Recent PDF results from top quark pair and single top t-channel differential cross sections in CMS

DIS 2019 workshop, 8-12 April, Torino, Italy
Olaf Behnke (DESY), on behalf of the CMS collaboration

Covered CMS top quark cross section results

Top quark pair (tt)

t-channel single Top

- \rightarrow Sensitive to g(x), α_s and m_t
- TOP-17-001: inclusive
- TOP-18-004: triple differential

- → Sensitive to u/d ratio
- TOP-17-011: inclusive
- TOP-17-023: differential

- All analyses:
- 2016 data at 13 TeV with L~36 fb⁻¹
- Using only leptonic top decays $(t\rightarrow bW\rightarrow blv)$

Covered CMS top quark cross section results

Top quark pair (tt)

t-channel single Top

- \rightarrow Sensitive to g(x), α_s and m_t
- TOP-17-001: inclusive
- TOP-18-004: triple differential

- → Sensitive to u/d ratio
- TOP-17-011: inclusive
- TOP-17-023: differential

More measurement details in talk "Top pairs at the LHC",
Sergio Grancagnolo, WG5, Apr 9

at 13 Tepton

More measurement details in talk "Single top production at the LHC", Achim Geiser, WG5, Apr 9

Inclusive $t\bar{t}$ cross section $\sigma_{t\bar{t}}$

- $\sigma_{t\bar{t}}$ is extracted from template fit to final state distributions
- Simultaneous fit of $\sigma_{t\bar{t}}$ and MC mass parameter m_t^{MC} to 3D distribution: [#b-jets, #additional jets, m_{lb}^{min}]

→ Result:

$$\sigma_{t\bar{t}} = 815 \pm 2 \, (\mathrm{stat}) \pm 29 \, (\mathrm{syst}) \pm 20 \, (\mathrm{lumi}) \, \mathrm{pb} \rightarrow \sim 4\% \, \mathrm{unc.}$$
 $m_t^{\mathrm{MC}} = 172.33 \pm 0.14 \, (\mathrm{stat}) \, ^{+0.66}_{-0.72} \, (\mathrm{syst}) \, \mathrm{GeV}$

Use measured $\sigma_{t\bar{t}}$ to extract α_s vs $m_t(m_t)$

64 165 16 m,(m,) [GeV]

159

160

- Fit NNLO prediction (HATHOR) to $\sigma_{t\bar{t}}$
- NNLO prediction
 - \rightarrow with growing $\alpha_s(m_Z)$
 - \rightarrow with growing $m_t(m_t)$
- \Rightarrow Fit $\alpha_s(m_Z)$ value vs $m_t(m_t)$ value, for 4 PDFs

 \rightarrow ~3% precision for $\alpha_s(m_Z)$ at any $m_t(m_t)$, ~similar uncertainty contributions from measured $\sigma_{t\bar{t}}$ and PDFs

Use measured $\sigma_{t\bar{t}}$ to extract $m_t(m_t)$ and m_t^{pole}

• Fix $\alpha_s(m_7)$ to value used in PDF and vary within uncertainty

PDF set	$m_{\rm t}^{\rm pole}$ [GeV]			
ABMP16	$169.9 \pm 1.8 (\mathrm{fit} + \mathrm{PDF} + \alpha_S) ^{+0.8}_{-1.2} (\mathrm{scale})$			
NNPDF3.1	$173.2 \pm 1.9 \text{ (fit + PDF + } \alpha_S) ^{+0.9}_{-1.3} \text{ (scale)}$			
CT14	$173.7 \pm 2.0 ext{ (fit + PDF + } \alpha_S) ^{+0.9}_{-1.4} ext{ (scale)}$			
MMHT14	$173.6 \pm 1.9 \text{ (fit + PDF + } \alpha_S) ^{+0.9}_{-1.4} \text{ (scale)}$			

- \rightarrow extract m_t(m_t) with ~1.6 GeV unc.
- → Pole mass unc. larger, reason can be the slower convergence of the perturbative series compared to MS scheme m_t(m_t)

Triple differential cross section $d^3\sigma_{t\bar{t}}$

Use kinematical & topological observables to extract theory parameters

Analysis:

- New kinematic reconstruction without top mass constraints
- Regularised unfolding with TUnfold

NLO calculation for $d^3\sigma_{t\bar{t}}$

- Fixed order NLO predictions using
 MadGraph5 aMC@NLO+aMCfast+ApplGrid+xFitter
- $\sigma_{t\bar{t}}$ vs [Njets, M(t \bar{t}), y(t \bar{t})] calculations:

Mangano, Nason, Ridolfi, NPB 373 (1992) 295

Dittmaier, Uwer, Weinzierl, PRL 98 (2007) 262002

- $\sigma^{\text{NLO}}(\text{Njets=0}) = \sigma^{\text{NLO}}(\text{t\bar{t}}) \sigma^{\text{NLO}}(\text{t\bar{t}}+1\text{jet})$
- $\sigma^{\text{NLO}}(\text{Njets}>0) = \sigma^{\text{NLO}}(\text{t\bar{t}}+1\text{jet})$

Details

- $\mu_r = \mu_f = H'/2$, $H' = \Sigma_i m_{T,i}$, sum is over all final state partons
 - μ_r , μ_f varied by factor 2 (6 variations in total)
- $m_{+}^{pole} = 172.5 \pm 1 \text{ GeV}$
- PDFs and α_s from several groups via LHAPDF, vary $\alpha_s \pm 0.001$ for uncertainties
- Multiplied with non-perturbative corrections (<5%) from parton to particle level</p>

TOP-18-004: $d^3\sigma_{t\bar{t}}$ vs NLO, different PDFs

- → Description depends on PDFs → sensitivity
- → PDFs already using older tt data: MMHT2014, NNPDF3.1, ABMP16

TOP-18-004: $d^3\sigma_{t\bar{t}}$ vs NLO, different α_s

- $\rightarrow \alpha_s$ sensitivity comes from different Njet bins
- \rightarrow Indirect sensitivity from [M(tt),y(tt)] via sensitivity to PDFs

TOP-18-004: simultaneous

PDF, α_s and m_t^{pole} extraction

- Using HERA DIS data [1506.06042] or HERA DIS + our new d³σ_{tt} data
- Use xFitter-2.0.0, HERAPDF2.0 settings, HERA-only fit α_s = 0.1135 ±0.0016

→ Reduced g uncertainty at high x

$$\alpha_{\rm s}(m_{\rm Z}) = 0.1135 \pm 0.0016 ({\rm fit})^{+0.0002}_{-0.0004} ({\rm model})^{+0.0008}_{-0.0001} ({\rm param})^{+0.0011}_{-0.0005} ({\rm scale}) = 0.1135^{+0.0021}_{-0.0017} ({\rm total}), \\ m_{\rm t}^{\rm pole} = 170.5 \pm 0.7 ({\rm fit}) \pm 0.1 ({\rm model})^{+0.0}_{-0.1} ({\rm param}) \pm 0.3 ({\rm scale}) \ {\rm GeV} = 170.5 \pm 0.8 ({\rm total}) \ {\rm GeV}.$$

 \rightarrow Two SM parameters determined precisely, weak correl. (ρ =0.3)

xg(x) with using different CMS data sets

CMS-PAS-TOP-18-004:

- HERA
- HERA + $d^3\sigma_{t\bar{t}}$

TOP-14-013 EPJ C77 (2017) 459:

- HERA + CMS W EPJ C76 (2016) 469
- HERA + CMS jets JHEP 03 (2017) 156
- HERA + CMS W + $d^2\sigma_{t\bar{t}}$

- \rightarrow ~similar improvements adding d³ $\sigma_{t\bar{t}}$ (RUN II) or d² $\sigma_{t\bar{t}}$ (RUN I)
- → should fit to all data simultaneously!

Analysis:

■ Use #jets, #b-jets +BDTs → isolate signal

Result:

$$\sigma_{t-ch,t} = 136 \pm 1 \text{ (stat) } \pm 22 \text{ (syst) pb}$$

Result:

$$\sigma_{t-ch,\bar{t}} = 82 \pm 1 \text{ (stat) } \pm 14 \text{ (syst) pb}$$

t/t̄ Ratio:

$$R_{t-ch} = 1.66 \pm 0.02 \,(\text{stat}) \,\pm 0.05 \,(\text{syst})$$

t-channel single top production: t/t̄ ratio

→ Predictions with different PDF sets: most describe data well

Differential t-channel single top

Analysis:

Fit signal yields to m_T(W) & BDT distributions in regions of #jets and #b-jets; unfold cross sections (Tunfold)

POWHEG NLO with different 4FS PDFs vs data:

→ For all 3 PDF sets predictions agree with the data

Conclusions

4 CMS measurements covered using data at 13 TeV, L~36 fb⁻¹

g Co t	Measurement	Exp. Unc.	Theory	Results
g Njet g	TOP-17-001 σ _{tt}	~4%	NNLO	Different PDFs agree $\alpha_s(m_Z)$ [~3%], $m_t(m_t)$ [~1.6GeV], m_t^{pole} [~2 GeV]
M(tt), y(tt)		~10%	NLO	Constrain g(x) at high x, $\alpha_s(m_Z)$ [~2%], m_t^{pole} [~0.8GeV]
b d t u	TOP-17-011 $R_{t-ch} = \sigma_t / \sigma_{\bar{t}}$	~3%	NLO	Different PDFs agree with data
$ar{ t b}$	TOP-17-023 $\mathrm{d}(\sigma_t/\sigma_{t+ar{t}})$	~5%	NLO	Different PDFs agree with data

Conclusions

4 CMS measurements covered using data at 13 TeV, L~36 fb⁻¹

Measurement Expanding Theorem December 1

Challenge to improve syst. with full RUN II data

TOP-17-001

 $\sigma_{t\bar{t}}$

~4%

NNLO

Different PDFs agree

 $\alpha_{s}(m_{Z})$ [~3%],

 $m_t(m_t)$ [~1.6GeV],

 m_t^{pole} [~2 GeV]

TOP-18-004

 $d^3\sigma_{t\bar{t}}$; $d^2\sigma_{t\bar{t}}$

~10%

NLO

Constrain g(x) at high x, $\alpha_s(m_Z)$ [~2%], m_t^{pole} [~0.8GeV]

Need publicly available NNLO tool

TOP-17-011

$$R_{t-ch} = \sigma_t / \sigma_{\overline{t}}$$

~3%

TOP-17-023

$$d(\sigma_t/\sigma_{t+\bar{t}})$$

~5%

NLO Different PDFs agree with data

Expect more precise + more

differential results with full RUN II data

NLO Different PDFs agree

with data

Backup slides

TOP-18-004: $d^3\sigma_{t\bar{t}}$ vs NLO, different m_t^{pole} $M(t\bar{t})$, $y(t\bar{t})$ **CMS** Preliminary 35.9 fb⁻¹ (13 TeV) 1/c dc/dy(tf) 0.15 300<M(tt) $300 < M(t\bar{t})$ $400 < M(t\bar{t})$ $400 < M(t\bar{t})$ 500<M(tt) 500<M(tt) Data, dof=23 <400GeV <500GeV <400GeV <500GeV <1500GeV <1500GeV NLO CT14 $N_{iet} = 0$ $N_{iet} = 0$ $N_{iet} = 0$ $N_{iet}>0$ $N_{jet}>0$ $N_{iet}>0$ $\alpha_{\rm S}$ =0.118, $m_{\scriptscriptstyle t}^{\rm pole}$ = 172.5 GeV, χ^2 =61 --- 167.5 GeV, χ²=87 --- 177.5 GeV, χ²=144 0.1 0.05 Ratio ¢ 0.6

2

2

y(tt̄)

→ m_t^{pole} sensitivity mainly from first m(tt̄) bin

2

2

2

TOP-18-001 $d^3\sigma_{tt}$ vs NLO MC predictions

→ Only 'POW-PYT' is in satisfactory agreement with the data

TOP-18-001: α_s extraction

TOP-18-001: m_t^{pole} extraction

 \rightarrow Precise determination of m_t^{pole} , at NLO QCD

TOP-18-004: simultaneous α_s , m_t^{pole} , PDF extraction

PDF Uncertainty improvements

TOP-17-023: differential t-channel single t production

→ Slightly better description by aMC@NLO4FS than aMC@NLO5FS