# Summary of WG4

# Hadronic and EW observables









## P. Ferrari, A. Grebenyuk, D. Pagani

# Overview

33 talks + 1 joined session with WG2 17 theory, 16 experiment

A large variety of topics:

- DIS, VV, VVV, V + jets, VBS, (di)jet, ttbar+gamma, light-bylight scattering
- ((N)N)NLO corrections, NLL, showers: both techniques and pheno results
- (I)TMD: shower, p-Pb collisions, techniques
- EFT for BSM interpretation

## DIS1 @ N<sup>3</sup>LO USING PROJECTION-TO-BORN



[Currie, Gehrmann, Niehues '16] [Currie, Gehrmann, AH, Niehues '17] **CC:** [Niehues, Walker '18]

### Projection-to-Born



[Cacciari, et al. '15]



[Moch, Vermaseren, Vogt '05]

# DIS fully @N<sup>3</sup>LO

[Currie, Gehrmann, Glover, AH, Niehues, Vogt. '18] CC: [Gehrmann, Glover, AH, Niehues, Walker, Vogt '18]

A. Huss' talk

## INCLUSIVE JETS (NC DIS1)



[Currie, Gehrmann, Glover, AH, Niehues, Vogt. '18]

- ► for the first time: overlapping bands (agreement with data)
- ► reduction of scale uncertainties

A. Huss' talk

## **DIS** with KaTie

## Andreas van Hameren Institute of Nuclear Physics Polish Academy of Sciences Kraków

presented at DIS 2019 10-04-2019, University of Turin, Turin

This work was supported by grant of National Science Center, Poland, No. 2015/17/B/ST2/01838 and DEC-2017/27/B/ST2/01985.

## What does KaTie do?

Let  $Y = \{y = y_1y_2 \rightarrow y_3y_4 \cdots y_n\}$  be a list of partonic processes contributing to a *eh-scattering* process with a multi-jet final state, with differential cross section

$$d\sigma_{Y}(p_{1}, p_{2}; k_{3}, \dots, k_{3+n}) = \sum_{y \in Y} \int d^{4}k_{1} \mathcal{P}_{y_{1}}(k_{1})$$

$$d\hat{\sigma}_{y}(k_1,k_2;k_3,\ldots,k_{3+n})$$

Collinear factorization:

$$\mathcal{P}_{y_i}(k_i) = \int \frac{dx_i}{x_i} f_{y_i}(x_i, \mu) \,\delta^4(k_i - x_i p_i)$$

 $k_T$ -dependent factorization factorization:

$$\mathcal{P}_{y_i}(k_i) = \int \frac{d^2 \mathbf{k}_{iT}}{\pi} \int \frac{dx_i}{x_i} \mathcal{F}_{y_i}(x_i, |\mathbf{k}_{iT}|, \mu) \,\delta^4(k_i - x_i p_i - k_{iT})$$

Differential partonic cross section:

$$d\hat{\sigma}_{y}(k_{1}, k_{2}; k_{3}, \dots, k_{3+n}) = d\Phi_{Y}(k_{1}, k_{2}; k_{3}, \dots, k_{3+n})\Theta_{Y}(k_{3}, \dots, k_{3+n}) \\ \times \operatorname{flux}(k_{1}, k_{2}) \times S_{y} |\mathcal{M}_{y}(k_{1}, \dots, k_{3+n})|^{2}$$

KaTie creates tree-level event files corresponding to  $d\sigma_{\rm Y}$ , if supplied with  $f_{\rm u}$  and/or  $\mathcal{F}_{\rm u}$ .



## Importance of QCD corrections (example WZ)



## NNLO crucial for accurate description of data

M. Wiesemann's talk

## $gg \rightarrow ZZ \rightarrow 4\ell$ at NLO [Grazzini, Kallweit, MW, Yook '18]



| $\sqrt{s}$      | $8{ m TeV}$                      | $13\mathrm{TeV}$                | $8\mathrm{TeV}$               | $13\mathrm{TeV}$ |
|-----------------|----------------------------------|---------------------------------|-------------------------------|------------------|
|                 | $\sigma$ [fb]                    |                                 | $\sigma/\sigma_{\rm NLO} - 1$ |                  |
| LO              | $8.1881(8)^{+2.4\%}_{-3.2\%}$    | $13.933(7)^{+5.5\%}_{-6.4\%}$   | -27.5%                        | -29.8%           |
| NLO             | $11.2958(4)^{+2.5\%}_{-2.0\%}$   | $19.8454(7)^{+2.5\%}_{-2.1\%}$  | 0%                            | 0%               |
| $q\bar{q}$ NNLO | $12.08(3)^{+1.1\%}_{-1.1\%}$     | $21.54(2)^{+1.1\%}_{-1.2\%}$    | +6.9%                         | +8.6%            |
|                 | $\sigma$ [fb]                    |                                 | $\sigma/\sigma_{\rm ggLO}-1$  |                  |
| ggLO            | $0.79354(8)^{+28.2\%}_{-20.9\%}$ | $2.0054(2)^{+23.5\%}_{-17.9\%}$ | 0%                            | 0%               |
| $ggNLO_{gg}$    | $1.4810(9)^{+16.0\%}_{-13.2\%}$  | $3.627(3)^{+15.2\%}_{-12.8\%}$  | +86.6%                        | +80.9%           |
| ggNLO           | $1.3901(9)^{+15.4\%}_{-13.6\%}$  | $3.423(3)^{+13.9\%}_{-12.0\%}$  | +75.2%                        | +70.7%           |
|                 | $\sigma$ [fb]                    |                                 | $\sigma/\sigma_{\rm NLO} - 1$ |                  |
| NNLO            | $12.87(3)^{+2.8\%}_{-2.1\%}$     | $23.55(2)^{+3.0\%}_{-2.6\%}$    | +13.9%                        | +18.7%           |
| nNNLO           | $13.47(3)^{+2.6\%}_{-2.2\%}$     | $24.97(2)^{+2.9\%}_{-2.7\%}$    | +19.2%                        | +25.8%           |

## +5-6% effect due to NLO correction to gg compared to NNLO

NLO gg correction large+not flat; moves nNNLO outside uncertainty band of NNLO



huge NLO gg K-factor (~2 & more); impact of newly computed fermionic channels clearly visible

#### M. Wiesemann's talk



Combination: NNLO QCD and NLO EW

[Grazzini, Kallweit, Lindert, Pozzorini, MW]

## Iet's look in detail on one interesting aspect: photon-induced + giant K-factor









## Local Analytic Sector Subtraction at NNLO

Giovanni Pelliccioli University and INFN of Torino

in collaboration with:

L. Magnea, E. Maina, C. Signorile-Signorile, P. Torrielli and S. Uccirati

based on [Magnea et al., arXiv:1806.09570, arXiv:1809.05444]

## Proof-of-concept





Inclusive cross-section (NNLO correction) obtained via numerical implementation of the subtraction scheme, compared with the analytic result,

$$\frac{\sigma_{\rm NNLO}}{\sigma_{\rm LO} \left(\frac{\alpha_s}{2\pi}\right)^2 T_R C_F} = \left(-\frac{11}{2} + 4\zeta_3 - \log\frac{\mu^2}{s}\right)$$

with the renormalization-scale dependence.

Very good agreement ( $\lesssim 0.1\%$  differences).

G. Pelliccioli's talk

## Towards higher precision



At present, the best theoretical accuracy available for offshell  $t\bar{t}\gamma$  production is NLO QCD. NNLO is out of reach.

 → Concentrate on observables which can help reducing the theoretical uncertainties: cross section ratios

## The cross section ratio

Instead of considering the *absolute* " $t\bar{t}\gamma$ " cross section, normalize to " $t\bar{t}$ ":

$$\mathcal{R} = \frac{\sigma(pp \to b\bar{b}WW\gamma)}{\sigma(pp \to b\bar{b}WW)}$$

 $[p_T(\gamma) > 25 \text{ GeV}]$ 

Advantages:

• Experiment → more accurate measurement

 $\hookrightarrow$  common systematics cancel in  $\mathcal R$ 

(e.g. *b*-tagging efficiency, luminosity ...)

• Theory  $\rightarrow$  more accurate prediction (?)

 $\hookrightarrow$  theory uncertainties on  $\mathcal{R}$  (dominated by scale variation) can be dramatically reduced *if* the two processes are *correlated* 

Melnikov, Scharf, Schulze '11; Mangano, Rojo '12; G.B, Worek '14; Schulze, Soreq '16 ...

## How strongly correlated are $t\bar{t}\gamma$ and $t\bar{t}$ production ?

G. Bevilacqua's talk

## Differential cross section ratios



Correlation reduces uncertainty bands

$$\Delta \phi_{ll} \approx 3 : \underbrace{\mathcal{O}(50\%)}_{abs(m_t/2)} \rightarrow \underbrace{\mathcal{O}(20\%)}_{abs(H_T/4)} \Leftrightarrow \underbrace{\mathcal{O}(30\%)}_{rat(m_t/2)} \rightarrow \underbrace{\mathcal{O}(3\%)}_{rat(H_T/4)}$$

G. Bevilacqua

DIS 2019

J. Black's talk

## High Energy Jets

- A Partonic Monte Carlo Generator which aims to describe high multiplicity events.
- Provides perturbative predictions at LL accuracy  $(\log(\hat{s}/|\hat{t}|))$  with resummation of hard corrections to all orders.
- Hard corrections are α<sub>s</sub> suppressed but phase space enhanced in the large invariant mass limit.

< ि ▶

J. Black's talk



< 戸 >

#### R. Gomez Ambrosio's talk

## **VECTOR BOSON SCATTERING**

- Family of processes of the type:  $q_1 \bar{q_2} \rightarrow V V q_3 \bar{q_4}$ 
  - Fundamental for tests of the EWSB mechanism
  - Only way to access Quartic Gauge Couplings (QGC) at LHC



R. Gomez Ambrosio's talk

## **INGREDIENT 2: SMEFT**

• Effective field theory: Decoupling heavy states from the *light* energy regime



Assuming linear representation for the Higgs, no new light particles, and SM symmetries:

• 
$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_j}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots$$

• The most general basis in dim-6 has 2499 Operators, 59 if we assume some flavour symmetries: Here we will use the so-called Warsaw Basis

Compatible with NLO corrections! (unlike kappa/anomalous approach)

R. Gomez Ambrosio's talk

## TRADITIONAL VBS INTERPRETATION: DIM 8

• One has to think which UV completion is compatible with this behaviour: only generating QGC and not TGC, predicting ZZZZ interactions....



 $Z_{\mu}Z_{\nu}Z_{\rho}Z_{\sigma}$ 

If we assume the Higgs is a Doublet in a linear representation, we are implicitly assuming EWSB, where TGC and QGC are generated simultaneously



Possible UV completion.. not very model independent

### Summary and Outlook

#### A. Kusina's talk

- We successfully extended method of Curci, Furmanski and Petronzio to the TMD case using gauge invariant vertices.
  - The essential subtleties which prevent the Catani-Hautmann generalisation from being directly extended to the P<sub>gg</sub> case were uncovered and worked out.
- With the new projectors we have reproduced our earlier results for real emission  $k_{\perp}$ -dependent  $P_{qq}$ ,  $P_{gq}$  and  $P_{qg}$  splitting functions confirming our formalism.
- $\circ~$  We used the formalism to calculate  $P_{gg}~{\rm TMD}$  splitting function which feature correct
  - collinear limit (DGLAP kernels)
  - high-energy limit (BFKL kernel)
  - soft limit (CCFM kernel)
- We are in the process of calculating the virtual corrections.
- The next step will be to construct a complete set of evolution equations.

0 0 0 0 0

TMD vs. collinear

 $p + Pb \rightarrow Z^* \rightarrow \mu^+ + \mu^-$ 





Calculated using KaTie i.e. TMD by Monte Carlo by A. van Hameren

K. Krzysztof's talk

Experimental results

#### Iris Abt

### Azimuthal particle correlations in DIS with ZEUS

Correlations for charged hadrons as a function of multiplicity, rapidity separation and <pT>

- Study of collective particle production in small collision systems
- Limits on possible collective effects in high-multiplicity ep collisions



#### Efe Yazgan QCD Monte Carlo model tuning studies in CMS

#### Why do we tune?

- Good physics predictions: Correct evaluation of physics effects
- · Correct description of the data: Pile-up simulation, detector effects and unfolding, estimation of the background in the MC-driven approach
- Using the same PDF set and  $\alpha_s(M_z)$  value in the ME and in the simulation of the PS components in matched configurations advocated

 i.e. If ME is at NLO, then use N<sup>≥1</sup>LO PDF in ME and PS. Charged-hadron multiplicity, B = 0 T,  $\sqrt{s} = 13$  TeV Charged-hadron multiplicity, B = 0 T,  $\sqrt{s} = 13$  TeV  $\mathrm{d}N_{\mathrm{ch}}/d\eta$  $dN_{ch}/d\eta$ CP1 CP4 — CMS Data (N)NLO ->-- CP5 CMS Data LO \_\_\_\_\_ MC/Data 1.02 0.92 MC/Data 1.0 0.95 TransMIN charged-particle density,  $\sqrt{s} = 13$  TeV TransMIN charged-particle density,  $\sqrt{s} = 13$  TeV  $d\phi$ dN<sub>ch</sub> / dŋ dφ dN<sub>ch</sub> / dη ι 0.8 0.6  $(1/N_{\rm events})$ 0.6  $(1/N_{\text{events}})$ CP1 CP2 CMS Data CP4 CP5 0.4 0.4 CMS Data 0.2 0.2 MC/Data <sup>001</sup> <sup>001</sup> <sup>011</sup> MC/Data 20 10 15  $p_{\rm T}^{\rm max}$ [GeV]  $p_T^{max}[GeV]$ 

arXiv:1903.12179

Cooper et al. EPJC72 (2012) 2078

 New CMS Tunes for Pythia8 using LO PDF and (N)NLO PDFs

> The tunes are able to describe UE and MB observables with NNLO PDF sets as well as LO PDF set

#### **Evelin Meoni**

### **Inclusive jets:**



Explored impact of different aspects:

- QCD orders of ME (LO vs NLO)
  - $\rightarrow$  Hard to make a strong conclusion
- PS: pT ordered, angular ordered, dipole PS
   → small effect
- Factorisation and hadronisation (Lund vs cluster)
   → small effect

## Jet Shape:

Fraction of the jet  $p_T$  outside a cone of 0.2 as a function of the jet  $p_{T}$ : - \Prov(R=0.2) ATLAS Simulation Preliminary Vs = 13 TeV 0.1 Pythia 8.230 (SW) MG5 aMC + Pv8.212 Powheg + Py8.230 0.08 Herwig 7.1.3 (Ang. ord.) Herwig 7.1.3 (Dipole) Sherpa 2.2.5 (Lund) Sherpa 2.2.5 (AHADIC) 0.06 0.04 0.02 MC / Pythia MG5 aMC + Py8.212 Powhea + Pv8.230 1.2 Pythia Herwig 7.1.3 (ang. ord.) Herwig 7.1.3 (dipole) MO/ Pythia Sherpa 2.2.5 (Lund) Sherba 2.2.5 (AHADIC Ň 0.8 500 1000 1500 2000 2500 3000 3500 p\_[GeV]

Large sensitivity to the PS models

#### $\Psi$ (r)

#### Radek Zlebcik

### Dijet azimuthal correlations

- Sensitive to the QCD resummation effects ( $\Delta \phi \sim \pi$ ) as well as to higher orders and multi-leg ME (lower  $\Delta \phi$ )
- Possibility to study the strong coupling constant

## Azimuthal correlations in back-to-back region (>=2 jets vs LO)

 The normalized spectra for various p<sub>T</sub> ranges differ mostly in the back-to-back region

- Higher p<sub>T</sub>
   enhances
   Φ<sub>1,2</sub> ~ π
- This has never been investigated before





σ

#### Zdenek Hubacek

### Strong coupling contrant extraction

$$R_{\Delta\phi}(H_T, y^*, \Delta\phi_{max}) = \frac{\frac{d^2\sigma_{dijet}(\Delta\phi_{dijet} < \Delta\phi_{max})}{dH_T dy^*}}{\frac{d^2\sigma_{dijet}(inclusive)}{dH_T dy^*}}$$

Fraction of dijet events where the azimuthal difference between two leading jets is smaller than some  $\Delta \Phi_{max}$  value w.r.t. to the inclusive dijet cross section

•9 intervals selected for  $\alpha_s(Q)$  with Q=H<sub>T</sub>/2 extraction over the range 262 < Q <1675 GeV

•Combined analysis results in  $\alpha_S(m_Z) = 0.1127^{+0.0063}_{-0.0027}$  dominated by the scale dependence of the NLO pQCD predictions



#### **Martina Pili**

### Toward W mass with LHCb

Precision electroweak tests are a powerful probe of physics beyond the Standard Model

- Mw measurements at the LHC are largely affected by PDF uncertainties
- PDF uncertainties would be <u>partially anticorrelated</u> with those of ATLAS and CMS → Significant impact of LHCb on the LHC average

#### Analysis Strategy:

- Monte Carlo sample of W → µν decays (Powheg + Pythia)
   ▷ Selected O(10<sup>7</sup>) events in 30 < p<sub>T</sub> < 50 GeV/c and 2 < η < 4.5</li>
- ► Toy dataset: scaled to LHCb collected luminosity during Run 2 (6 fb<sup>-1</sup>)
- Templates:  $M_W \times PDF$  hypothesis weights (using NNPDF3.1, 1000 replicas)

Template fit to a single toy dataset: for each PDF replica scan over all the Mw hypotheses

#### **Martina Pili**

### Toward W mass with LHCb

Looking at the distributions of *measurable* quantities:  $p_T^{\mu}$ ,  $\eta$ 



The replicas with the largest  $|\Delta M|$  lead to variations of several percent in the shape of the  $\eta$  distribution

 $\Rightarrow$  2D ( $p_T^{\mu}$ ,  $\eta$ ) fit with PDF replica reweighting, already suggested by [5]



- Simultaneous fit of the W+ and W- data
- The PDF uncertainties are extracted for multiple toy datasets
- $\delta_{PDF}$  is the width of the PDF spread in the Mw values extracted with each replica

#### 2D fit with weighting reduce $\delta_{PDF}$ on average by roughly a factor of 2

#### Effect of flavor-dependent partonic transverse momentum on the

Marco Radici

### determination of the W mass

- Quark intrinsic transverse momentum can be flavor dependent → additional uncertainty on Mw, not considered so far
- we use a modified version of DYRes

Catani, De Florian, Ferrera, Grazzini (2015)

 we implement into the cross section an explicit dependence on quark intrinsic k<sub>T</sub> through Transverse Momentum Distributions (TMD)

 $-15 \leq \Delta m_W + \leq 9 \text{ MeV}$  $-10 \leq \Delta m_W - \leq 10 \text{ MeV}$   $g^q_{\mathrm NP}$ 

 $-[a - \log(O^2/O^2) + a]h^2$ 

#### Evelin Meoni M. Isabel Josa

### V+jets

• Possibility to study correlations between colorless W/Z and colored object (jet)



- NNLO (Njetti) ME models are available with significantly reduced theory uncertainties
  - → current precision of the measurement do not allow to conclude on gain in using NNLO vs multipaton NLO ME calculations

#### Ankita Mehta

### DPS is SSWW

- Provides information about hadron structure in transverse plane
- $\bullet~$  Understanding of background contributions to interesting SM & BSM processes

First evidence for WW production from double-parton scattering (DPS) from CMS

- Signal: two same-sign leptons (dimuon or electron-muon pairs)
- Main backgrounds from WZ and samples with non-prompt leptons
- Signal & background discrimination based on BDT classifiers; trained separately against dominant backgrounds







 first evidence of the DPS WW process, with 3.9 s.d.

```
\sigma_{\text{DPS WW}}=1.41±0.28 (stat)±0.28(syst) pb
```

$$\sigma_{\rm eff}$$
=12.7 $^{+5}_{-2.9}$  mb

10

#### **Pietro Govoni**

### VBS: ZZ

Vector Boson Scattering (VBS): Two forward jets separated in rapidity, with low hadronic activity in between

- Probes electroweak symmetry breaking
- BSM searches with VBS
- four charged leptons ( $e \pm$  or  $\mu \pm$ ) in the final state
- train BDT with 7 variables for EW vs. QCD discrimination





$$\begin{split} &-0.46 < f_{\rm T0}/\Lambda^4 < 0.44 \\ &-0.61 < f_{\rm T1}/\Lambda^4 < 0.61 \\ &-1.2 < f_{\rm T2}/\Lambda^4 < 1.2 \\ &-0.84 < f_{\rm T8}/\Lambda^4 < 0.84 \\ &-1.8 < f_{\rm T9}/\Lambda^4 < 1.8 \ . \end{split}$$

the **most stringent limits** on the T0, T1, T2, T8, and T9 anomalous quartic gauge couplings to date

 $0.40^{+0.21}_{-0.16}(stat) {}^{+0.13}_{-0.09}(syst)$  fb

#### Andrea Sciandra

### **Triboson production**

Data / Pred

VVV production is a rare process, sensitive to new physics

First evidence of VVV by ATLAS with 80 fb<sup>-1</sup>

WWW - cut-based, WVZ - MVA-based

- Expected:  $\mu_{VVV}^{\text{Asimov}} = 1^{+0.36}_{-0.34} = 1^{+0.24}_{-0.24} \text{ (stat.) } ^{+0.27}_{-0.24} \text{ (syst.)}$
- Observed:  $\mu_{VVV}^{\text{Data}} = 1.38^{+0.39}_{-0.37} = 1.38^{+0.25}_{-0.24}$  (stat.)  $^{+0.30}_{-0.27}$  (syst.)
- Exclusion of background-only hypothesis: evidence
  - VVV (expected and observed)
  - $WWW \rightarrow 2\ell$  and  $WVZ \rightarrow 4\ell$  (observed)

| Decay channel                                                           | Significance |             |  |
|-------------------------------------------------------------------------|--------------|-------------|--|
| Decay channel                                                           | Observed     | Expected    |  |
| WWW combined                                                            | $3.3\sigma$  | $2.4\sigma$ |  |
| $WWW \rightarrow \ell \nu \ell \nu q q$                                 | $4.3\sigma$  | $1.7\sigma$ |  |
| $WWW \to \ell \nu \ell \nu \ell \nu$                                    | $1.0\sigma$  | $2.0\sigma$ |  |
| WVZ combined                                                            | $2.9\sigma$  | $2.0\sigma$ |  |
| $WVZ \rightarrow \ell \nu q q \ell \ell$                                | -            | $1.0\sigma$ |  |
| $WVZ \rightarrow \ell \nu \ell \nu \ell \ell / q q \ell \ell \ell \ell$ | $3.5\sigma$  | $1.8\sigma$ |  |
| VVV combined                                                            | $4.0\sigma$  | $3.1\sigma$ |  |

WWW/WZZ/WWZ (ATLAS): same-sign 2ℓ with at least 2 jets or 3*ℓ* (WWW), or 3*ℓ*, 4*ℓ* (WZZ/WWZ).



### Outlook

- Without precision there will be no certainty on discovery
- In the quest of precision the experiments are continuously improving and the full LHC Run2 statistics is yet to be analysed
- Systematics will be soon the dominant one for many processes
- From the theoretical point of view, for a correct interpretation of current and future measurements and the possible identification of BSM effects, precise predictions and therefore radiative corrections are paramount
- Many new precise calculations were presented and discussed in our session
- Interesting analyses stepping out from the standard ones and exploring the challenging phase space were presented, where new things can be tested (for ex. TMD approach)