton
make up its spin. To study the important question of
the convergence of (3) with xmin in more detail, we will
also compute the contributions to (3) from different bins
[xmin, xmax] in x in case of ∆g.
To estimate the impact of past, current, and future

data sets on ∆g and ∆Σ we proceed in steps. To this
end, we will present uncertainty estimates for various
running integrals by including different data sets one-
by-one into our global analysis framework. As we have
mentioned already, to demonstrate the impact an EIC
will have on∆g in the future, we should take into account
the experimental information that is expected to become
available soon from the RHIC spin program. Essentially,

http://arxiv.org/abs/arXiv:1509.06489


TRANSVERSITY PARTON DISTRIBUTION FUNCTION
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For the transverse-momentum widths hk2⊥i
q
f of the TMD

PDFs fq1 and h
q
1 , two Gaussian widths are used, one for the

valence type (q ¼ u, d) and one for the sea-quark type
(q ¼ ū; d̄; s; s̄) functions. Similarly, for the TMD FFs two
Gaussian widths for hp2

⊥i
h=q
D are used, for the favored (such

as u or d̄ to πþ) and unfavored (ū or d to πþ) type of FF.
In total, we therefore have 23 parameters to be extracted
from data, 19 of which describe FsinðϕhþϕsÞ

UT and 4 for the
transverse part of FUU. To determine the latter, we perform
an independent fit to the HERMES π% and K% multiplicity
data [53], which include 978 data points that survive the
same cuts as employed for AsinðϕhþϕsÞ

UT .
Using the nested sampling MC algorithm [35–37], we

compute the expectation value E[O] and variance V[O],

E½O' ¼
Z

dnaPðajdataÞOðaÞ ≃
X

k

wkOðakÞ; ð8aÞ

V½O' ¼
Z

dnaPðajdataÞðOðaÞ − E½O'Þ2

≃
X

k

wkðOðakÞ − E½O'Þ2; ð8bÞ

for each observable O (such as a TMD or a function of
TMDs), which is a function of the n-dimensional vector
parameters a with probability density PðajdataÞ [40].
Using Bayes’ theorem, the latter is given by

PðajdataÞ ¼ 1

Z
LðdatajaÞπðaÞ; ð9Þ

where πðaÞ is the prior distribution for the vector param-
eters a, and

LðdatajaÞ ¼ exp
!
−
1

2
χ2ðaÞ

"
ð10Þ

is the likelihood function, with Z ¼
R
dnaLðdatajaÞπðaÞ

the Bayesian evidence parameter. Using a flat prior, the
nested sampling algorithm constructs a set of MC samples
fakg with weights fwkg, which are then used to evaluate
the integrals in Eqs. (8).
The results of the fit indicate good overall agreement

with the Collins πþ and π− asymmetries, as illustrated in
Fig. 1, for both HERMES [47] and COMPASS [48,49]
data, with marginally better fits for the latter. The χ2=datum
values for the πþ and π− data are 28.6=53 and 40.4=53,
respectively, for a total of 68.9=106 ≈ 0.65. The larger χ2

for π− stems from the few outlier points in the x and z
spectra, as evident in Fig. 1. The SIDIS-only fit is almost
indistinguishable, with χ2SIDIS ¼ 69.2. Clearly, our MC
results do not indicate any tension between the SIDIS data
and lattice QCD calculations of gT , nor any “transverse spin
problem.”

The resulting transversity PDFs hu1 and hd1 and Collins

favored and unfavored FFs, H⊥ð1Þ
1ðfavÞ and H⊥ð1Þ

1ðunfÞ, are plotted
in Fig. 2 for both the SIDIS-only and SIDISþ lattice fits.
The positive (negative) sign for the u (d) transversity PDF
is consistent with previous extractions, and correlates with
the same sign for the Collins FFs in the region of z directly
constrained by data. The larger jhd1j compared with jhu1j
reflects the larger magnitude of the (negative) π− asym-
metry than the (positive) π− asymmetry. At lower z values,
outside the measured region, the uncertainties on the
Collins FFs become extremely large. Interestingly, inclu-
sion of the lattice gT datum has very little effect on the
central values of the distributions, but reduces significantly
the uncertainty bands. The fitted antiquark transversity is
consistent with zero, within relatively large uncertainties,
and is not shown in Fig. 2.
For the transverse momentum widths, our analysis of the

HERMES multiplicities [53] gives a total χ2=datum of
1079=978, with hk2⊥i

q
f1
¼0.59ð1ÞGeV2 and 0.64ð6Þ GeV2

for the unpolarized valence and sea quark PDF widths,
and hp2

⊥i
π=q
D 1

¼ 0.116ð2Þ GeV2 and 0.140ð2Þ GeV2 for the

FIG. 1. A comparison of the full SIDISþ lattice fit with the πþ

(filled circles) and π− (open circles) Collins asymmetries
AsinðϕhþϕsÞ
UT from HERMES [47] and COMPASS [48,49] data

(in percent), as a function of x, z, and Ph⊥ (in GeV).

FIG. 2. Transversity PDFs hu;d1 and favored zH⊥ð1Þ
1ðfavÞ and

unfavored zH⊥ð1Þ
1ðunfÞ Collins FFs for the SIDIS þ lattice fit (red

and blue bands) at Q 2 ¼ 2 GeV2, compared with the SIDIS-only
fit uncertainties (yellow bands). The range of direct experimental
constraints is indicated by the horizontal dashed lines.

PHYSICAL REVIEW LETTERS 120, 152502 (2018)

152502-4

Q2=2 GeV2

Lin et al.,  
arXiv:1710.09858
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FIG. 6: Our best fit results for the valence u and d quark transversity distributions at Q2 = 2.4 GeV2 (left panel) and for
the lowest p? moment of the favoured and disfavoured Collins functions at Q2 = 2.4 GeV2 (central panel) and at Q2 = 112
GeV2 (right panel). The solid lines correspond to the parameters given in Table I, while the shaded areas correspond to the
statistical uncertainty on these parameters, as explained in the text.
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FIG. 7: Comparison of our reference best fit results (red, solid lines) for the valence u and d quark transversity distributions
(left panel) and for the lowest p? moment of the favoured and disfavoured Collins functions (right panel), at Q2 = 2.4 GeV2,
with those from our previous analysis [11] (blue, dashed lines).

kernel, similarly to what is done for the transversity function, as suggested in Refs. [42, 43]. The results we obtain
show a slight deterioration of the fit quality, with a global �2

d.o.f. increasing from 0.84 to 1.20. Although this is still
an acceptable result, one may wonder whether this is a genuine e↵ect of the chosen evolution model or, rather, a
byproduct of the functional form adopted for the Collins function parameterisation.

We have therefore exploited a di↵erent parameterisation based on a polynomial form. In principle, the polynomial
could be of any order. We have started by using an order zero polynomial, then increased it to order one and,
subsequently, to order two. In doing so, we have seen that the quality of the fit improves remarkably when going from
order zero to order one (i.e. from 2 to 4 free parameters) but it stops improving when further increasing to higher
orders. We therefore choose a first order polynomial form, which has the added advantage of depending on the same
number of free parameters as the standard parameterisation of Eqs. (11) and (12).

We consider generic combinations of fixed order Bernstein polynomials (see, for example, Ref. [44]) as they o↵er a
relatively straightforward way to keep track of the appropriate normalisation:

NC
i (z) = aiP01(z) + biP11(z) i = fav, dis (41)

where P01(z) = (1� z) and P11(z) = z are Bernstein polynomials of order one. Notice that by constraining the four
free parameters in such a way that �1  ai  +1 and �1  bi  +1, the Collins function automatically fulfils its
positivity bounds, as in the standard parameterisation. The Collins function will be globally modelled as shown in
Eqs. (6) and (8), with NC

fav(z) and NC
dis(z) as given in Eq. (41).

Anselmino et al.,  
arXiv:1510.05389

Radici, Bacchetta,  
arXiv:1802.05212
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FIG. 6: The sea transversity distributions xhū
1 and xhd̄

1 (left) and xhū
1 + xhd̄

1 (right) in Scenario 2.

⟨x⟩ Q2 (GeV2/c2) xhuv

1 xhdv
1 xhū

1 xhd̄
1

0.006 1.27 0.01 ± 0.04 0.23 ± 0.11 -0.07 ± 0.05 0.14 ± 0.11
0.010 1.55 0.05 ± 0.03 0.03 ± 0.06 0.00 ± 0.03 0.07 ± 0.07
0.016 1.83 0.02 ± 0.02 0.08 ± 0.06 -0.01 ± 0.03 0.11 ± 0.06
0.025 2.17 0.01 ± 0.02 -0.03 ± 0.05 0.01 ± 0.02 0.00 ± 0.05
0.040 2.83 0.01 ± 0.02 -0.07 ± 0.06 0.02 ± 0.03 -0.02 ± 0.06
0.063 4.34 0.09 ± 0.03 -0.04 ± 0.08 0.00 ± 0.04 0.07 ± 0.09
0.101 6.76 0.16 ± 0.04 -0.13 ± 0.11 0.02 ± 0.05 0.02 ± 0.12
0.163 10.5 0.10 ± 0.04 -0.25 ± 0.15 -0.01 ± 0.06 -0.06 ± 0.17
0.288 22.6 0.19 ± 0.05 -0.10 ± 0.18 0.00 ± 0.07 0.10 ± 0.20

TABLE IV: Values of the valence and sea transversity distributions from the Collins asymmetries for Scenario
2. Note that the Q2 values refer to the proton data. The deuteron data are taken at slightly larger Q2 and in the
last bin it is Q2 = 25.9 GeV2/c2. Errors are statistical only.

experimental Collaborations, and no attempt has been made to try to assign a systematic error to the

results. For the Collins extraction, the fact that different scenarios for the H⊥(1/2)
1,fav /H⊥(1/2)

1,unf ratio and for
the evolution lead to results which differ only by few percent is an indication that in our approach the

x
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1
v uxh

1
v dxh

FIG. 7: The valence transversity distributions from dihadron (open points) and Collins asymmetries (solid points).
Black circles represent xhuv

1 , red squares represent xhdv
1 . The transversity extracted from single-hadron leptopro-

duction refers to Scenario 2.

Martin, Bradamante, Barone, 
arXiv:1412.5946

transversely polarized target

transversely polarized quark
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At the moment, there is a clear 
tension between extractions and 
lattice calculations
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Alexandrou et al., arXiv:1703.08788

Gupta et al., arXiv:1806.09006

Anselmino et al., arXiv:1303.3822

Kang et al., arXiv:1505.05589

Lin et al., arXiv:1710.09858

Radici et al., arXiv:1802.05212
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0
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2)
⇤

Tensor charge



TENSOR CHARGE AND BSM
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β-decays and BSM physics

Ten effective couplings

E << Λ

1/Λ2  GF ~ g2Vij/Mw2 ~1/v2

• In the SM,  W exchange (V-A, universality)

Current precision of 0.1%  ⇒  [3-5] TeV bound for BSM scale  
Knowledge of tensor charge is crucial 

εT gT ≈ MW2 / MBSM2
Bhattacharya et al, PRD 85 (12) 

Pattie et al., P.R. C88 (13)

Tensor couplings, not present in the SM Lagrangian, could be the 
footprints of new physics at higher scales



SINGLE SPIN ASYMMETRIES
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Consider polarized hadron - hadron collisions 

Count pions going to the right or to the left with 
respect to the spin direction

Midterm Review, Part I: Overview – Jianwei Qiu 28

Challenge: the Sivers Effect
  Single Transverse Spin Asymmetry:

sp Left 

Right 

Theory (1978):
AN / ↵s

mq

pT
! 0

Kane, Pumplin, Repko, PRL, 1978!

Experiment (40 yrs)
AN As large as 40%

Sivers Effect:

"  Spin direction of colliding hadron
"  Motion direction of its confined partons

Quantum Correlation between

QCD:  Sign Change from SIDIS to Drell-Yan

D. Sivers, PRD41 (1990)83

AN ⌘ �(~sP )� �(�~sP )
�(~sP ) + �(�~sP )

<latexit sha1_base64="LHtj0VBYA6q7DfiwaFvN0l+r44E=">AAACTXicbVFLSwMxGMzWR2t9VT16CRahIi27Kuix6sWTVLAP6JYlm35bQ7MPk2yhLP2DXgRv/gsvHhQR03YPte1AYJiZjy+ZuBFnUpnmu5FZWV1bz+Y28ptb2zu7hb39hgxjQaFOQx6KlkskcBZAXTHFoRUJIL7Loen2b8d+cwBCsjB4VMMIOj7pBcxjlCgtOYXutXOPbXiO2QDbniA0sSXr+aRkD4AmcuTU8Aku41Qsz6ijZcnTpUmnUDQr5gR4kVgpKaIUNafwZndDGvsQKMqJlG3LjFQnIUIxymGUt2MJEaF90oO2pgHxQXaSSRsjfKyVLvZCoU+g8ESdnUiIL+XQd3XSJ+pJzntjcZnXjpV31UlYEMUKAjpd5MUcqxCPq8VdJoAqPtSEUMH0XTF9IrpTpT8gr0uw5p+8SBpnFeu8Yj1cFKs3aR05dIiOUAlZ6BJV0R2qoTqi6AV9oC/0bbwan8aP8TuNZox05gD9Qyb7Byg2sq0=</latexit>



QCD had a very simple 
prediction

Kane, Pumplin, Repko (1978)
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AN / ↵s
mq

PT
! 0

<latexit sha1_base64="7bQEuh804XD+pt1kv22ZpW6xKLc=">AAACG3icbZDLSgMxFIYzXmu9VV26CRbBVZlRQZdVN66kQm/QKcOZNNMGM5OYZJQy9D3c+CpuXCjiSnDh25i2s1DrD4Gf/5zDyflCyZk2rvvlzM0vLC4tF1aKq2vrG5ulre2mFqkitEEEF6odgqacJbRhmOG0LRWFOOS0Fd5cjOutO6o0E0ndDCXtxtBPWMQIGBsFpcOz4Ar7UglpBPaBywEEGvuRApLFwe0oqwX1EfYV6w8MKCXusRuUym7FnQjPGi83ZZSrFpQ+/J4gaUwTQzho3fFcaboZKMMIp6Oin2oqgdxAn3asTSCmuptNbhvhfZv0cCSUfYnBk/TnRAax1sM4tJ0xmIH+WxuH/9U6qYlOuxlLZGpoQqaLopRjy2EMCveYosTwoTVAFLN/xWQAlouxOIsWgvf35FnTPKx4RxXv+rhcPc9xFNAu2kMHyEMnqIouUQ01EEEP6Am9oFfn0Xl23pz3aeuck8/soF9yPr8B+AuhYQ==</latexit>

Experiment proved this 
prediction wrong

Fermilab experiment E704 (1991)p
s ' 19 (GeV)

<latexit sha1_base64="mT8Rlr+kcBsxyelGFP2bBJc2BZ0=">AAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhNmFXBRWboIWWEcwDskuYndwkQ2Z2NzOzQlhS2vgrNhaK2PoJdv6Nk0ehiQcuHM65l3vvCWLOlHacbyuzsLi0vJJdza2tb2xu2ds7VRUlkkKFRjyS9YAo4CyEimaaQz2WQETAoRb0rkd+7QGkYlF4rwcx+IJ0QtZmlGgjNe19T/WlTtUQe4oJ6GP3AnuX2JMCF26getS0807RGQPPE3dK8miKctP+8loRTQSEmnKiVMN1Yu2nRGpGOQxzXqIgJrRHOtAwNCQClJ+OHxniQ6O0cDuSpkKNx+rviZQIpQYiMJ2C6K6a9Ubif14j0e1zP2VhnGgI6WRRO+FYR3iUCm4xCVTzgSGESmZuxbRLJKHaZJczIbizL8+T6nHRPSk6d6f50tU0jizaQweogFx0hkroFpVRBVH0iJ7RK3qznqwX6936mLRmrOnMLvoD6/MHLgSYHg==</latexit>

AN ' 40%
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CHALLENGE OF QCD: UNDERSTANDING SPIN ASYMMETRIES



Asymmetry survives with growing collision energy

RHIC: STAR, BRAHMS, PHENIX
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4 THE CONFINED MOTION OF PARTONS IN NU-
CLEONS  

 
A natural next step in the investigation of nu-

cleon structure is an expansion of our current 
picture of the nucleon by imaging the proton in 
both momentum and impact parameter space. 
From TMD parton distributions we can obtain an 
“image” of the proton in transverse as well as in 
longitudinal momentum space (2+1 dimensions).  
At the same time we need to further our under-
standing of color interactions and how they man-
ifest themselves in different processes. This has 
attracted renewed interest, both experimentally 

and theoretically, in transverse single spin 
asymmetries (SSA) in hadronic processes at high 
energies, which have a more than 30 year history. 
Measurements at RHIC have extended the obser-
vations from the fixed-target energy range to the 
collider regime, up to and including the highest 
center-of-mass energies to date in polarized p+p 
collisions. Figure 4-1 summarizes the measured 
asymmetries from different RHIC experiments as 
function of Feynman-x (xF ~ x1-x2). 

 

 
Figure 4-1: Transverse single spin asymmetry measurements for charged and neutral pions at different center-of-mass 
energies as function of Feynman-x. 
 

The surprisingly large asymmetries seen are 
nearly independent of  over a very wide 
range. To understand the observed SSAs one has 
to go beyond the conventional leading twist col-
linear parton picture in the hard processes. Two 
theoretical formalisms have been proposed to 
explain sizable SSAs in the QCD framework: 
These are transverse momentum dependent par-
ton distributions and fragmentation functions, 
such as the Sivers and Collins functions dis-
cussed below, and transverse-momentum inte-
grated (collinear) quark-gluon-quark correlations, 
which are twist-3 distributions in the initial state 
proton or in the fragmentation process. For many 
spin asymmetries, several of these functions can 
contribute and need to be disentangled to under-
stand the experimental observations in detail, in 
particular the dependence on pT measured in the 
final state.  The functions express a spin depend-
ence either in the initial state (such as the Sivers 

distribution or its Twist-3 analog, the Efremov-
Teryaev-Qui-Sterman (ETQS) function [21]) or 
in the final state (via the fragmentation of a po-
larized quarks, such as the Collins function). 

The Sivers function, , describes the corre-
lation of the parton transverse momentum with 
the transverse spin of the nucleon. A non-
vanishing  means that the transverse parton 
momentum distribution is azimuthally asymmet-
ric, with the nucleon spin providing a preferred 
transverse direction. The Sivers function, , is 
correlated with the ETQS functions, Tq,F, through 
the following relation: 
!!,! !, ! = − !!!! !! !

! !!!!! !, !!! |!"#"! [Eq. 4-1].  
In this sense, a measurement constraining the 

ETQS function indirectly also constrains the Siv-
ers function.  We will use this connection repeat-
edly in the following. 

s

f1T
⊥

f1T
⊥

f1T
⊥

“The RHIC SPIN Program: Achievements and Future Opportunities”, Aschenauer et al (15)
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FAILURE  
OF QCD?



BETTER  
UNDERSTANDING OF QCD!
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QCD



BETTER UNDERSTANDING OF QCD
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Multi-parton correlations (twist-3 functions) contribute to the 
cross section and are dominant for asymmetries 

Collinear objects related to TMDs via Operator Product 
Expansion 

Qiu, Sterman (1990)



TOWARDS THE SOLUTION OF 40 YEAR OLD PUZZLE
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248 L. Gamberg et al. / Physics Letters B 770 (2017) 242–251

Fig. 2. (a) STAR Collaboration data on AN for π0 as function of xF at ⟨y⟩ = 3.7 for positive xF . The two error bands correspond to the theoretical uncertainty from H⊥ (1)
1 (z)

(the narrow band) and h1(x) (the wide band). (b) Predictions for AN in π± production as function of xF at ⟨y⟩ = 3.7 for positive xF using Eq. (16) (along with the 
approximation (28)). The error bands correspond to the theoretical uncertainty from both h1(x) and H⊥ (1)

1 (z).

on H̃(z) and leave a fit of this function to AN data for future work. We emphasize again that the unintegrated version of this correlator 
also enters multiple asymmetries in SIDIS and e+e− → ha hb X , while H̃(z) itself can be directly measured in Asin φS

U T in SIDIS integrated 
over PhT .

Moreover, since F F T (x, x) and H ⊥ (1)
1 (z), h1(x) enter the TMD evolution equations for the Sivers and Collins asymmetries, respectively, in 

SIDIS and e+e− → ha hb X , one can eventually perform a global analysis that includes all these observables along with AN in proton–proton 
and lepton–nucleon collisions (where F F T (x, x), H̃(z), H ⊥ (1)

1 (z), h1(x) all enter). This would better constrain the large-xF behavior of these 
functions and greatly reduce the error bands in our plots since we have data from RHIC in this region. We found that the uncertainty 
in h1(x) in this regime is what dominates the error over that from H ⊥ (1)

1 (z), see Fig. 2(a). Thus, it is evident that the AN data would 
allow us to drastically improve the extraction of transversity. Also, future measurements at JLab12 can improve the situation in the large-x
region [93]. In order to demonstrate the powerful capability of RHIC future measurements [2], we present our predictions for AN in π±

production at 500 GeV in Fig. 2(b). One can clearly see that large-xF measurements of AN will reduce the uncertainty of the large-x
behavior of transversity and, together with other data sets, allow us to explore the missing contribution from H̃(z). In addition, we also 
give our result for AN as a function of PhT in Fig. 3 compared with the STAR data from Ref. [94]. One can see that our calculations exhibit 
a flat behavior, similar to that shown in Ref. [59]. The reason is that in the forward region, where t̂ becomes very small, the qg → qg
channel dominates, and the hard function Sqg→qg

H⊥
1

∝ 1/t̂3 compensates the twist-3 (PhT )− 1 fall off of the asymmetry. Again, one has to 

keep in mind that there is still a term missing, H̃(z) from our analysis, which needs to be fit to data as has been emphasized above. It is 
also important to emphasize that the experimental data has a very large uncertainty which prevents an unambiguous identification of the 
PhT -dependence. These open issues can only be addressed by future experimental measurements and theoretical work.

We end this section with a brief comment about the fragmentation contribution to AN in p↑ A → π0 X . Recently, a calculation of this 
term was carried out in Ref. [95] that included gluon saturation effects in the unpolarized nucleus. The authors found that the first two 
terms in braces in Eq. (9) are proportional to A− 1/3 (see also [96]), while the third term is proportional to A0. Since in Ref. [59] one finds 
that this third term is negligible (see Fig. 3 of Ref. [59]), the authors of Ref. [95] concluded that the fragmentation piece to AN in p↑ A
collisions is proportional to A− 1/3, which is in contradiction to recent STAR measurements [97] that find no suppression with A. However, 
as we have mentioned, the fit in Ref. [59] was performed before the LIR (15) was derived. Using both the EOMR (11) and LIR (15) we can 
write

2
z

∞∫

z

dz1

z2
1

1
(

1
z − 1

z1

)2 Ĥπ/c,ℑ
F U (z, z1) = H ⊥ (1),π/c

1 (z) + z
dH ⊥ (1),π/c

1 (z)

dz
− 1

z
H̃π/c(z). (31)

With Eq. (31) in hand, along with using the known input from the Collins function for H ⊥ (1),q
1 (z), we can obtain a new estimate for 

the contribution of the third term in Eq. (9) to AN . To be specific, we replace Hπ/c,i(x, x′, z) in Eq. (24) with

Hπ/c,i(x, x′, z)

∣∣∣∣
3rd term in (9)

=
[

H ⊥ (1),π/c
1 (z) + z

dH ⊥ (1),π/c
1 (z)

dz
− 1

z
H̃π/c(z)

]
Si

Ĥ F U

− x′t̂ − xû
, (32)

where, as before, Si
Ĥ F U

can be found in Appendix A of Ref. [22], and we include only terms involving H ⊥ (1),π/c
1 (z).11 Our estimate is shown 

in Fig. 4. We see that the contribution to AN from the third term in Eq. (9) is actually moderate in size and certainly not negligible. Since 
this part of AN in p↑ A collisions is proportional to A0 [95], the fragmentation term for AN is not inconsistent with the STAR data [97] on 
the asymmetry in p↑ A → π0 X . Recently, the author of Ref. [98] has found that, in contrast to Ref. [99], the QS piece contribution to AN
in p A collisions is small (and may very well vanish), leaving the fragmentation term as the only source of AN in p A collisions.12

11 This of course is not a complete calculation because we still must include/fit H̃(z).
12 This conclusion is reached within the so-called hybrid approach of twist-3 and color glass condensate [98,99].

Prediction of AN at STAR 
using only SIDIS and e+e- 
data information only

Gamberg, Kang, Pitonyak, Prokudin PLB 770 (2017)Kanazawa, Koike, Metz, Pitonyak PRD 89 (2014)

3

 0

 0.2

 0.4

 0.2  0.3  0.4  0.5  0.6

A N

xF

STAR 04
3.3 < η < 4.1

 0.4  0.5  0.6  0.7xF

STAR 12
η = 3.68

π0

 0

 0.1

-0.4 -0.2  0  0.2  0.4

A N

xF

STAR 08
<η> = 3.3

-0.6 -0.4 -0.2  0  0.2  0.4  0.6
xF

<η> = 3.7 π0

-0.1

 0

 0.1

 0.2

 0.2  0.25  0.3

A N

xF

BRAHMS 07
θ = 2.3°

 0.15  0.2  0.25  0.3xF

θ = 4° π+

π–

FIG. 1. Fit results for Aπ0

N (data from [35–37]) and Aπ±

N (data
from [38]) for the SV1 input. The dashed line (dotted line in
the case of π−) means Ĥℑ

FU switched off.

(i = u+ ū, ū) is defined as

Ii =
Ni(K1,fav + γiK2,fav)

B[2 + αi,βi + 1] + γiB[2 + αi,βi + δi + 1]
,

with K1,fav = B[α′
fav + αi + 1,β′

fav + βi] , (7)

K2,fav = B[α′
fav + αi + 1,β′

fav + βi + δi] ,

and B[a, b] the Euler β-function. The parameters Ni,
αi, βi, γi, and δi come from D FFs at the initial scale
and are given in Table III of [42]. Note that Dπ+/u in

Ref. [42] differs from Dπ+/d̄. Jfav in (6) is similarly de-
fined as Jfav ≡ Ju+ū−Jū, where Ji (i = u+ ū, ū) follows
from Ii through α′

fav → (αfav + 4), β′
fav → (βfav + 1).

The factor 1/(2IfavJfav) in (6) is convenient and implies
∫ 1
0 dz z Hπ+/u

(3) (z) = Nfav at the initial scale, where H(3)

represents the entire second term on the r.h.s. of (5).

For the disfavored FFs Ĥπ+/(d,ū),ℑ
FU we make an ansatz in

full analogy to (6), introducing the additional parameters
Ndis, αdis, α′

dis, βdis, β′
dis. (Idis and Jdis are calculated

using Dπ+/d = Dπ+/ū from [42].) The π− FFs are then
fixed through charge conjugation, and the π0 FFs are
given by the average of the FFs for π+ and π−. The FFs
Hπ/q are computed by means of (5). All parton correla-
tion functions are evaluated at the scale Ph⊥ with leading
order evolution of the collinear functions.
Using the MINUIT package we fit the fragmentation

contribution to data for Aπ0

N [35–37] and Aπ±

N [38]. To fa-

cilitate the fit we only keep 7 parameters in Ĥπ+/q,ℑ
FU free.
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FIG. 2. Results for the FFs Hπ+/q and H̃π+/q
FU (defined in

the text) for the SV1 input. Also shown is Hπ+/q without
the contribution from Ĥℑ

FU (dashed line).
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FIG. 3. Individual contributions to Aπ0

N (data from [36]) for
SV1 and SV2 inputs.

We also allow the β-parameters βT
u = βT

d of the transver-
sity to vary within the error range given in [33]. All
integrations are done using the Gauss-Legendre method
with 250 steps. For the SV1 input the result of our 8-
parameter fit is shown in Tab. I. Note that the values for
β′
fav = β′

dis and βfav are at their lower limits, which we
introduce to guarantee a finite integration upon z1 in (3)
and a proper behavior of AN at large xF , respectively.
For the SV2 input the values of the fit parameters are
similar, with an equally successful fit (χ2/d.o.f. = 1.10).

TABLE I. Fit parameters for SV1 input.

χ2/d.o.f. = 1.03

Nfav = −0.0338 Ndis = 0.216

αfav = α′
fav = −0.198 βfav = 0.0

β′
fav = β′

dis = −0.180 αdis = α′
dis = 3.99

βdis = 3.34 βT
u = βT

d = 1.10

The very good description of AN is also reflected
by Fig. 1. We emphasize that such a positive out-
come is non-trivial if one keeps in mind the constraint
in (5) and the need to simultaneously fit data for Aπ0

N

and Aπ±

N . Results for the FFs Hπ+/q and H̃π+/q
FU ≡

∫∞

z
dz1
z2
1

1
1
z
− 1

z1

1
ξ Ĥ

π+/q,ℑ
FU (z, z1) are displayed in Fig. 2. In

either case the favored and disfavored FFs have opposite
signs. This is like for H⊥

1 where such reversed signs are
actually “preferred” by the Schäfer-Teryaev (ST) sum

rule
∑

h

∑

Sh

∫ 1
0 dz zMhĤh/q(z) = 0 [47]. Note that the

ST sum rule, in combination with (5), implies a con-
straint on a certain linear combination of Hh/q and (an

Explanation using fit of twist-3  
fragmentation functions
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Spin physics is making a lot of progress

Spin physics can have an impact also  
on BSM searches
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FUU,T (x, z,P 2
hT , Q2) = x

X

a

Ha
UU,T (Q2;µ2)

Z
db2
?

4⇡
J0(|bT ||P h?|)f̃a

1

�
x, z2b2

?;µ2
�
D̃a!h

1

�
z, b2

?;µ2
�

+ YUU,T

�
Q2,P 2

hT

�
+O

�
M2/Q2

�

efa
1 (x, bT ;µ2) =

X

i

�
C̃a/i ⌦ f i

1

�
(x, b⇤;µb)eS̃(b⇤;µb,µ)egK(bT ) ln µ

µ0 f̂a
NP(x, bT )

nonperturbative part 
 of TMD

collinear PDF

pQCD
nonperturbative part 
 of evolution

see, e.g., Rogers, Aybat, PRD 83 (11),  
Collins, “Foundations of Perturbative QCD” (11)  

The Y term guarantees that the calculation at high PhT agrees with perturbative 
calculation done with collinear factorization

 W term

other possible schemes, e.g., 
Laenen, Sterman, Vogelsang, PRL 84 (00)  
Bozzi, Catani, De Florian, Grazzini, NPB737 (06) 
Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)



TMD FITS OF UNPOLARIZED DATA
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Framework W+Y HERMES COMPASS DY Z 
production

N of points

KN 2006 
 hep-ph/0506225 LO-NLL W ✘ ✘ ✔ ✔ 98

QZ 2001 
 hep-ph/0506225 NLO-NLL W+Y ✘ ✘ ✔ ✔ 28 (?)

RESBOS 
 resbos@msu NLO-NNLL W+Y ✘ ✘ ✔ ✔ >100 (?)

Pavia 2013 
arXiv:1309.3507 LO W ✔ ✘ ✘ ✘ 1538

Torino 2014  
arXiv:1312.6261 LO W ✔  

(separately)
✔  

(separately)
✘ ✘ 576 (H) 

6284 (C)
DEMS 2014 

arXiv:1407.3311  NLO-NNLL W ✘ ✘ ✔ ✔ 223

EIKV 2014  
 arXiv:1401.5078  LO-NLL W 1 (x,Q2) bin 1 (x,Q2) bin ✔ ✔ 500 (?)

SIYY 2014 
arXiv:1406.3073 NLO-NLL W+Y ✘ ✔ ✔ ✔ 200 (?)

Pavia 2017 
arXiv:1703.10157 LO-NLL W ✔ ✔ ✔ ✔ 8059

SV 2017 
arXiv:1706.01473 NNLO-NNLL W ✘ ✘ ✔ ✔ 309

BSV 2019 
arXiv:1902.08474 NNLO-NNLL W ✘ ✘ ✔ ✔ 457

http://arxiv.org/abs/hep-ph/0506225
http://arxiv.org/abs/hep-ph/0506225
http://hep.pa.msu.edu/resum/
http://arxiv.org/abs/arXiv:1309.3507
http://arxiv.org/abs/arXiv:1407.3311
http://arxiv.org/abs/arXiv:1401.5078
http://arxiv.org/abs/arXiv:1406.3073
http://arxiv.org/abs/arXiv:1703.10157
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CDF, D0
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ATLAS(116<Q<150)

ATLAS(46<Q<66)

Total:
457 data points
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Figure 1. Density distribution of data points in the plain (Q, x) for each experiment analyzed in the fit.

that scale as q
2
T /Q

2 = �
2, should be taken into account. Specifically, in the TMD framework,

these corrections can be regarded as a theoretical uncertainty. Based on this consideration, if
the (uncorrelated) experimental uncertainty of a given data point is smaller than the theoretical
uncertainty associated to the expected size of power corrections, we drop this point from the fit.
This is the origin of the second condition in eq. (3.1). This data selection is particularly conservative
because it drops points that could potentially be described by TMD factorization (see e.g. ref. [12]
where less conservative cuts are used). However, this choice guarantees that we operate well within
the range of validity TMD factorization.

Table 2 reports a summary of the full data set included in our fit. Remarkably, after imposing
the cut in eq. (3.1), the number of data points included in our fit is 457. Despite the conservative
cut, this is the largest set of DY data considered so far within a TMD fit. Our data set spans a
wide range in energy, from Q = 4 GeV to Q = 150 GeV, and in x, from x ⇠ 0.5 · 10�4 to x ⇠ 1. We
recall that a single DY data point is simultaneously sensitive to a larger and a smaller value of x.
This is because the cross section is given by a pair of TMDPDFs, eq. (2.1), computed in x1 and x2

such that x1x2 ' Q
2
/s, see eq. (2.2).

In our fit we have compared absolute values of cross-section, whenever they are available. The
only data set that require normalization factors are all CMS data, ATLAS at 7 TeV, and DO
electron-pair measurements. For these sets we have normalized the integral of the theory prediction
to corresponding integral over the data (see explicit expression in ref.[13]). To our best knowledge, it
is the first fit of TMD factorization to absolute values of cross-section in the modern time, compare
e.g to the latest and most advanced fits in [11–13].

The kinematic region in x and Q covered by the data set considered for our fit is shown in
fig. 1. The boxes enclose the sub-regions covered by the single data sets. Looking at fig. 1, it is
possible to distinguish two main clusters of data: the “low-energy experiments”, i.e. E288, E605,

– 8 –

Bertone, Scimemi, Vladimirov, 
arXiv:1902.08474

Bacchetta, Delcarro, Pisano, Radici,  
Signori, arXiv:1703.10157

http://arxiv.org/abs/arXiv:1902.08474
http://arxiv.org/abs/arXiv:1703.10157
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Figure 8. The down quark TMD PDF in b-space(left) and kT -space(right) presented at different values of

x. The color shows the size of the uncertainty relative the value of distribution.

6 Conclusions

We have extracted the unpolarized transverse momentum dependent parton distribution function
(TMDPDF) and rapidity anomalous dimension (also known as Collins-Soper kernel) from Drell-Yan
data. The analysis has been performed in the ⇣-prescription with NNLO perturbative inputs. We
have also provided an estimation of the errors on the extracted functions with the replica method.
The values of TMDPDF and rapidity anomalous dimension, together with the code that evaluates
the cross-section, are available at [45], as a part of the artemide package. We plan to release grids
for TMDPDFs extracted in this work also through the TMDlib [69].

Theoretical predictions are based on the newly developed concepts of ⇣-prescription and op-
timal TMD proposed in ref. [27]. This combination provides a clear separation between the non-
perturbative effects in the evolution factor and the intrinsic transverse momentum dependence.
Additionally, the ⇣-prescription permits the usage of different perturbative orders in the collinear
matching and TMD evolution. For that reasons, the precise values of the rapidity anomalous di-
mension (±1%(4%, 6%) accuracy at b = 1(3, 5) GeV�1) are relevant for any observable that obeys
TMD evolution.

In our analysis, we have included a large set of data points, which spans a wide range of
energies (4 < Q < 150 GeV) and x (x > 10�4), see fig. 1. The data set can be roughly split into
the low-energy data, which includes experiments E288, E605, E772 and PHENIX at RHIC, and
the high-energy data from Tevatron (CDF and D0) and LHC (ATLAS, CMS, LHCb) in similar
proportion. To exclude the influence of power corrections to TMD factorization we consider only
the low-qT part of the data set, as described in sec. 3. A good portion of data is included in the fit
of TMD distributions for the first time, that is the data from E772, PHENIX, some parts of ATLAS
and D0 data. For the first time, the data from LHC have been included without restrictions (the
only previous attempt to include LHC data in a TMDPDF fit is [13], where systematic uncertainties
and normalization has been treated in a simplified manner). We have shown that the inclusion of
LHC data greatly restricts the non-perturbative models at smaller b (b . 2 GeV�1) and smaller x

(x . 0.05), and therefore they are highly relevant for studies of the intrinsic structure of hadrons.
A detailed comparison of fits with and without LHC data has been discussed in sec. 5.

The extracted TMDPDF shows a non-trivial x-dependence that is not dictated only by the
collinear asymptotic limit of PDFs. In particular, we find that the unpolarized TMDPDF is bigger
(in impact parameter space) at larger x, see fig. 7. This indirectly implies a smaller value of the

– 17 –
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Signori, arXiv:1703.10157

http://arxiv.org/abs/arXiv:1902.08474
http://arxiv.org/abs/arXiv:1703.10157


PROBLEMS WITH HIGH TRANSVERSE MOMENTUM

�31

New predictions (JAM18) @ NLO (DDS)
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At high qT, the collinear formalism should be valid, but large 
discrepancies are observed
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However, large discrepancies are found also in low-energy DY 
scattering data 
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TRANSVERSE MOMENTUM IN FRAGMENTATION FUNCTIONS
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4

kT

Ph

n

e+

e�

FIG. 1. Illustration of transverse-momentum-dependent sin-
gle hadron fragmentation where the final-state hadron is de-
picted as a red arrow, the incoming leptons as blue arrows,
and the event plane – spanned by leptons (blue lines) and
initial quarks/thrust axis n (purple line) – is depicted as a
light blue plane. The transverse momentum kT is calculated
relative to the thrust axis and depicted by the red, dashed
line.

on 8 GeV) collider [32, 33] operating at the ⌥(4S) res-
onance (denoted as on-resonance), as well as a smaller
data set taken 60 MeV below for comparison (denoted as
continuum).

The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber, an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement
of time-of-flight scintillation counters, and an electromag-
netic calorimeter comprised of CsI(Tl) crystals located
inside a superconducting solenoid coil that provides a
1.5 T magnetic field. An iron flux-return located outside
of the coil is instrumented to detect K0

L mesons and to
identify muons. The detector is described in detail else-
where [34, 35]. A 1.5 cm beampipe with 1 mm thickness
and a 4-layer SVD and a small-cell inner drift chamber
were used to record 558 fb�1 [36].

The primary light (uds)- and charm-quark simulations
used in this analysis were generated using pythia6.2
[37], embedded into the EvtGen [38] framework, followed
by a geant3 [39] simulation of the detector response.
The various MC samples were produced separately for
light (uds) and charm quarks, and on the generator level
several JETSET[40] settings were produced in order to
study their impact. For generator level MC to data
comparisons, long-lived weak decays, which normally are
handled in geant, were allowed in EvtGen. In addition,
we generated charged and neutral B meson pairs from
⌥(4S) decays in EvtGen, ⌧ pair events with the KKMC
[41, 42] generator and the Tauola [43] decay package,
and other events with either pythia or dedicated gener-
ators [44] such as for two-photon processes.

A. Event and track selection

Events with at least three reconstructed charged tracks
are required to have a visible energy of all detected
charged tracks and neutral clusters above 7 GeV (to re-
move ⌧ pair events) and either a heavy-jet mass (the
greater of the invariant masses of all particles in a hemi-
sphere as generated by the plane perpendicular to the
thrust axis) above 1.8 GeV/c2 or a ratio of the heavy-
jet mass to visible energy above 0.25. The thrust axis
is required to point into the barrel part of the detec-
tor by having a z component |n̂z| < 0.75 in order to
reduce the amount of thrust-axis smearing due to unde-
tected particles in the forward/backward regions. Tracks
are required to be within 4 cm (2 cm) of the interac-
tion point along (perpendicular to) the positron beam
axis. Each track is required to have at least three
SVD hits and full particle-identification (PID) informa-
tion, and fall within the polar-angular acceptance of
�0.511 < cos ✓lab < 0.842. The fractional energy of each
track is required to exceed 0.1 and the transverse momen-
tum with respect to the thrust axis is then calculated in
the CMS as illustrated in Fig. 1. Also a minimum trans-
verse momentum in the laboratory frame with respect to
the beam axis of 100 MeV/c is imposed to ensure the
particles traverse the magnetic field.

B. PID selection

To apply the PID correction according to the PID e�-
ciency matrices used in previous results [45], the same se-
lection criteria are applied first to define a charged track
as a pion, kaon, proton, electron or muon. This informa-
tion is determined from normalized likelihood ratios that
are constructed from various detector responses. If the
muon-hadron likelihood ratio is above 0.9, the track is
identified as a muon. Otherwise, if the electron-hadron
likelihood ratio is above 0.85, the track is identified as an
electron. If neither of these applies, the track is identified
as a kaon by a kaon-pion likelihood ratio above 0.6 and a
kaon-proton likelihood ratio above 0.2. Pions are identi-
fied with the kaon-pion likelihood ratio below 0.6 and a
pion-proton ratio above 0.2. Finally, protons are identi-
fied with kaon-proton and pion-proton ratios below 0.2.
While neither muons nor electrons are considered explic-
itly for the single hadron analysis, they are retained as
necessary contributors for the PID correction, wherein a
certain fraction enters the pion, kaon, and proton sam-
ples under study.

II. HADRON ANALYSIS AND CORRECTIONS

In the following sections, the hadron yields are ex-
tracted and, successively, the various corrections are ap-
plied and the corresponding systematic uncertainties are
determined to arrive at the single hadron di↵erential
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FIG. 9. Single charged pion cross sections as a function of k2
T for selected bins of fractional energy z and thrust 0.85 < T < 0.9.

The full lines at lower transverse momenta correspond to the Gaussian fits to this data using the same color coding as for the
data. Each datapoint is displayed at the bin’s central value while horizontal uncertainties display the RMS value. The error
boxes represent the systematic uncertainties.

to understand the intrinsic transverse momentum depen-
dence generated in the fragmentation process. Such in-
put is needed to obtain a better theoretical description of
the various transverse-momentum-dependent and related
higher-twist e↵ects visible in transverse spin asymmetries
in semi-inclusive deep inelastic scattering, proton-proton
collisions and electron-positron annihilation. This infor-
mation also leads the way toward high-precision mea-
surements of TMD e↵ects at the electron-ion collider. In
addition, these results provide the unpolarized baseline
for any polarized, transverse-momentum-dependent frag-
mentation functions such as the Collins FF.
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Table 13 Results of the mW+ − mW− measurements in the electron
and muon decay channels, and of the combination. The table shows
the statistical uncertainties; the experimental uncertainties, divided into
muon-, electron-, recoil- and background-uncertainties; and the mod-

elling uncertainties, separately for QCD modelling including scale vari-
ations, parton shower and angular coefficients, electroweak corrections,
and PDFs. All uncertainties are given in MeV

Channel mW+ − mW−
[MeV]

Stat. Unc. Muon Unc. Elec. Unc. Recoil Unc. Bckg. Unc. QCD Unc. EW Unc. PDF Unc. Total Unc.

W → eν −29.7 17.5 0.0 4.9 0.9 5.4 0.5 0.0 24.1 30.7

W → µν −28.6 16.3 11.7 0.0 1.1 5.0 0.4 0.0 26.0 33.2

Combined −29.2 12.8 3.3 4.1 1.0 4.5 0.4 0.0 23.9 28.0

 [MeV]Wm
80250 80300 80350 80400 80450 80500

ALEPH

DELPHI

L3

OPAL

CDF

D0

+ATLAS W

−ATLAS W

±ATLAS W

ATLAS

Measurement
Stat. Uncertainty
Full Uncertainty

Fig. 28 The measured value of mW is compared to other published
results, including measurements from the LEP experiments ALEPH,
DELPHI, L3 and OPAL [25–28], and from the Tevatron collider exper-
iments CDF and D0 [22,23]. The vertical bands show the statistical
and total uncertainties of the ATLAS measurement, and the horizontal
bands and lines show the statistical and total uncertainties of the other
published results. Measured values of mW for positively and negatively
charged W bosons are also shown

In this process, uncertainties that are anti-correlated
betweenW+ andW− and largely cancel for themW measure-
ment become dominant when measuringmW+−mW− . On the
physics-modelling side, the fixed-order PDF uncertainty and
the parton shower PDF uncertainty give the largest contribu-
tions, while other sources of uncertainty only weakly depend
on charge and tend to cancel. Among the sources of uncer-
tainty related to lepton calibration, the track sagitta correc-
tion dominates in the muon channel, whereas several residual
uncertainties contribute in the electron channel. Most lep-
ton and recoil calibration uncertainties tend to cancel. Back-
ground systematic uncertainties contribute as the Z and mul-
tijet background fractions differ in the W+ and W− channels.
The dominant statistical uncertainties arise from the size of
the data and Monte Carlo signal samples, and of the control
samples used to derive the multijet background.

The mW+ − mW− measurement results are shown in
Table 13 for the electron and muon decay channels, and for
the combination. The electron channel measurement com-
bines six categories (pℓ

T and mT fits in three |ηℓ| bins), while

 [MeV]Wm
80320 80340 80360 80380 80400 80420

LEP Comb. 33 MeV±80376

Tevatron Comb. 16 MeV±80387

LEP+Tevatron 15 MeV±80385

ATLAS 19 MeV±80370

Electroweak Fit 8 MeV±80356

Wm
Stat. Uncertainty
Full Uncertainty

ATLAS

Fig. 29 The present measurement of mW is compared to the SM pre-
diction from the global electroweak fit [16] updated using recent mea-
surements of the top-quark and Higgs-boson masses, mt = 172.84 ±
0.70 GeV [122] and mH = 125.09 ± 0.24 GeV [123], and to the com-
bined values of mW measured at LEP [124] and at the Tevatron col-
lider [24]

the muon channel has four |ηℓ| bins and eight categories in
total. The fully combined result is

mW+ − mW− = −29.2 ± 12.8(stat.)

± 7.0(exp. syst.)

± 23.9(mod. syst.) MeV

= −29.2 ± 28.0 MeV,

where the first uncertainty is statistical, the second corre-
sponds to the experimental systematic uncertainty, and the
third to the physics-modelling systematic uncertainty.

12 Discussion and conclusions

This paper reports a measurement of the W -boson mass with
the ATLAS detector, obtained through template fits to the
kinematic properties of decay leptons in the electron and
muon decay channels. The measurement is based on proton–
proton collision data recorded in 2011 at a centre-of-mass
energy of

√
s = 7 TeV at the LHC, and corresponding to an

integrated luminosity of 4.6 fb−1. The measurement relies
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for quarks and gluons), and ga is the genuine flavor-
dependent contribution. Information on gevo can be de-
duced from Ref. [13], where the TMD PDF was extracted
from the global fit of SIDIS, Drell-Yan and Z-production
data (gevo corresponds to g2/4 in Ref. [13]). At Q = MW

and Q0 = 1 GeV, we have gevo ln(Q2/Q2
0) ⇡ 0.3 GeV2.

In order to account for the uncertainties a↵ecting the de-
termination of gevo, we choose to consider the interval
[0.2, 0.6] GeV2 as a reasonable range and we vary ga in
Eq. (2) such that the gaNP values fall into this range.

Thus, we generate random widths in the allowed
range for the considered five flavors. We build 50 sets
of flavor-dependent parameters together with a flavor-
independent set where all the parameters are put equal
to the central value of the variation range, gaNP = 0.4
GeV2. Our analysis is performed by first selecting
“Z-equivalent” sets, and then making a template fit, as
detailed here below.

Selection of “Z-equivalent” sets. For proton-proton
collisions at

p
s = 7 TeV, we generate pseudodata for

the qT distribution of the Z boson (22 bins similar to
the ATLAS ones [23]) using the flavor-independent set in
the DYqT code at O(↵s) and NLL accuracy. We do the
same for proton-antiproton collisions at

p
s = 1.96 TeV

(72 bins similar to the CDF ones [22]). We assign to each
of the qT bins an uncertainty equal to the experimental
one. We compute the qT distribution in the same con-
ditions also for each of the 50 flavor-dependent sets. We
calculate the �2 between each of these 50 distributions
and the pseudodata generated by the flavor-independent
set. We retain only those flavor-dependent sets that
have a �2 < 80 on the “CDF-like” bins (�2/d.o.f. < 1.1)
and a �2 < 44 on the “ATLAS-like” bins (�2/d.o.f. < 2).
The first criterion selects 48 flavor-dependent sets out
of 50; only 30 sets out of 50 match the second one,
because the ATLAS data have smaller (experimental)
uncertainties. We keep those flavor-dependent sets that
fullfil both criteria. When considering all the bins, these
sets have a total �2 < 124 on the pseudodata (�2/d.o.f.
< 1.3). In practice, these selected flavor-dependent sets
are equivalent to the flavor-independent one (with which
the Z pseudodata are generated) at approximately
2� level. Not surprisingly, this result implies that
the Z boson data alone are not able to discriminate
between flavor-independent and flavor-dependent sets of
nonperturbative parameters. Data from flavor-sensitive
processes are needed, in particular from SIDIS [39–42].

Template fit. Following the scheme introduced
in [26, 43], we perform a template fit to estimate the
impact of our “Z-equivalent” flavor-dependent sets on
the determination of MW . We use the DYRes code at the
same accuracy (NLL at small transverse momentum and
O(↵s) at large transverse momentum) and kinematics as
before, using the MSTW2008 NLO PDF set [44], setting

central values for the renormalization, factorization and
resummation scales µR = µF = µres = MW , and
implementing ATLAS acceptance cuts on the final-state
leptons [23]. In DYRes, the singularity of the resummed
form factor at very large values of bT (bT & 1/⇤QCD) is
avoided by the usual b⇤ prescription [2]. Similarly, the
correct behavior at very low bT is enforced by modifying
the argument of the logarithmic terms as in Refs. [36, 38].
The form factor in Eq. (2) is usually interpreted as the
nonperturbative contribution to TMD resummation for
bT & 1/⇤QCD. We generate templates with very high
statistics (750 M events) for the mT , pT ` distributions1

with di↵erent MW masses in the range 80.370 GeV
 MW  80.400 GeV, using the flavor-independent set
for the nonperturbative parameters. Then, for each “Z-
equivalent” flavor-dependent set we generate pseudodata
with lower statistics (75 M events) for the same leptonic
observables with the fixed value MW = 80.385 GeV 2.
Finally, for each pseudodata set we compute the �2 of
the various templates and we identify the template with
minimum �2 in order to establish how large is the shift in
MW induced by a particular choice of flavor-dependent
nonperturbative parameters. The statistical uncertainty
of the template-fit procedure has been estimated by con-
sidering statistically equivalent those templates for which
��2 = (�2

� �2
min)  1. Consequently, we quote an

uncertainty of 4 MeV for each of the obtained MW shifts.

Impact on the MW determination.

The outcome of our template fit is summarized in
Tabs. I and II for 5 representative sets out of the 30
“Z-equivalent” sets. The former table lists the values of
the gaNP parameter in Eq. (2) for each of the 5 considered
flavors a = uv, dv, us, ds, s = c = b = g. The latter table
shows the corresponding shifts induced in MW when ap-
plying our analysis to the mT , pT ` distributions for the
W+ and the W� production at the LHC (

p
s = 7 TeV).

Set uv dv us ds s
1 0.34 0.26 0.46 0.59 0.32
2 0.34 0.46 0.56 0.32 0.51
3 0.55 0.34 0.33 0.55 0.30
4 0.53 0.49 0.37 0.22 0.52
5 0.42 0.38 0.29 0.57 0.27

TABLE I: Values of the gaNP parameter in Eq. (2) for the
flavors a = uv, dv, us, ds, s = c = b = g. Units are GeV2.

1
Our analysis is performed on 30 bins in the interval [60, 90] GeV

for mT and on 20 bins in the interval [30, 50] GeV for pT `.
2
The factor-of-10 reduction in statistics between templates and

pseudodata is justified by a sanity check performed analyzing the

�2
profile of di↵erent samples with the same inputs but di↵erent

statistics [26].

narrow, medium, large  
narrow, large, narrow
large, narrow, large
large, medium, narrow
medium, narrow, large

• Take the “Z-equivalent” flavour-dependent 
parameter sets and compute low-statistics (135M) 
mT and pTl distributions

➡ these are our pseudodata

• Take the flavour-independent parameter set and 
compute high-statistics (750M) mT and pTl 
distributions for 30 different values of MW

➡  these are our templates

• perform the template fit procedure and 
compute the shifts induced by flavour effects

• transverse mass: zero or few MeV shifts, generally 
favouring lower values for W- (preferred by EW fit)

• lepton pt: quite important shifts (W+ set 3: 9 MeV, 
envelope: up to 15 MeV)

Impact on the determination of MW

NLL+LO QCD analysis obtained through a modified version of the 

DYRes code [Catani, deFlorian, Ferrera, Grazzini (2015)]


(LHC 7 TeV, ATLAS acceptance cuts)


Statistical uncertainty: 2.5 MeV 
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which is flavor independent (but, in principle, di↵erent
for quarks and gluons), and ga is the genuine flavor-
dependent contribution. Information on gevo can be de-
duced from Ref. [13], where the TMD PDF was extracted
from the global fit of SIDIS, Drell-Yan and Z-production
data (gevo corresponds to g2/4 in Ref. [13]). At Q = MW

and Q0 = 1 GeV, we have gevo ln(Q2/Q2
0) ⇡ 0.3 GeV2.

In order to account for the uncertainties a↵ecting the de-
termination of gevo, we choose to consider the interval
[0.2, 0.6] GeV2 as a reasonable range and we vary ga in
Eq. (2) such that the gaNP values fall into this range.

Thus, we generate random widths in the allowed
range for the considered five flavors. We build 50 sets
of flavor-dependent parameters together with a flavor-
independent set where all the parameters are put equal
to the central value of the variation range, gaNP = 0.4
GeV2. Our analysis is performed by first selecting
“Z-equivalent” sets, and then making a template fit, as
detailed here below.

Selection of “Z-equivalent” sets. For proton-proton
collisions at

p
s = 7 TeV, we generate pseudodata for

the qT distribution of the Z boson (22 bins similar to
the ATLAS ones [23]) using the flavor-independent set in
the DYqT code at O(↵s) and NLL accuracy. We do the
same for proton-antiproton collisions at

p
s = 1.96 TeV

(72 bins similar to the CDF ones [22]). We assign to each
of the qT bins an uncertainty equal to the experimental
one. We compute the qT distribution in the same con-
ditions also for each of the 50 flavor-dependent sets. We
calculate the �2 between each of these 50 distributions
and the pseudodata generated by the flavor-independent
set. We retain only those flavor-dependent sets that
have a �2 < 80 on the “CDF-like” bins (�2/d.o.f. < 1.1)
and a �2 < 44 on the “ATLAS-like” bins (�2/d.o.f. < 2).
The first criterion selects 48 flavor-dependent sets out
of 50; only 30 sets out of 50 match the second one,
because the ATLAS data have smaller (experimental)
uncertainties. We keep those flavor-dependent sets that
fullfil both criteria. When considering all the bins, these
sets have a total �2 < 124 on the pseudodata (�2/d.o.f.
< 1.3). In practice, these selected flavor-dependent sets
are equivalent to the flavor-independent one (with which
the Z pseudodata are generated) at approximately
2� level. Not surprisingly, this result implies that
the Z boson data alone are not able to discriminate
between flavor-independent and flavor-dependent sets of
nonperturbative parameters. Data from flavor-sensitive
processes are needed, in particular from SIDIS [40–43].

Template fit. Following the scheme introduced
in [26, 44], we perform a template fit to estimate the
impact of our “Z-equivalent” flavor-dependent sets on
the determination of MW . We use the DYRes code at the
same accuracy (NLL at small transverse momentum and
O(↵s) at large transverse momentum) and kinematics as

before, using the MSTW2008 NLO PDF set [45], setting
central values for the renormalization, factorization and
resummation scales µR = µF = µres = MW , and
implementing ATLAS acceptance cuts on the final-state
leptons [23]. In DYRes, the singularity of the resummed
form factor at very large values of bT (bT & 1/⇤QCD) is
avoided by the usual b⇤ prescription [2]. Similarly, the
correct behavior at very low bT is enforced by modifying
the argument of the logarithmic terms as in Refs. [37, 39].
The form factor in Eq. (2) is usually interpreted as the
nonperturbative contribution to TMD resummation for
bT & 1/⇤QCD. We generate templates with very high
statistics (750 M events) for the mT , pT ` distributions1

with di↵erent MW masses in the range 80.370 GeV
 MW  80.400 GeV, using the flavor-independent
set for the nonperturbative parameters. Then, for
each “Z-equivalent” flavor-dependent set we generate
pseudodata with lower statistics (135 M events) for
the same leptonic observables with the fixed value
MW = 80.385 GeV. Finally, for each pseudodata set we
compute the �2 of the various templates and we identify
the template with minimum �2 in order to establish how
large is the shift in MW induced by a particular choice
of flavor-dependent nonperturbative parameters. The
statistical uncertainty of the template-fit procedure has
been estimated by considering statistically equivalent
those templates for which ��2 = (�2

� �2
min)  1.

Consequently, we quote an uncertainty of 2.5 MeV for
each of the obtained MW shifts.

Impact on the MW determination.

The outcome of our template fit is summarized in
Tabs. I and II for 5 representative sets out of the 30
“Z-equivalent” sets. The former table lists the values of
the gaNP parameter in Eq. (2) for each of the 5 considered
flavors a = uv, dv, us, ds, s = c = b = g. The latter table
shows the corresponding shifts induced in MW when ap-
plying our analysis to the mT , pT ` distributions for the
W+ and the W� production at the LHC (

p
s = 7 TeV).

Set uv dv us ds s
1 0.34 0.26 0.46 0.59 0.32
2 0.34 0.46 0.56 0.32 0.51
3 0.55 0.34 0.33 0.55 0.30
4 0.53 0.49 0.37 0.22 0.52
5 0.42 0.38 0.29 0.57 0.27

TABLE I: Values of the gaNP parameter in Eq. (2) for the
flavors a = uv, dv, us, ds, s = c = b = g. Units are GeV2.

As expected, the shifts induced by the analysis per-

1
Our analysis is performed on 30 bins in the interval [60, 90] GeV

for mT and on 20 bins in the interval [30, 50] GeV for pT `.

4

�MW+ �MW�

Set mT pT ` mT pT `

1 0 -1 -2 3
2 0 -6 -2 0
3 -1 9 -2 -4
4 0 0 -2 -4
5 0 4 -1 -3

TABLE II: Shifts in MW± (in MeV) induced by the cor-
responding sets of flavor-dependent intrinsic transverse mo-
menta outlined in Tab. I (Statistical uncertainty: 2.5 MeV).

formed on pT ` are generally larger than for the mT case,
since the latter is less sensitive to qWT -modelling e↵ects.

For set 3, the shift induced on MW+ by the pT ` analy-
sis is 9 MeV, its size is particularly large if compared to
the corresponding uncertainty quoted by ATLAS (3 MeV).
In general, taking also into account the statistical uncer-
tainty of our analysis, the absolute value of the shifts
induced when considering the pT ` observable could ex-
ceed 10 MeV. For MW� the shifts are less significant and
fall within a 2-� interval around zero.

In the kinematic conditions under consideration, W+

bosons are dominantly produced by a ud̄ partonic pro-
cess, with the u coming from the valence region. As
a consequence, we observe that sets characterized by a
larger value of the combination guv

NP + gds
NP (sets 3 and

5) lead to positive shifts in the value of MW+ , while sets
with a smaller value of guv

NP + gds
NP (set 2) lead to neg-

ative shifts. For W� the situation is less clear, because
the dominant partonic channel is ūd, with similar con-
tributions from the valence and sea components of the
d quark. It seems that sets with smaller values of the
sum of gus

NP + gdv
NP + gus

NP + gds
NP (sets 3, 4, 5) lead to to

negative shifts in the value of MW+ . Set 1 has a large
value of the of the sum of gus

NP + gdv
NP + gus

NP + gds
NP and

leads to a positive shift in MW+ . Set 2, however, violates
the expectations based on these simple arguments.

Di↵erent flavor-dependent sets may induce artificial
asymmetric shifts for MW+ and MW� in the flavor-
independent template fits. For instance, if MW� > MW+

(which corresponds to the ATLAS findings [23]) a template
fit to the pT ` observable based on sets 1 and 2 would
lead to di↵erent shifts �MW� > �MW+ such that
the di↵erence between the two masses is enhanced. In
this case, a fit with the corresponding flavor-dependent
nonperturbative contributions would lead to a reduction
of the mass gap. On the contrary, using sets 3-5 one
would obtain the opposite result.

Outlook and future developments.

In this work, we investigated the uncertainties on the
determination of MW at the LHC induced by a possi-
ble flavor dependence of the partonic intrinsic transverse
momentum. From these outcomes, we point out that a
“flavor-blind” data analysis may not be a su�ciently ac-

curate option, especially when a total uncertainty lower
than 10 MeV is expected for MW at the LHC [46].

Future data from flavor-sensitive processes such as
SIDIS (from the 12 GeV upgrade at Je↵erson Lab [47],
from the COMPASS collaboration [48], and from a future
Electron-Ion Collider with both proton and deuteron
beams [42, 43]) will shed new light on the flavor de-
composition of the unpolarized TMD PDF. These low-
energy SIDIS data involve also the study of the flavor
dependence in the fragmentation function (the unpolar-
ized TMD FF). Therefore, new data from semi-inclusive
e+e� annihilation will also be needed for the flavor de-
composition of the TMD FF [36].

All these data will improve our knowledge of the
partonic structure of hadrons, and may help in reducing
the uncertainties in precision measurements at high
energies.
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• Recent ATLAS measurement used Pythia8 to ‘fit' the Z pT distribution and 
extrapolate to W pT 
• Resulting tune (AZ) reproduces the Z pT at spectrum 1-2% level 

• What about using resummed calculations to obtain the W/Z ratio? 
• Higher order (NNLL, N3LO) calculations should be a good idea 

• W pT modeling and uncertainties is of great interest to experimentalists 
working on the W mass measurement  
• Benchmarking of resummed calculations! 

Higher order models for W/Z ratio
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Precision measurements require well-tuned MC tools. Important 
effects at low pT come from nonperturbative TMD components 
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ResBos2  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SCETlib  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Efforts are going also into including spin in PYTHIA
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An Assessment of U.S.-Based Electron-Ion Collider Science
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FIGURE 2.7 Transverse momentum profile of anti-up (u
–
u) and anti-down (d

–
d) quarks in a proton. The 

figure shows three slices, ranging from the valence quark region at large Bjorken x to the sea quark 
regime at low x. The color range is from zero (dark blue) to largest positive values (deep red). The 
transverse momentum is given in units of GeV. The visible distortion of the d

– anti-down quark profile 
at large x is a signature of the correlation of a large quark orbital angular momentum with the spin of 
the proton. The spin direction of the proton is indicated by the red arrow. Extrapolations to the smallest 
x, using a simple analytic function, are given for illustration. SOURCE: Z.-E. Meziani and A. Prokudin.
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FIG. 14. Dependence of the transversity (left) and generalized g1T worm-gear shift (right) on the length of the straight-link
paths, |bT|, for the two di↵erent ensembles. The striking observation is that the di↵erence between the DWF and clover data
for the worm-gear shift persists for all |bT|. The data shown are for nucleon momentum |P | = 2⇡/(aL); results for P = 0
coincide with these data within the uncertainties shown.
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FIG. 15. Experimental extraction of the SIDIS generalized Sivers shift at ⇣̂ = 0.83, together with Lattice QCD data in the
SIDIS limit, ⌘ ! 1, as a function of the Collins-Soper parameter ⇣̂. Lattice data for |bT| ⇡ 0.35 fm are given in the left panel
where we have included results from an earlier DWF-on-Asqtad study given in Ref. [3]. Results for |bT| ⇡ 0.68 fm are given in
the right panel.

We observe the following: First, the three lattice ensem-
bles with di↵erent pion masses (m⇡ = 518MeV versus
m⇡ ⇡ 300MeV) and di↵erent discretization schemes at
di↵erent values of the lattice spacing give consistent re-
sults. Second, as |bT| and/or ⇣̂ are increased, the lattice
results tend toward the phenomenologically extracted
value. Third, the observed behavior is similar to that
seen in the study using pions in Ref. [10]. Thus, taking
the trend in our data between 0.2 < ⇣̂ < 0.41 at face
value, it is reasonable to expect future lattice estimates
at ⇣̂ ⇡ 0.8 to agree with the phenomenological value.

VI. CONCLUSION

We present Lattice QCD results for the time-reversal
odd generalized Sivers and Boer-Mulders transverse mo-

mentum shifts applicable to SIDIS and DY experiments;
and for the T-even generalized transversity, related to the
tensor charge, and the generalized g1T worm-gear shift.
The lattice calculations were performed on two di↵er-
ent nf = 2 + 1 flavor ensembles: a DWF ensemble with
lattice spacing a = 0.084 fm and pion mass 297 MeV,
and a clover ensemble with a = 0.114 fm and pion mass
317 MeV. The high statistics analysis of the clover ensem-
ble yields estimates with O(10%) uncertainty for all four
quantities over the range |bT| < 0.8 fm and ⇣̂ . 0.3. Es-
timates from the DWF ensemble have appreciably higher
statistical errors owing to the more limited statistics, but
are expected to have smaller systematic uncertainties.
Our results for TMD observables on two ensembles

with comparable pion masses, but with very di↵erent dis-
cretization of the Dirac action provide an opportunity for
an empirical test of the presence of finite lattice spacing
e↵ects and the cancellation of renormalization factors in

Yoon et al., arXiv:1706.03406

Pioneering lattice studies are in agreement with phenomenology

http://arxiv.org/abs/arXiv:1706.03406
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Fast progress in TMD determinations is taking place,  
but still many open questions

As TMDs are known better and better,  
they can be used to improve high-energy 

precision measurements
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Fig. 15. Examples of results for the fitted multiplier a(HIm)
for several fits, differing only by their starting values. Top
plot: 8-CFFs fit for the CLAS kinematics (xB , Q2, t)=(0.1541,
1.2656 GeV2, -0.1526 GeV2). Center plot: 8-CFFs fit for the
CLAS kinematics (0.126, 1.1114 GeV2, -0.1078 GeV2). Bot-
tom plot: 4-CFFs fit (HIm, H̃Im, HRe and H̃Re, the other four
CFFs being fixed at their VGG values) for the CLAS kinemat-
ics (0.1541, 1.2652 GeV2, -0.1082 GeV2).
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Fig. 16. The HIm CFF as a function of t for the 20 CLAS (xB,
Q2) bins, fitting only σ and ∆σLU . Red open squares: results
of the CLAS data fit with the 8 CFFs as free parameters.
Black solid squares: results of the CLAS data fit with the 4
CFFs HRe, H̃Re, HIm and H̃Im as free parameters, the other
4 CFFs being set to their VGG value. Red triangles ((xB/ξ,
Q2)=(0.3345/0.2008, 2.2308 GeV2) and (0.3646/0.2229, 2.3508
GeV2) bins): results of the Hall-A data fit with the 8 CFFs as
free parameters (taken from Fig. 14). Stars: VGG predictions.
The black solid square points have been slightly shifted to the
right of the red open square points for visibility. The solid line
shows an exponential fit of the red open squares and the dashed
line an exponential fit of the black solid squares.

parameters. The solid lines in Fig. 16 show the fit of the
red empty squares and the dashed lines the fit of the black
solid squares. We will discuss the results for the amplitude
A and for the slope B in the next section.

As we saw with our simulation studies in the previ-
ous section, fitting σ and ∆σLU can also lead to some
constraints on the HRe CFF (in Figs. 3 and 4, lower lim-
its could be obtained). We obtained for this CFF results
with both error bars finite, for 12 CLAS (xB , Q2) bins,
out of 20. Figure 17 shows these results. While for the
vast majority of points there is good agreement between
the results of the 8-CFFs (red open squares) and of the 4-
CFFs (black solid squares) fits, for a few points there are
disagreements between the results of the two approaches.
This is the case for instance for the first t point of the
upper left plot in Fig. 17. Such differences had not been
observed previously forHIm. We notice that this disagree-
ment actually occurs when the 8 CFFs fit yields a result
far from the VGG prediction. For the first t point of the
upper left plot in Fig. 17, the 8 CFFs fit result has ac-
tually an opposite sign to the VGG prediction. We saw
in Section 3.3 that the 4-CFFs fit was reliable when the

Compton Form Factors are 
extracted from data

They are fitted with some 
ansatz and the slope at t=0 
for each value of ξ is 
extracted
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Fig. 19. The HIm CFF as a function of t for 4 CLAS (xB,
Q2) bins where the four observables σ, ∆σLU , AUL and ALL

can be fitted simultaneously. Red open squares: results of the
fit of σ and ∆σLU with the 8 CFFs as free parameters. Black
solid squares: results of the fit of σ and ∆σLUwith the 4 CFFs
HRe, H̃Re, HIm and H̃Im as free parameters, the other 4 CFFs
being set to their VGG values. Red circles: results of the fit of
σ, ∆σLU , AUL and ALL with the 8 CFFs as free parameters.
The black solid squares and, in some cases the red circles, are
shifted to the right of the red open square points for visibility.
The dashed line shows the fit of the 6 red open squares (i.e.
the 8-CFFs fit of σ and ∆σLU ). The dash-dotted line shows
the fit of the 6 black solid squares (i.e. the 4-CFFs fit of σ and
∆σLU ). The dotted line shows the fit of the 3 red circles (i.e.
the 8-CFFs fit of σ,∆σLU , AUL and ALL). The solid line shows
the fit of the 3 red circles and the 3 red open squares whose
t-values are different from the red circles (i.e. the 8-CFFs fit of
σ, ∆σLU , AUL and ALL and of σ, ∆σLU when only these two
observables are available).

squares). The experimental precision on ALL doesn’t seem
to be sufficient to dramatically change the HRe results
obtained by the fit of only σ and ∆σLU . Only for the
largest xB bin (lower right plot of Fig. 17), one can see
an effect as the red solid circles show a somewhat smaller
HRe magnitude and smaller error bars than the red open
squares, although all values are compatible within error
bars.

In conclusion of this section, we have obtained con-
straints on the HIm CFF from the simultaneous fit of
σ and ∆σLU . The relative error bars range from ≈40%
to ≈100%, depending on the kinematics and on the ex-
periment (CLAS or Hall A), in the case of the quasi-
model-independent 8-CFFs fit. The 4-CFFs approach can
decrease these uncertainties to ≈10% in some cases, but
this is at the price of a model-dependent input (i.e. fix-

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

H∼

Im

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4

H∼

Im

0.1 0.2 0.3 0.4 0.5

-t (GeV2)

Fig. 20. The H̃Im CFF as a function of t for 4 CLAS (xB,
Q2) bins. Red circles: results of the fit of σ, ∆σLU , AUL and
ALL with the 8 CFFs as free parameters. Red empty squares:
results of the fit of σ and∆σLU only, from CLAS. Red triangles:
results of the fit of σ and∆σLU only, from Hall A. For visibility,
the red empty square of the upper left plot has been slightly
shifted to the right of the red circle. Stars: VGG predictions.

ing the four non-varying CFFs to a model value). An im-
portant improvement is achieved by introducing the ad-
ditional AUL and ALL observables in the 8-CFFs fit. The
drawback is the limited amount of data available as it is
more challenging to measure polarized-target observables.
In addition to the HIm CFF, some constraints on the HRe

CFF can be extracted from the simultaneous fit of σ and
∆σLU (with very little improvement from the AUL and
ALL observables input) as well as on the H̃Im CFF with
the input of AUL.

5 Physics interpretation

In this section, we will discuss how to obtain a tomo-
graphic image of the proton, i.e. the x-dependence of the
charge radius of the proton, from the ξ and t-dependencies
of the HIm CFF that we just extracted with our fitting
procedure.

In the following, we will parametrize the data for HIm

of Eq. (6) in the following way:

HIm(ξ, t) = A(ξ)eB(ξ)t. (20)

Fig. 21 shows the ξ-dependences of the slope B and am-
plitude A determined from the exponential fits of the t-
dependence of HIm displayed in Figs. 16 and 19. In this
figure, we have decided to limit the upper range in ξ to

Dupré, Guidal, Niccolai, Vanderhaeghen, 
arXiv:1704.07330

hermes

http://arxiv.org/abs/arXiv:1704.07330


IMPACT PARAMETER DISTRIBUTIONS

�45
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Fig. 24. x-dependence of ⟨b2⊥⟩ for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which
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Fig. 24. x-dependence of ⟨b2⊥⟩ for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which

Transverse Extension of Partons in the Proton . . . 7

Table 1: Values of the extracted DVCS cross section: The quantity h d�
d|t| i denotes the average of the measured

differential µ+ and µ� DVCS cross sections in the indicated |t|-bin. Apart from the integration over t, the cross
section is integrated over Q2 and ⌫ and divided by the product of the respective bin widths, as indicated in Fig. 4.

|t|-bin/(GeV/c)2 h d�
d|t|i/nb(GeV/c)�2

[0.08, 0.22] 24.5±2.8stat
+3.7
�2.9

��
sys

[0.22, 0.36] 12.6±2.0stat
+2.2
�1.5

��
sys

[0.36, 0.50] 7.4±1.6stat
+1.3
�0.9

��
sys

[0.50, 0.64] 4.1±1.3stat
+1.0
�0.5

��
sys

into the average transverse extension of partons in the proton, as probed by DVCS:
q
hr2

?i= (0.58 ± 0.04stat
+ 0.01
� 0.02

��
sys) fm. (9)

Figure 5 shows a compilation of DVCS results obtained by high-energy experiments, on the t-slope
parameter B or equivalently on the average squared transverse extension of partons in the proton, hr2

?i.
We note that the results of the HERA collider experiments H1 [10, 11] and ZEUS [12] were obtained at
higher values of Q2 as compared to that of the COMPASS measurement. The latter probes the transverse
extension of partons in the proton at hxBji/2 ⇡ 0.03, while the measurements at HERA are sensitive to
xBj values below 0.003.
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Figure 5: Results from COMPASS and previous measurements by H1 [10, 11] and ZEUS [12] on the t-slope
parameter B, or equivalently the average squared transverse extension of partons in the proton, hr2

?i, as probed by
DVCS at the proton longitudinal momentum fraction xBj/2 (see text).

In order to reliably determine the full xBj-dependence of the transverse extension of partons in the pro-
ton, a global phenomenological analysis appears necessary. The existing results from the different ex-
periments at HERA, CERN, and JLab must be evolved to a common value of Q2 and all necessary
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The pressure distribution inside the proton
V. D. Burkert1*, L. Elouadrhiri1 & F. X. Girod1

The proton, one of the components of atomic nuclei, is composed 
of fundamental particles called quarks and gluons. Gluons are the 
carriers of the force that binds quarks together, and free quarks 
are never found in isolation—that is, they are confined within 
the composite particles in which they reside. The origin of quark 
confinement is one of the most important questions in modern 
particle and nuclear physics because confinement is at the core of 
what makes the proton a stable particle and thus provides stability to 
the Universe. The internal quark structure of the proton is revealed 
by deeply virtual Compton scattering1,2, a process in which electrons  
are scattered off quarks inside the protons, which  subsequently 
emit high-energy photons, which are detected in coincidence 
with the scattered electrons and recoil protons. Here we report a 
measurement of the pressure distribution experienced by the quarks 
in the proton. We find a strong repulsive pressure near the centre of 
the proton (up to 0.6 femtometres) and a binding pressure at greater 
distances. The average peak pressure near the centre is about 1035 
pascals, which exceeds the pressure estimated for the most densely 
packed known objects in the Universe, neutron stars3. This work 
opens up a new area of research on the fundamental gravitational 
properties of protons, neutrons and nuclei, which can provide access 
to their physical radii, the internal shear forces acting on the quarks 
and their pressure distributions.

The basic mechanical properties of the proton are encoded in the 
gravitational form factors (GFFs) of the energy–momentum tensor1,4,5. 
Graviton–proton scattering is the only known process that can be used 
to directly measure these form factors4,6, whereas generalized parton 
distributions2,7,8 enable indirect access to the basic mechanical prop-
erties of the proton2.

A direct determination of the quark pressure distribution in the pro-
ton (Fig. 1) requires measurements of the proton matrix element of the 
energy–momentum tensor9. This matrix element contains three scalar 
GFFs that depend on the four-momentum transfer t to the proton. 
One of these GFFs, d1(t), encodes the shear forces and pressure distri-
bution on the quarks in the proton, and the other two, M2(t) and J(t), 
encode the mass and angular momentum distributions. Experimental 
information on these form factors is essential to gain insight into the 
dynamics of the fundamental constituents of the proton. The frame-
work of generalized parton distributions (GPDs)2,7,8 has provided a way 
to obtain information on d1(t) from experiments. The most effective 
way to access GPDs experimentally is deeply virtual Compton scat-
tering (DVCS)1,2, where high-energy electrons (e) are scattered from 
the protons (p) in liquid hydrogen as e p → e′ p′ γ, and the scattered 
electron (e′), proton (p′) and photon (γ) are detected in coincidence. 
In this process, the quark structure is probed with high-energy virtual 
photons that are exchanged between the scattered electron and the 
proton, and the emitted (real) photon controls the momentum transfer 
t to the proton, while leaving the proton intact. Recently, methods have 
been developed to extract information about the GPDs and the related 
Compton form factors (CFFs) from DVCS data10–13.

To determine the pressure distribution in the proton from the experi-
mental data, we follow the steps that we briefly describe here. We note 
that the GPDs, CFFs and GFFs apply only to quarks, not to gluons.
(1) We begin with the sum rules that relate the Mellin moments of the 
GPDs to the GFFs1.

(2) We then define the complex CFF, H, which is directly related to the 
experimental observables describing the DVCS process, that is, the 
differential cross-section and the beam-spin asymmetry.
(3) The real and imaginary parts of H can be related through a disper-
sion relation14–16 at fixed t, where the term D(t), or D-term, appears as 
a subtraction term17.
(4) We derive d1(t) from the expansion of D(t) in the Gegenbauer  
polynomials of ξ, the momentum transfer to the struck quark.
(5) We apply fits to the data and extract D(t) and d1(t).
(6) Then, we determine the pressure distribution from the relation 
between d1(t) and the pressure p(r), where r is the radial distance from 
the proton’s centre, through the Bessel integral.

The sum rules that relate the second Mellin moments of the chiral- 
even GPDs to the GFFs are1:

∫ ξ ξ+ =x H x t E x t x J t[ ( , , ) ( , , )]d 2 ( )

∫ ξ ξ= +xH x t x M t d t( , , )d ( ) 4
5

( )2
2

1

1Thomas Jefferson National Accelerator Facility, Newport News, VA, USA. *e-mail: burkert@jlab.org
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Fig. 1 | Radial pressure distribution in the proton. The graph shows 
the pressure distribution r2p(r) that results from the interactions of the 
quarks in the proton versus the radial distance r from the centre of the 
proton. The thick black line corresponds to the pressure extracted from 
the D-term parameters fitted to published data22 measured at 6 GeV. The 
corresponding estimated uncertainties are displayed as the light-green 
shaded area shown. The blue area represents the uncertainties from all the 
data that were available before the 6-GeV experiment, and the red shaded 
area shows projected results from future experiments at 12 GeV that will 
be performed with the upgraded experimental apparatus30. Uncertainties 
represent one standard deviation.
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Tantalizing results. Need more solid underpinning.

The study of the multidimensional structure of the proton can in 
principle allow us to access the proton energy-momentum tensor

The knowledge of pressure in hadronic matter can in principle 
allow us to make predictions on the behaviour of neutron stars

3

FIG. 1: The pressure as a function of radial distance, obtained
using C2,q(t) and C2,g(t). We use the dipole form for C2,g(t)
taken from Ref.[13]. The quark contribution is obtained by
fitting a dipole form to data obtained from Ref.[12] and [35].
The shaded area is the error obtained from the parameters of
the fits to the lattice QCD data.

the transverse plane of the t-dependent GPDs corre-
sponding to di↵erent quark-proton polarization config-
urations. t, the four-momentum transfer squared in-
troduce previously, is related to the transverse momen-
tum transfer, �T as: t = t0 � �2

T /(1� ⇠
2), where

t0 = �4⇠2M2
/(1� ⇠

2), and ⇠ is a longitudinal momen-
tum fraction. For an unpolarized quark in an unpolarized
proton we have,

X

⇤,�

⇢
q
⇤�(b) = Hq(b

2) =

Z
d
2�T

(2⇡)2
e
i�T ·b

A
q
1(t), (5)

where A
q
1(t), is the quark contribution to the nucleon

Dirac form factor. Similarly, denoting | b |= r, we de-
fine the energy density and pressure distributions over
the transverse plane, ✏(r), and p(r), respectively, as the
Fourier transforms of Aq,g

2 (t) and 2 t Cq,g
2 (t),

✏q,g(r) =

Z
d
2�T

(2⇡)2
e
i�T ·b

A
q,g
2 (t), (6)

pq,g(r) =

Z
d
2�T

(2⇡)2
e
i�T ·b 2 t Cq,g

2 (t). (7)

The total energy density and pressure distribution are
obtained as the sum of the quark flavor singlet and gluon
terms. The Fourier transforms were performed using the
FFTW package [36]. As the form factors A

q,g
2 (t) and

C
q,g
2 (t) are symmetric in the azimuthal angle ��T or,

in other words, symmetric in �x and �y, their Fourier
transforms are purely real, they have only radial depen-
dence, and they can be therefore extrapolated to describe
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FIG. 2: Comparison of various EoSs. We present the quark-
gluon EoS (black dashed) constructed in this letter, together
with two hadronic EoS AP4 (green solid) and MPA1 (blue
solid) and one quark matter EoS SQM3 (magenta dashed).
The shaded region is the allowed region from GW170817.

3D configurations. The Fourier transforms in the gluon
sector were calculated from the lattice QCD evaluations
of Ref.[13]. The quark isoscalar combination, u+ d, was
obtained Fourier transforming the lattice QCD results of
both Refs.[12] and [35]. In both the gluon and quark case
the given range of t values is not su�ciently large to al-
low a precise Fourier transformation. We therefore used
the dipole form, a/(1� t/b

2)2, to fit the data on the form
factors. Not only does this allow us to have a smooth fall
o↵ at large t, in the case of Cq,g

2 it also allows us to ex-
trapolate to t close to zero where there are relatively few
data points with large uncertainties. The error on the
fit parameters is the main source of error in the pressure
and energy density distributions that are obtained after
the Fourier transform.
We can now make the connection between the energy

density and pressure for quark gluon matter, respectively,
and neutron stars. To construct the solution for the lat-
ter in General Relativity, one needs to solve the Einstein
equations, that state how the spacetime is curved for a
given matter distribution. To be more precise, the en-
ergy momentum tensor, controlled by the matter energy
density and pressure, determines the curvature of space-
time.
Our main result is that the EoS obtained from the

EMT is dominated by the gluon contribution, the quark
contribution being largely suppressed. We eliminate
r between ✏ and p in Eqs.(6,7), then we plot the QCD
values and we compare with previous EoSs. Figure 2
shows the quark-gluon EoS constructed here. For refer-
ence, in Fig. 2 we also present EoSs for two hadronic
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FIG. 1: LO diagrams for the exclusive double Drell-Yan process ⇡N ! �⇤
1�

⇤
2N

0.

this region one can use TMD-type factorization. The longitudinal momentum transfer to the nucleon can be written
as ⇠a = (q+1 + q+2 )/(2P

+
a ). The LO diagrams for this process are shown in Fig. 1. The scattering amplitude depends

on the helicities of the nucleons and photons,

T �1,�2

�a,�0
a
= T µ⌫

�a,�0
a
"⇤µ(�1) "

⇤
⌫(�2) , (6)

where "µ(�1) and "µ(�2) are the photon polarization vectors. One finds

T µ⌫
�a,�0

a
= i

X

q,q0

eqe
0
qe

2 1

Nc

Z
d2~ka?

Z
d2~kb?�

(2)

✓
�~q?
2

� ~ka? � ~kb?

◆
�q0q

⇡ (xb,~k
2
b?)


� i"µ⌫?

⇣
W qq0 [�+]

�a,�0
a

(xa,~ka?)�W qq0 [�+]
�a,�0

a
(�xa,�~ka?)

⌘

� gµ⌫?

⇣
W qq0 [�+�5]

�a,�0
a

(xa,~ka?) +W qq0 [�+�5]
�a,�0

a
(�xa,�~ka?)

⌘�
, (7)

where eq and e0q are the quark charges in units of the elementary charge e, and Nc is the number of quark colors. The

expression in (7) describes the double Drell-Yan process for all possible pion and nucleon charge states. Note that �q0q
⇡

is defined as in (4), but with the operator q̄0���5 q. Isospin symmetry provides �du
⇡+ = �ud

⇡� =
p
2�uu

⇡0 = �
p
2�dd

⇡0 .

Likewise, W qq0[�] is given by (1) with the operator q̄ � q0. With this notation one can also describe transitions between
di↵erent nucleons. Like in the case of transition GPDs, for the GTMDs one has Xdu

p!n = Xud
n!p = Xu

p �Xd
p [41]. In

Eq. (7) we use the vector �~q? = ~q1?�~q2?. The transverse momenta of the photons can be expressed by �~q? and the
transverse momentum transfer to the nucleon ~�a? = �(~q1?+~q2?). While the amplitude contains an integration upon
the transverse momenta of the quarks, their longitudinal momenta are fixed according to xa = (q+1 �q+2 )/(2P

+
a ), xb =

1� q�1 /p
�
b = q�2 /p

�
b . The value for xa implies the so-called ERBL region [42, 43], characterized by �⇠a  xa  ⇠a, in

which the GTMD matrix element describes the emission of a quark-antiquark pair from the nucleon. The amplitude, a
priori, depends on both the F1,i and the G1,i (i = 1, . . . , 4). From (7) one readily sees that the dominant contribution
to the amplitude is for transversely polarized photons. In this context note that gµ⌫? = gµ⌫ � nµ

an
⌫
b � n⌫

an
µ
b , with the

light-like vectors na = (1, 0, 0,�1)/
p
2, nb = (1, 0, 0, 1)/

p
2.

The relation between the scattering amplitude in (6) and the cross section in the center-of-mass frame reads

d��1,�2

�a,�0
a
=

⇡

2s3/2
1 + ⇠a
1� ⇠a

|T �1,�2

�a,�0
a
|2�(p00a + q01 + q02 �

p
s)

d4q1
(2⇡)4

d4q2
(2⇡)4

, (8)

where we have already integrated over the phase space of the outgoing nucleon. Below we consider the unpolarized
cross section, single-spin asymmetries (SSAs), and double-spin asymmetries (DSAs). It is convenient to introduce

⌧UU =
1

2

X

�,�0

|T�,�0 |2 , (9)

⌧LU =
1

2

X

�0

⇣
|T+,�0 |2 � |T�,�0 |2

⌘
, (10)

⌧LL =
1

2

⇣�
|T+,+|2 � |T+,�|2

�
�
�
|T�,+|2 � |T�,�|2

�⌘
, (11)

Exclusive double Drell-Yan

q

q1

q2
k −∆/2

k +∆/2

FIG. 2. Generic Feynman diagram to evaluate the single longitudinal spin asymmetry in the hard
exclusive dijet production in deep inelastic lepton nucleon scattering processes. All possible gluon
attachment has been included in our calculations.

kinematics: ∆ = p′ − p, P = (p+ p′)/2, t = ∆2, (q+ p)2 = W 2, (q−∆)2 = (q1 + q2)2 = M2,
and the skewness parameter is defined as ξ = (p+ − p′+)/(p+ + p′+) with p± = (p0±pz)/

√
2,

where q and p are chosen to be along the z axis. As shown in Fig. 1, the lepton plane is set
as the x− z plane. The quark pair are in one plane with azimuthal angle φq respect to the

lepton plane, whereas the recoiled proton is in another plane with momentum transfer ∆⃗⊥

and azimuthal angle φ∆. The spin-average cross section for this process has been calculated
in Ref. [19]. In the following, we will compute the single longitudinal target-spin asymmetry.
We will show how this asymmetry can be related to the gluon OAM contributions.

Generically, the single longitudinal spin asymmetry in the above process can be evaluated
following the usual collinear expansion at the next-to-leading power. We write the scattering
amplitude, depicted in Fig. 2, as

iAf ∝
∫

dxd2k⊥H(x, ξ, q⊥, k⊥,∆⊥) xf
g(x, ξ, k⊥,∆⊥) , (4)

where q⊥ is the jet transverse momentum defined above, and k⊥ is the gluon transverse
momentum entering the hard partonic part of Fig. 2. In this calculation, q⊥ is the same
order of Q, while the nucleon recoil momentum ∆⊥ is much smaller than Q. In the twist
analysis, we expand the scattering amplitude in terms of k⊥/q⊥ (or k⊥/Q),

H(x, ξ, q⊥, k⊥,∆⊥) = H(0)(x, ξ, q⊥, 0,∆⊥) + kα
⊥

∂

∂kα
⊥

H(x, ξ, q⊥, 0,∆⊥) + · · · . (5)

For the spin-average cross section, we take the zero-th order expansion of k⊥. As a result,
k⊥ is integrated out for the gluon Wigner distribution,

∫

d2k⊥xf
g(x, ξ, k⊥,∆⊥) = Fg(x, ξ,∆⊥) , (6)

where Fg is the spin-average gluon GPD. The scattering amplitude can be written as

iA(0)
f ∝

∫

dxH(0)(x, ξ, q⊥, 0, 0) xFg(x, ξ,∆⊥) . (7)

4

Exclusive dijet production

Hatta, Xiao, Yuan, arXiv:1601.01585  
Hatta, Nakagawa, Xiao, Yuan, Zhao, arXiv:1612.02445  
Ji, Yuan, Zhao, arXiv:1612.02438 

http://arxiv.org/abs/arXiv:1702.04387
https://arxiv.org/abs/1601.01585
https://arxiv.org/abs/1612.02445
https://arxiv.org/abs/1612.02438
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Our knowledge of GPDs keeps increasing

The study of the structure of the proton can 
have an impact even on astrophysics
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Figure 5: Virtual-photon asymmetry amplitudes for negatively charged pions as a function of z for slices in Ph? (columns) and xB (rows), for
data collected on a hydrogen (closed symbols) and deuterium (open symbols) target. The error bars represent the statistical uncertainties, while
the error bands represent systematic uncertainties. In addition, there is a systematic uncertainty originating from the measurement of the beam
polarization, corresponding to a scale factor of 3%.

The amplitudes of the sin(2�) modulations, sensitive to two-
photon–exchange processes, are found to be consistent with
zero, within statistical precision.

4. Summary and conclusions

Virtual-photon and lepton asymmetries for charge-separated
pions and kaons, and for protons and anti-protons for data col-
lected on hydrogen and deuterium targets are presented and dis-
cussed. The extraction is performed in one and in three dimen-
sions in the kinematic variables xB, z, and Ph?.

The asymmetries are found to be positive, rising as a function
of z for positively and negatively charged pions, while those for
positively charged kaons are found to be slightly positive, but
without a specific kinematic dependence. The asymmetries for
negatively charged kaons, protons and anti-protons are found to
be compatible with zero.

The virtual-photon asymmetries for pions are found to be in
good agreement with the measurement from the COMPASS ex-
periment [42], while a comparison with the results from the
CLAS experiment [40] suggests a change of sign with increas-
ing xB of the asymmetry for negatively charged pions.

The present results constitute the first three-dimensional ex-
traction for charge-separated pions, complementing the existing
one-dimensional and two-dimensional measurements for iden-
tified charged pions [38–41] and the one-dimensional results
for unidentified hadrons [42]. For the first time, results for the
beam-helicity asymmetry are presented for charged kaons, for
protons, and for anti-protons. The results are presented binned
in one dimension and in three dimensions. These data can serve
therefore as useful input to understand twist-3 PDFs and FFs
and quark-gluon-quark correlations inside the nucleon and in
hadronization, and disentangle the contributions from the vari-
ous twist-3 PDFs and FFs to the beam-helicity asymmetry.
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Even if the experiments was closed 10 years ago, they are still 
producing results 

Multidimesional 
binning

http://arxiv.org/abs/arXiv:1903.08544
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COMPASS is in “full swing” mode. The collaboration is presenting 8 
contributions to the spin Working Group

Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon- . . . 11
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Fig. 6: Same as Fig. 5 for 0.3 < z < 0.4.
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Fig. 7: Same as Fig. 5 for 0.4 < z < 0.6.
 
COMPASS Collab., arXiv:1709.07374 

Multidimesional 
binning

http://arxiv.org/abs/arXiv:1709.07374
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Figure 3: Virtual-photon asymmetry amplitudes for positively and negatively charged pions, as measured by HERMES on a deuterium target (blue
circles), and unidentified hadrons, as measured by COMPASS on a 6LiD target (grey squares), as a function of xB, z, and Ph?. The open data
points from the HERMES measurement represent the region for which z > 0.7, and are not included in the representations as a function of xB and
Ph?, while the COMPASS measurement covers the range up to z = 0.85 for all projections. The error bars represent the statistical uncertainties,
while the error bands represent systematic uncertainties. In addition, there is a systematic uncertainty for the HERMES results originating from
the measurement of the beam polarization, corresponding to a scale factor of 3%.
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Only 2% of approved data taking!
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eRHIC Design Concept

• eRHIC is based on the RHIC complex: Storage ring (Yellow Ring), injectors, ion 
sources, infrastructure, which need only relaBvely few modificaBons and 
upgrades

• A (5-18) GeV electron storage ring & its injectors are added to the RHIC 
complex è Ecm = (20-140) GeV

• To minimize risk, the eRHIC design is opBmized under the assumpBon that 
each beam will have the parameters (in parBcular beam-beam tune-shiU) 
that have been demonstrated in collisions in other colliders

• The requirement to store electron beams with a variable spin paWern 
requires an on-energy, spin transparent injector

• The total power of synchrotron radiaBon of the electron beam is assumed to 
be limited to 10 MW. This is a design choice. 

The eRHIC design goal has been adapted to  
reach the upper limit of the EIC White Paper 
luminosity range: L= 1034  cm-2s-1 with strong 
hadron cooling

15

BNL concept JLab concept

JLEIC Design Update (Oct. 2018)

JLEIC Design Update (Oct. 2018) 3

arXiv:1504.07961

2015 2017 2018

Update History

Document
Under development

This Update

Fundamental concept unchanged 
This update:
• Increase √s range 

by increasing ion 
ring dipoles from 
3TÆ6T. 

• Keep the land 
footprint of the 
design the same.

• The luminosity 
performance 
satisfies the 
requirements.

• IR design retains 
high acceptance.

• Polarization 
remains high.

• Relatively small 
design changes 

➤ High luminosity: (1034 cm−2 s−1) 

➤ Variable CM energy: 20-100 GeV 

➤ Highly polarized beams 

➤ Protons and other nuclei



LHCb FIXED TARGET, INCLUDING POLARISATION 
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Polarised target

VELO 
and SMOG2

Well consolidated technique 

Design follows the successful HERMES Polarised Gas Target  which ran at HERA 1996 – 
2005, and the follow-up PAX target operational at COSY (FZ Jülich)

!16

PGT experimental set-up

IH (100 % HERMES ABS flow) = 6.5·1016/s by a cell 30 cm long, 1.0 cm i.d., at 100K, with feed tube 10 cm long, 1.0 cm i.d.  
The resulting 100% PGT density is θ = 1.2 · 1014 cm-2  
For the future HL-LHC-25ns, the maximum Luminosity would be up to 8.3· 1032 cm-2 s-1  

https://indico.cern.ch/event/755856/

SMOG2  

not only a 
project itself

R&D

Phase II 
transversely 

polarised H and 
D target

!15

Polarised target

VELO 
and SMOG2

Well consolidated technique 

Design follows the successful HERMES Polarised Gas Target  which ran at HERA 1996 – 
2005, and the follow-up PAX target operational at COSY (FZ Jülich)

!16

PGT experimental set-up

IH (100 % HERMES ABS flow) = 6.5·1016/s by a cell 30 cm long, 1.0 cm i.d., at 100K, with feed tube 10 cm long, 1.0 cm i.d.  
The resulting 100% PGT density is θ = 1.2 · 1014 cm-2  
For the future HL-LHC-25ns, the maximum Luminosity would be up to 8.3· 1032 cm-2 s-1  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https://indico.cern.ch/event/755856/

7

Possible target locations and acceptance

Target z = 0

Target z = -2.75 m

Target z = -4.7 m

LHCb, target z = 0

TPC Muon det.

The acceptances of the TPC calculated 
assuming reduced track length (1/3 of the full 
radial track length), which results in |η|<1.5 in 
a collider mode.

Possible fixed-target positioning
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Lattice QCDPerturbative QCD

Experiments

Monte Carlo generators

Beyond the 
Standard Model

Astrophysics

Quark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)
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b? ⇠ 1

k?<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

bT


