Explaining the Flavor Anomalies with Leptoquarks XXVII International Workshop on Deep Inelastic Scattering and Related Subjects

Francesco Saturnino

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern

> Turin April 11, 2019

 $u^{\scriptscriptstyle b}$

Ø UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

(日) (個) (돈) (돈) (돈)

- Introduction: Flavor Anomalies in B-Decays
 - $b \rightarrow s \mu \mu$
 - $b \rightarrow c \tau \nu$
 - Explanation
- Pati-Salam Leptoquark
 - Phenomenology
 - Loop-Effects
- Conclusion

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

1

Flavor Anomalies: B-decays in the SM

b

b

 $b
ightarrow s\ell\ell$

- Loop and CKM suppressed
- Lepton Flavor Universal (LFU)

 $b
ightarrow c\ell
u$

- Tree-level decay
- LFU (at amplitude)

 $u^{\scriptscriptstyle b}$

S

 γ, γ^*, Z

C

 P'_5 : Angular observable in $B \to K^* \mu \mu$, defined to reduce hadronic uncertanties [Descotes-Genon, Hurth, Matias, Virto, 1303.5794]

How reliable are SM predictions (hadronic uncertanties)?

< ロ > < 同 > < 回 > < 回 >

Flavor Anomalies: $b \rightarrow s \mu \mu$

 $R(K^{(*)}) = \frac{\operatorname{Br}[B \to K^{(*)}\mu\mu]}{\operatorname{Br}[B \to K^{(*)}\mu\mu]}$

- Very clean SM prediction of LFU
- R(K) from 2.6 σ now at 2.5 σ from SM
- R(K*) from Belle compatible with SM but also with previous measurements

Test of LFU

4

Flavor Anomalies: $b \rightarrow s \mu \mu$

Combining all 150+ $b \rightarrow s\ell\ell$ measurements: Global fits still match data significantly better than SM (pull > 5 σ)

Here: LFUV NP only

< A >

(4) E > (4) E >

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

6

- 3

Flavor Anomalies: $b \rightarrow c \tau \nu$

Francesco Saturnino

Flavor Anomalies: $b \rightarrow c \tau \nu$

$$R(J/\Psi) = \frac{\operatorname{Br}[B_c \to J/\Psi \tau \nu]}{\operatorname{Br}[B_c \to J/\Psi \mu \nu]}$$

8

Hints for LFUV in

- $b
 ightarrow c \ell
 u$ (CC, au vs μ/e)
- $b
 ightarrow s\ell\ell$ (NC, μ vs e)
- Newest experiments still neither proof nor disproof LFUV
- Solid theory for $R(D^{(*)})$, $R(K^{(*)})$
- Slight tension $b \rightarrow d\mu\mu$ and $b \rightarrow u\tau\nu$, consistent with $b \rightarrow s\mu\mu$ and $b \rightarrow c\tau\nu$
- Tensions in LFU observables: Reduction of hadronic uncertainties in SM predictions needed (P5', $B_s \rightarrow \phi \mu \mu$)

イロン 不同 とくほう イロン

9

• 10-20% effect required at amplitude-level

 $b
ightarrow s\ell\ell$:

- Small NP contribution sufficient
- Possible models: Z', loop-effects from heavy scalars/fermions, Leptoquarks

b
ightarrow c au
u:

- Large NP contribution needed
- Possible models:
 - charged scalars

 \Rightarrow Too large B_c lifetime and problems with direct searches/ q^2 -distributions

• W'

 \Rightarrow Strong constraints from direct LHC searches

Leptoquarks

- 「同下」 (三下) (三下)

 $u^{\scriptscriptstyle b}$

The Vector Leptoquark SU(2)-singlet is a prime candidate to address both anomalies simultaneously:

- Left-handed (i.e $\mathit{C}_9 = -\mathit{C}_{10}$) effect in $b
 ightarrow s \mu \mu$
- Left-handed vector current in R(D) and $R(D^*)$
- No tree-level effect in b
 ightarrow s
 u
 u
- No proton decay
- Originally arising in the Pati-Salam model [Pati, Salam, Phys. Rev. D10, 275 (1974)]
- Pati-Salam does not work at TEV-scale ($K \rightarrow \pi \mu e$, $K_L \rightarrow \mu e$) \Rightarrow Challenging UV-completion

Vector Leptoquark: Possible UV completions

- $SU(4) \times SU(3)' \times SU(2)_L \times U(1)_Y$ + vector-like fermions [Di Luzio, Greljo, Nardecchia, 1708.08450]
- $SU(4) \times U(2)_L \times SU(2)_R$ + vector-like fermions [Calibbi, Crivellin, Li, 1709.00692]
- $SU(4)^3$ [Bordone, Cornella, Fuentes-Martin, Isidori, 1712.01368]
- $SU(4) \times U(2)_L \times SU(2)_R$ including scalar LQs and light right-handed neutrinos [Heeck, Teresi, 1808.07492]
- SU(8) [Matsuzaki, Nishiwaki, Yamamoto, 1806.02312]
- $SU(4) \times U(2) \times SU(2)_R$ in extra dims [Blanke, Crivellin, 1801.07256]
- Composite LQ model [Barbieri, Murphy, Senia, 1611.04930]

$$\left(\bar{3},1,-rac{4}{3}
ight)$$
 $\mathcal{L}_{\mathrm{int}}=\kappa_{fi}\bar{Q}_{f}\gamma_{\mu}L_{i}V_{1}^{\mu\dagger}$

13

Phenomenology

b
ightarrow c au
u: Only $(ar{b} au)$ and $(ar{c}
u_{ au})$ couplings needed

Francesco Saturnino

¹⁴

Explaining the Flavor Anomalies with Leptoquarks

 $(\bar{c} \nu_{\tau})$ -coupling also induces $(\bar{s} \tau)$ -coupling \Rightarrow Generates loop-effects:

 $u^{\scriptscriptstyle b}$

 $(\bar{c} \nu_{\tau})$ -coupling also induces $(\bar{s} \tau)$ -coupling \Rightarrow Generates loop-effects:

A 10

 $u^{\scriptscriptstyle b}$

 $(\bar{c} \nu_{\tau})$ -coupling also induces $(\bar{s} \tau)$ -coupling \Rightarrow Generates loop-effects:

A 10

 $u^{\scriptscriptstyle b}$

 $b \rightarrow s\gamma$: $-0.01 < C_7 < 0.05 \Rightarrow$ perfect agreement [Capdevila, Crivellin, Descote-Genon, Matias, Virto, 1704.053402]

This only explains flavor conserving quantities (like P'_5), but not LFUV like $R(K^{(*)})$.

- 4 同 2 4 日 2 4 日 2

16

[Crivellin, Greub, Müller, FS, 1807.02068]

- 4 同 ト 4 ヨ ト 4 ヨ

[Crivellin, Greub, Müller, FS, 1807.02068]

- Vector Leptoquark singlet is a prime candidate to address the flavor anomalies
- LFUV in $b \to s\ell\ell$ and $b \to c\ell\nu$ experimentally still not (dis)proofed
- Global fits show that LFU+LFUV NP is compatible with the flavor anomalies
- Explanation of $R(D^{(*)})$ requires a generic flavor structure:
 - Huge $b \rightarrow s \tau \tau$ enhancement \Rightarrow Strong predictions
 - Sizable loop-effects in $b
 ightarrow s\ell\ell$ and b
 ightarrow s
 u
 u
- Explaining $R(D^{(*)})$ with the VLQ leads to the right size in loop-effects

< ロ > < 同 > < 回 > < 回 > < □ > <

Backup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆

Observable	Experiment	SM	Prediction
$Br[B_s \to \tau \tau]$	\leq 6.8 $ imes$ 10 $^{-3}$ (LHCb)	$(7.73 \pm 0.5) imes 10^{-7}$	$O(10^{-4})$
$Br[B_d \to \tau \tau]$	$\leq 2.1 imes 10^{-3} ext{ (LHCb)} \ (7.73 \pm 0.5) imes 10^{-7} ext{ (Belle)}$	$(2.22 \pm 0.2) \times 10^{-8}$	$\mathcal{O}(10^{-4})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?