Theory Summary For Working Group 6: Spin and 3D Structure

Ted Rogers, with Oleg Eyser and Bakur Parsamyan

DIS 2019, Turin Italy

Areas of Progress

- ≈ 32 theory presentations

Areas of Progress

- ≈ 32 theory presentations
- Correlation Functions:
- PDFs
- TMD PDFs (transverse momentum dependent distributions) \downarrow
- GPDs (generalized parton distributions) \downarrow

Areas of Progress

- ≈ 32 theory presentations
- Correlation Functions:
- PDFs
- TMD PDFs (transverse momentum dependent distributions)
- GPDs (generalized parton distributions)
- Processes (semi-inclusive DIS, $\mathrm{e}^{+} \mathrm{e}^{-}$,hadron-hadron...)
- Regions: Large vs small transverse momentum, Large vs small Bjorken-x, etc...

Areas of Progress

- ≈ 32 theory presentations
- Correlation Functions:
- PDFs
- TMD PDFs (transverse momentum dependent distributions)
- GPDs (generalized parton distributions) \downarrow
- Processes (semi-inclusive DIS, $\mathrm{e}^{+} \mathrm{e}^{-}$,hadron-hadron...) \downarrow
- Regions: Large vs small transverse momentum, Large vs small Bjorken-x, etc...
- Theoretical Refinements v
- Extraction and Pheno

Semi-Inclusive DIS

- Description of large q_{T} :

- Higher orders? Refine fragmentation function fits?

Semi-Inclusive DIS

- Description of large q_{T} :

- Higher orders? Refine fragmentation function fits?

Semi-Inclusive DIS

- Description of small q_{T} :

J. Gonzalez-Hernandez

Tension with normalization.

- Improved knowledge of FFs needed?

Drell-Yan

- TMD PDF fits with large amount of data:
A. Vladimirov

- New tools:
repository:
https://github.com/VladimirovAlexey/artemide-public
- Many tools now for TMD physics, with high orders in all parts.

Fragmentation Functions

- New ways of constraining fragmentation and hadronization dynamics:

A. Kotzinian
\square Sum rules for quarks into unpolarized hadrons, up to twist-3
- (only thing missing for twist-4: full FF-TMD analysis)

$$
\begin{aligned}
& \sum_{h S_{h}} \int d z z D_{1}^{h}(z)=1 \\
& \text { NEW } \quad \sum_{h S_{h}} \int d z M_{h} E^{h}(z)=M_{j} \quad \text { NEW } \sum_{h S_{h}} \int d z M_{h} \tilde{E}^{h}(z)=M_{j}-m_{q 0}=m_{q}^{\text {corr }} \\
& \text { NEW } \sum_{h S_{h}} \int d z M_{h} H^{h}(z)=0 \quad \sum_{h S_{h}} \int d z M_{h} \tilde{H}^{h}(z)=0 \quad \text { fiehl-Sapeta } \quad \text { fully dynamical } \\
& \sum_{h S_{h}} \int d z z M_{h} H_{1}^{\perp(1) h}(z)=0 \\
& \mathrm{NEW} \sum_{h S_{h}} \int d z M_{h}^{2} D^{\perp(1) h}(z)=0 \quad \text { NEW } \sum_{h S_{h}} \int d z M_{h}^{2} \tilde{D}^{\perp(1) h}(z)=-\frac{1}{2}\left\langle P_{\perp}^{2} / z\right\rangle \\
& \text { NEW } \sum_{h S_{h}} \int d z M_{h}^{2} G^{\perp(1) h}(z)=0 \quad \text { NEW } \sum_{h S_{h}} \int d z M_{h}^{2} \tilde{G}^{\perp(1) h}(z)=0 .
\end{aligned}
$$

Hadronization

- Progress in incorporating polarization in Monte Carlo simulations

Comparison between Pythia $+{ }^{3} \mathrm{P}_{0}$ and stand alone ${ }^{3} \mathrm{P}_{0}$:
Collins and di-hadron analysing powers

A. Kerbizi

A different option for the final state in PYTHIA $+{ }^{3} \mathrm{P}_{0}$

Proton Tensor Charge

- Tension?

Progress in Large TM Sivers

- Polarization dependent results important for fully global TMD pheno program:

$$
\begin{aligned}
f_{1 T ; q \leftarrow h ; \mathrm{DY}}^{\perp}(x, \vec{b} ; \mu, \zeta) & =\pi T(-x, 0, x)+\pi a_{s}(\mu)\left\{-2 \mathbf{L}_{\mu} P \otimes T+C_{F}\left(-\mathbf{L}_{\mu}^{2}+2 \mathbf{l}_{\zeta} \mathbf{L}_{\mu}+3 \mathbf{L}_{\mu}-\frac{\pi^{2}}{6}\right) T(-x, 0, x)\right. \\
& \left.+\int d \xi \int_{0}^{1} d y \delta(x-y \xi)\left[\left(C_{F}-\frac{C_{A}}{2}\right) 2 \bar{y} T(-\xi, 0, \xi)+\frac{3 y \bar{y}}{2} \frac{G_{+}(-\xi, 0, \xi)+G_{-}(-\xi, 0, \xi)}{\xi}\right]\right\} \\
& +O\left(a_{s}^{2}\right)+O\left(\vec{b}^{2}\right)
\end{aligned}
$$

I. Scimemi

Tests of Process Dependence

- Gluon Sivers function at RHIC

GPDs and Exclusive Processes

Nucleon tomography:

H. Moutarde, P. S., J. Wagner "Border and skewness functions from a leading order fit to DVCS data" Eur. Phys. J. C78 (2018) 11, 890

Goal: global extraction of Compton Form Factors (CFFs) from DVCS data using LO/LT formalism
Analysis done within PARTONS framework

Complications with Lensing Relation

Proton Polarization
Gluons

Model studies are useful to get insight on complex physics phenomena

Model-dependent relations between distributions can be useful

But they should not be extrapolated to different models
S. Rodini

Summary of Summary

- Interesting results and progress with phenomenology.
- Interesting sources of tension.
- Apologies for all talks that I missed!

