# WG5 – Physics with Heavy Flavours

An attempt to summarize

Top researchers having Charming skills
who presented Beautiful results

James Libby<sup>1</sup>, Javier Virto<sup>2</sup>, Vishal Bhardwaj<sup>3</sup>

<sup>1</sup>IIT Madras, <sup>2</sup>TUM, <sup>3</sup>IISER Mohali





<u>Top production at LHC (theory):</u> Rene Poncelet

Top pairs at the LHC: Sergio Grancagnolo

Rare top production ttW, ttZ, ttgamma, tttt at the LHC: Joscha Knolle

Top properties at the LHC(theory): Markus Schulze

Top properties at the LHC: Baptiste Ravina

Single top production at the LHC: Achim Geiser

**<u>Direct determination of top quark width with bb41</u>: Tomas Jezo** 



Spectroscopy of conventional hadrons at e+e- machines: Kiyoshi Tanida

Results of the XYZ states from experiments: Liang Yan

Heavy flavour spectroscopy and exotic states at the LHC: Roberta Cardinale

**Quarkonium studies at Belle II**: Yuji Kato

Quarkonium results in heavy-ion collisions: Roberta Arnaldi

Heavy flavor/quarkonium production at the LHC: Hee Sok Chung

Constraining gluon PDFs and TMDs with quarkonium production :Melih Arslan Ozcelik

Production of quarkonia and heavy flavour states in ATLAS: Paolo Lengo

Results from Charm baryon spectroscopy at LHCb, Belle and BESIII: Roberta Cardinal

**Heavy-flavour hadron production at LHCb**: Hans Dembinski

Heavy-flavor hadron production in heavy-ion collisions: Petr Chaloupka

Enhanced production of Λ<sub>c</sub> in proton-proton collisions at LHC :Rafal Maciula

Radiative leptonic decay B→ \( \mathcal{P} \ell \nabla \ell \) with subleading power corrections: Yao Ji

Measurement of beauty production from dimuon events at HERA: Achim Geiser

### New Physics in joint session with WG3

New Physics implications of the B-physics anomalies: Javier Fuentes-Martin

B-flavour anomalies in b->sll and b->clnu transitions at LHCb: Alessandra Gioventu

Heavy flavors at Belle II: status and plans: Akimasa Ishikawa

Search for NP in CP violation with beauty and charm decays at LHCb: Matteo Bartolini

8 sessions: 21 talks

1 joint sessions with WG3: 4 talks

Each result is interesting and need attention by the community:

Not easy to summarize **855**" summary in **30**" summary

Discuss few results, which we think are interested (based on our biased NN weights)

Apologies for missing crucial result due to time constraint!

Divided into four main areas:

- > Spectroscopy
- Production
- ➤ Top
- ➤ B decays

Summarized by Javier Virto

Instructions from Organizers:

Summary should be state of an art!



### **Achim Geiser**

# DIS in ep @ 318 GeV



### **Boson-Gluon-Fusion**



Total beauty cross section HERA II preliminary:

$$\sigma_{b \ total} \ ep \rightarrow bbX \ (318 \ GeV) = 11.4 \pm 0.8 (stat)^{+3.9}_{-2.9} (syst.)$$
nb

380 pb<sup>-1</sup>

NLO QCD predictions

FMNR + HVQDIS = 
$$7.5^{+4.5}_{-2.1}$$
 nb

Agree within (large) uncertainties.

Interesting to get NNLO prediction [exists for pp]

### **Differential cross-section**

# ZEUS preliminary 30 45 45 45 45 40 7 ZEUS (prel.) 377pb<sup>-1</sup> ZEUS HERA I (PYTHIA+RAPGAP) x 1.92 NLO QCD μ² = m²+p<sub>T</sub>² 25 20 15 10 45 Muon pseudorapidity

LO+PS describe better than NLO



Lower scale NLO prediction agree better

### First time measurement



Agree with LO+PS, NLO not calculated yet

# QCD: real particles are color singlet



Baryons are red-blue-green triplets
Λ=usd

Mesons are coloranticolor pairs



Other possible combinations of quarks and gluons:

artistic illustration

### **Pentaquark**



H di-Baryon Tightly bound 6 quark state



### **Glueball**

Color-singlet multi-







### **Molecule**



### **eXoTiC**

qq -gluon hybrid mesons



### Conventional states

Roberta Cardinale, Kiyoshi Tanida





New narrow charmonium state X(3842) :  $\psi_3(1^3D_3)$  with J<sup>PC</sup> = 3<sup>--</sup>

First observation of spin 3 charmonium!



Heavy Quark spin flip transition

→ important inputs for theories







### Liang Yan, Roberta Cardinale

[arXiv:1903.04695]

X(3872) is still giving spectacular performance, don't want to loose poster boy image.



.8 3.9 M<sub>Recoil π<sup>±</sup></sub> (GeV/c<sup>2</sup>) [arXiv:1901.03992]

$$R_J = B(X \rightarrow \pi^0 \chi_{cJ}) / B(X \rightarrow \pi^+ \pi^- J/\psi)$$
:

 $R_0 < 19 (90\% \text{ U.L.})$ 

 $R_1 = 0.88^{+0.31}_{-0.26} \pm 0.14$ 

 $R_2 < 1.0 (90\% U.L.)$ 

# Large $R_1$ suggest tetraquark nature of X(3872) ?





$$\mathcal{R} = \frac{\mathcal{B}[X(3872) \to \omega J/\psi]}{\mathcal{B}[X(3872) \to \pi^{+}\pi^{-}J/\psi]} = 1.6^{+0.4}_{-0.3} \pm 0.2$$

### Large Isospin violation (?)

|             | $\sqrt{s} = 4.23\mathrm{GeV}$ | $\sqrt{s} = 4.26  \mathrm{GeV}$ | $\sqrt{s} = 4.36  \mathrm{GeV}$ | Tetra-quarks-I      | Tetra-quarks-II        | Molecule                  |
|-------------|-------------------------------|---------------------------------|---------------------------------|---------------------|------------------------|---------------------------|
| $Z_c(3900)$ | $2.1\pm0.8$                   | < 6.4                           |                                 | $230^{+330}_{-140}$ | $0.27^{+0.40}_{-0.17}$ | $0.046^{+0.025}_{-0.017}$ |
| $Z_c(4020)$ | < 1.9                         | < 1.2                           | < 1.0                           | 6.6                 | +56.8<br>-5.8          | $0.010^{+0.006}_{-0.004}$ |

Neutral partner of Z<sub>c</sub>(3900)<sup>+</sup>

[PRL122, 102002 (2019)]

$$e^+ e^- \rightarrow \pi^+ D^0 D^{*-} + c.c.$$

1000 (ad) 3500 4.1 4.2 E<sub>4.3</sub> (GeV) 4.4 4.5 4.6

First observation of Y(4220) with an open charm final state.

 $M_1 = (4228.6 \pm 4.1 \pm 6.3) \text{ MeV/c}^2$  $\Gamma_1 = (77.0 \pm 6.8 \pm 6.3) \text{ MeV}$ 

#### **Roberta Cardinale**

XYZ

LHCb confirmed indirect existence of  $Z_c(4200)^+ \rightarrow J/\psi \pi^+$  (by Belle). They did very interesting model independent 4D analysis.

- Data divided in m(K+π-) bins,
   Check 3D angular distribution to check if described by conventional K\* states (no need of exotic).
- Require only knowledge of highest spin J<sub>max</sub>.

Reject only K<sub>J</sub>\* hypothesis by 10σ

Amplitude analysis needed!



1500 - LHCb

1000



### Dalitz Analysis done

| Resonance       | Mass [MeV]        | Width [MeV]    | $J^P$   | Model |
|-----------------|-------------------|----------------|---------|-------|
| $K^*(892)^0$    | $895.55 \pm 0.20$ | $47.3 \pm 0.5$ | 1-      | RBW   |
| $K^*(1410)^0$   | $1414 \pm 15$     | $232 \pm 21$   | $1^{-}$ | RBW   |
| $K_0^*(1430)^0$ | $1425 \pm 50$     | $270 \pm 80$   | $0_{+}$ | LASS  |
| $K_2^*(1430)^0$ | $1432.4 \pm 1.3$  | $109 \pm 5$    | $2^{+}$ | RBW   |
| $K^*(1680)^0$   | $1717 \pm 27$     | $322 \pm 110$  | $1^{-}$ | RBW   |
| $K_0^*(1950)^0$ | $1945 \pm 22$     | $201 \pm 90$   | $0_{+}$ | RBW   |

$$\begin{split} m_{Z_c^-} &= 4096 \pm 20^{+18}_{-22} \, \mathrm{MeV} \\ \Gamma_{Z_c^-} &= 152 \pm 58^{+60}_{-35} \, \mathrm{MeV} \end{split}$$

# The Pentaquark

First pentaquark was found by LHCb around 4 years ago.



### **Roberta Cardinale**

# Pentaquarks (?)





Near threshold masses and narrow widths favour "molecular" pentaquarks



Tomasz Skwarnicki

Need to measure J<sup>P</sup>s to confirm molecular hypothesis. Should have isospin partners!

> However, still the tightly boundpentaquark picture can't be ruled out

# **Heavy Flavor Production**

# First observation of spin polarization of $\Lambda/\overline{\Lambda}$ Kiyoshi Tanida



### **Cross section**

$$\begin{split} \mathcal{W}(\boldsymbol{\xi}; \alpha_{\psi}, \Delta\Phi, \alpha_{-}, \alpha_{+}) = & 1 + \alpha_{\psi} \cos^{2}\theta_{\Lambda} & \text{Spin Correlation} \\ & + \alpha_{-}\alpha_{+} \left[ \sin^{2}\theta_{\Lambda} \left( n_{1,x}n_{2,x} - \alpha_{\psi}n_{1,y}n_{2,y} \right) + \left( \cos^{2}\theta_{\Lambda} + \alpha_{\psi} \right) n_{1,z}n_{2,z} \right] \\ & + \alpha_{-}\alpha_{+} \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta\Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} \left( n_{1,x}n_{2,z} + n_{1,z}n_{2,x} \right) \\ & + \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta\Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} \left( \alpha_{-}n_{1,y} + \alpha_{+}n_{2,y} \right), \end{split}$$

#### **Polarization**

| Parameters                    | This work                                                   | Previous results     |
|-------------------------------|-------------------------------------------------------------|----------------------|
| $\alpha_{\psi}$               | $0.461 \pm 0.006 \pm 0.007$                                 | $0.469 \pm 0.027$ 25 |
| $rac{lpha_\psi}{\Delta\Phi}$ | $(42.4 \pm 0.6 \pm 0.5)^{\circ}$                            | -                    |
| α_                            | $0.750 \pm 0.009 \pm 0.004$<br>$-0.758 \pm 0.010 \pm 0.007$ | $0.642 \pm 0.013$ 27 |
| $\alpha_{+}$                  | $-0.758 \pm 0.010 \pm 0.007$                                | $-0.71 \pm 0.08$ 27  |
| $rac{lpha_+}{arlpha_0}$      | $-0.692 \pm 0.016 \pm 0.006$                                |                      |
| $A_{CP}$                      | $-0.006 \pm 0.012 \pm 0.007$                                | $0.006 \pm 0.021$ 27 |
| $\bar{\alpha}_0/\alpha_+$     | $0.913 \pm 0.028 \pm 0.012$                                 |                      |

 $\alpha_{-}$  and  $\alpha_{+}$  are decay asymmetries

As one uses  $\Lambda$  information, other values are also affected e.g.:

$$\alpha(\Omega \to \Lambda K), \alpha(\Xi \to \Lambda K), \alpha(\Lambda_c \to \Lambda K)$$

**Need for reinterpretation of all Λ polarization measurements!** 





17% larger than  $\alpha_{-}^{PDG}$ 

# Quarkonium with Heavy Ions

Heavy-favour quarks are good probes for studying QGP

Quarkonium: binding energies of order of hundred MeV.

Interactions with QGP can overcome this threshold breaking the quarkonium system



#### Main observables are:

- Nuclear modification factor R<sub>AA</sub>, R<sub>AA</sub>≠1 suggest presence of hot/cold matter effect.
- Elliptic flow v<sub>2</sub>: Quarkonium produced through re(generation) should inherit quark flow in QGP (v<sub>2</sub>>0)

# Very nice pp results were discussed: crucial to test production and different models.





Rafal Maciula

Enhanced production of  $\Lambda_c$  at ALICE and LHCb

 $k_T$ -factorization:  $g^*g^* \to c\bar{c} + \text{KMR uPDF} + \text{Peterson FF for } c \to \Lambda \text{ transition}$ 

Able to describe ALICE, but can't describe ALICE and LHCb data simultaneously as well D-meson production with same parameters.

Interpretation of increase fragmentation fraction  $f_c \rightarrow \Lambda_c$  needed

**Hee Sok Chung** 

**Quarkonium production and Improved Color Evaporation Model** 

Melih A. Ozcelik

Attempt to resolve negative cross-section with  $\eta_c$ 

More details in backUP

Hanni Paukkunen

**GM-VFNS** scheme – **SACOT-mT** introduced for heavy-flavoured meson production

# Charmonium with Heavy Ions

### Paolo lengo, Roberta Arnaldi







Cold Nuclear Matter (CNM) effects are small for prompt and non-prompt J/ψ production

**Strong suppression of charmonia production in AA** collisions

Suppression in AA due to CNM effects?

Alice shows result assuming  $R_{AA} = R_{pA} \times R_{Ap}$  (as for shadowing dominance)



(2.03<y\_\_<3.53) x R<sub>cPb</sub> (-4.46<y\_\_<-2.96), \s<sub>NN</sub> = 5.02 TeV

Comparison of pA and AA results indicates that CNM effects can not account for the observed  $R_{AA}$  at high  $p_T$ 

Ψ(2S) suppression is stronger than the J/ψ at high pT by CMS (as expected in sequential suppression scenario)

Similar results in backป๋Pº

Roberta Arnaldi Hans Dembinski

Bottomonium with Heavy Ions



Lower  $R_{AA}$  value for excited states compatible with sequential suppression Excited states suppression stronger at LHC (?)

LHCb also saw stronger suppression for Y(2S) at low pT Enhanced suppression of  $\Upsilon(3S)$  in pPb compare to pp at negative rapidity



### Petr Chaloupka



Consistent with mass hierarchy of energy loss

More in backUP

### Hans Dembinski

### Innovative (p, Gas) collisions

p gas (He, Ne, Ar)

Pb gas (He, Ne, Ar)

Vs<sub>NN</sub> = 110 GeV

Pb gas (He, Ne, Ar)

System originally designed to measure beam profile. Inject He,Ne, Ar into VELO at  $\sim 2 \times 10^{-7}$  mbar.

Fixed target experiment!



- Substantial intrinstic valence-like charm content of nucleon expected in some theories.
- Would be visible in most backward bin of pHe data.
- No evidence of substantial instrinsic charm content of nucleon observed (?).
- Might be interesting to study other variables (?)

# Top production and properties

- LHC is a top factory:
  - $t\bar{t}$  produced at a rate of 8 Hz at the L with L=10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> and  $\sqrt{s}$ =13 TeV
- Heaviest particle means it has a special place within the SM with many connections to different areas
  - Higgs/electroweak, BSM and QCD
  - $\Lambda_{QCD} << \Gamma_t << m_t$
- Two broad areas to cover
  - single, pair and associated production
    - Talks by Poncelet, Grancagnolo, Knolle and Geiser
  - properties: mass, width, spin correlations, couplings
    - Talks by Schulze, Ravina and Jezo

# Top cross sections measured at LHC Knolle, Geiser and Grancagnolo

NB: measurements have been used for PDF constraints, see talk Beneke in WG1



# ttZ and ttW production Knolle, Schultze





• Sensitive to  $Z^0 \rightarrow t\bar{t}$  coupling and background to final states with top and leptons i.e. ttH



- Differential ttZ distributions
- Interpretation in terms of SM effective field theory (EFT)
  - L =  $L_{SM}$  + (c/ $\Lambda^2$ )  $O_{dim-6}$  + ...
  - Fit data to constrain  $c/\Lambda^2$
  - Talk by B. Francois in WG3 on the interpretation
- Great potential to add many more observables i.e. ttW, tqW

# Interference in associated tW production: Geiser, Poncelet, Jezo



# Direct measurement of $\Gamma_{\rm t}$ Jezo

• Turn the full bb4l calculation around to find sensitivity to  $\Gamma_{\rm t}$  in the region sensitive to interference – arXiv:1903.10519





# Spin correlations:

Ravina, Poncelet, Schultze



$$C_{\mathrm{LO}}^{\mathrm{SM}} = \frac{\#\left(\uparrow\uparrow + \downarrow\downarrow\right) - \#\left(\uparrow\downarrow + \downarrow\uparrow\right)}{\#\mathrm{total}} = \begin{cases} -46\% \text{ at Tevatron,} \\ +31\% \text{ at LHC.} \end{cases}$$



arXiv:1903.07570 [hep-ex]

- Spin correlation preserved by the two leptons
- Azimuthal separation  $\Delta \phi$  is the sensitive observable
- Unfolding performed to full phase space and the parton level
- Generators do not match data!
- Improved agreement with NNLO calculation
- NLO with  $\mu_F = \mu_R = m_t$  for QCD and EW (Bernreuther, Heisler, Zi) agrees but with large scale uncertainties more work to see if this a BSM effect

# Top and CKM Schultze



CERN-LPCC-2018 February 1, 20

### Standard Model Physics at the HL-LHC and HE-LHC

Report from Working Group 1 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

Editors: P. Azzi<sup>1</sup>, S. Farry<sup>2</sup>, P. Nason<sup>3,4</sup>, A. Tricoli<sup>5</sup>, D. Zeppenfeld<sup>6</sup>

- $V_{cb}$ =(42.2±0.8)×10<sup>-3</sup> [PDG] 2% relative and systematically limited
- Also only at the  $m_b/2$  scale
- New method at EW scale with  $t\bar{t}$

$$\bar{t} \to \bar{b}W^- \to \bar{b}l^-\bar{\nu}_l$$
  $t \to bW^+ \to b\bar{q}c^-$ 

fraction with q=b  $\propto |V_{cb}|^2$ 

- Lepton + 3 b jets + 1 c jet
- HL-LHC potential to measure to 2% if systematics can be controlled



Harrison and Vladimirov JHEP (2019) 2019: 191



Assumption about light  $\rightarrow$  b jet mis-ID and b-jet efficience  $\mathring{c}$   $\mathring{y}$ <sup>9</sup>

# Flavor with Beauty and Charm



M. Bartolini

# B-Anomalies

J. Fuentes-Martín

A. Gioventú

F. Saturnino

# B-meson LCDAs

Yao Ji



A. Ishikawa

- Recent observation of CPV:  $\Delta A_{CP} \equiv A_{CP}(D \to K^+K^-) - A_{CP}(D \to \pi^+\pi^-)$ 

LHCB PAPER-2019-006 arXiv:1903.08726



$$\Delta A_{CP} = \mathbf{\Delta} \mathbf{a_{CP}^{dir}} \left( 1 + \frac{\langle \overline{t} \rangle}{\tau(D^0)} y_{CP} \right) + \frac{\Delta \langle t \rangle}{\tau(D^0)} \mathbf{a_{CP}^{ind}}$$

2019: 
$$\Delta a_{CP}^{dir} = (-15.6 \pm 2.9) \times 10^{-4}$$

New WA: 
$$\Delta a_{CP}^{dir} = (-16.4 \pm 2.8) \times 10^{-4}$$

Theory?

$$\Delta a_{CP}^{dir} = 0.020 \pm 0.003\%$$

Khodjamirian, Petrov 2017

- CPV in other modes

arXiv:1903.01150

$$\mathcal{A}(D_s^+ o K_S^0 \pi^+) = (1.3 \pm 1.9(stat) \pm 0.5(syst)) \times 10^{-3}$$
  $\mathcal{A}(D^+ o K_S^0 K^+) = (-0.09 \pm 0.65(stat) \pm 0.48(syst)) \times 10^{-3}$   $\mathcal{A}(D^+ o \phi \pi^+) = (0.05 \pm 0.42(stat) \pm 0.29(syst)) \times 10^{-3}$ 

- Most precise determination of these quantities to date!
- No evidence for CP violation is found

CPV in Bs M. Bartolini

- Multidimensional fit to  $J/\psi K^+K^-, J/\psi \pi^+\pi^-$ 



- Combination of LHCb Run1 + Run2

$$\phi_s = -0.040 \pm 0.025 [rad]$$
 $\Delta \Gamma_s = 0.0813 \pm 0.0048 [ps^{-1}]$ 

### Preliminary

New world average:

$$\phi_{\mathsf{s}} = (-0.0544 \pm 0.0205)$$

### **Preliminary**



# B - Anomalies (w/ news 2019!)

### Fuentes, Gioventu', Saturnino









# **B** - Anomalies *Interpretations*

### Fuentes, Saturnino









# **B-meson LCDAs**

Yao Ji

- Non-perturbative quantities of maximal interest (fact theorems)

$$\langle 0|\bar{q}(nz)\Gamma W(nz,0)h_v(0)|\bar{B}(v)\rangle = f_B \text{Tr} \left\{ \gamma_5 \Gamma P_+ \left[ \frac{\phi_+(z,\mu)}{2} - \frac{\rlap/n}{2} \frac{\phi_\pm(z,\mu)}{2} \right] \right\} \qquad \lambda_B^{-1}(\mu) \equiv \int_0^\infty \frac{d\omega}{\omega} \phi_B^+(\omega,\mu)$$

- Best mode to extract  $\lambda_B$ :  $B \to \gamma \ell \bar{\nu}$  for  $E_{\gamma} \sim m_b$ 

$$\frac{d\Gamma}{dE_{\gamma}} = \frac{\alpha_{\mathrm{em}} G_F^2 |V_{ub}|^2}{6\pi^2} m_B E_{\gamma}^3 \left( 1 - \frac{2E_{\gamma}}{m_B} \right) \left( \left| F_V \right|^2 + \left| F_A + \frac{e_{\ell} f_B}{E_{\gamma}} \right|^2 \right)$$

$$F_{V,A}(E_{\gamma}) = \underbrace{\frac{e_{u}f_{B}m_{B}}{2E_{\gamma}\lambda_{B}(\mu)}R(E_{\gamma},\mu)}_{\text{leading power contribution }F_{V/A}^{\text{tw}-2}} + \underbrace{\xi(E_{\gamma}) \pm \Delta\xi(E_{\gamma})}_{\text{power suppressed}}$$

- Belle extraction:

[M. Gelb et al. [Belle Collaboration] (2018)

(Result compatible w/ QCD sum rules)

$$\frac{\Gamma(B \to \gamma \ell \bar{\nu})}{\Gamma(B \to \pi \ell \bar{\nu})} \longrightarrow \overset{\mathbb{S}^{3}}{\approx}_{2}^{3}$$

(Belle-II prospects)



### **Future: Belle-II**

- Target: 50/ab by 2027 (x40 KEKB lumi) Supersede B-fact 2021
- Rediscovery of *B* mesons! (Phase 2 commissioning Run)
- First collision in Phase 3 in

### March 25th 2019

- B, D and tau physics
  - + dark "photon", EW, spectroscopy ...



- Anomalies:  $R_{K^{(*)}}, R_{X_s}, R(D^{(*)}), B \to X_s \ell \ell, B \to \gamma \ell \bar{\nu}, \dots$ 





Thanks to all the speakers in WG5

Thanks to the organizers

Expect more exciting **Heavy Flavor** results at DIS 202x

# BACK UP

# **Back UP**



Heavy quarkonium production can be more sensitive to TMD PDFs, DPS and QFG effects, but production mechanism of heavy quarkonia is still a challenge for theory



### Melih A. Ozcelik

Attempt to re-solve negative cross-section with  $\eta_c$ 

TMD vs collinear factorization



#### Hanni Paukkunen

GM-VFNS scheme – SACOT-mT introduced for heavy-flavoured meson production:
Agreement with LHCb p-p data.
Full NLO level, parts of NNLO known

### $J/\psi$ v2 measurement over broad $p_T$ range



Low pT : Evidence for non-zero flow (ALICE,  $7\sigma$  effect in 4< pT < 6 GeV) High pT :  $v2\neq0$  (ATLAS and CMS)

### Significant non-zero v2 is observed in high-multiplicity p-Pb



Models where the v2 originates from finalstate interactions in the fireball + regeneration underestimate in data



 $\Psi(2S)$  suppression is stronger than the  $J/\psi\,$  at high pT

(as expected in sequential suppression scenario)



Good agreement b/w data and models (based on shadowing, CGC, energy Loss)
Size of theory uncertainty (mainly shadowing) still limits

quantitative comparison



Different behaviour for J/ψ and ψ(2S) not expected. Shadowing/energy loss not enough to describe ψ(2S) suppression at backward-ye.

# **Back UP**

# B/D suppression Petr Chaloupka

**Bottom suppression @ RHIC** 





Consistent with mass hierarchy of energy loss

28.0 pb-1 (pp 5.02 TeV) + 351 µb-1 (PbPb 5.02 TeV) CMS CUJET3.0 Correlated syst, uncert Uncorrelated syst uncert. AdS/CFT HH D(p) 8.0 ≸ي 0.6 PRL 119, 152301 (2017) |y| < 2.4p\_ (GeV/c)







Flat suppression

**Strong suppression** for  $p_T > 7 \text{ GeV}$ 

Observed suppression described by models with mass-dependent energy loss







up to high pT **Charm suppression** 



**High pT: Need to include radiative energy loss** Low pT: Non negligible collisional energy loss and shadowing improves description

Similar suppression for charged D also 38/39

### Roberta Arnaldi Hans Dembinski

### Bottomonium at Ions



Lower  $R_{AA}$  value for excited states compatible with sequential suppression Excited states suppression stronger at LHC (?)



LHCb saw stronger suppression for Y(2S) at low pT Enhanced suppression of  $\Upsilon(3S)$  in pPb compare to pp at negative rapidity