27th International Workshop on Deep-Inelastic Scattering & Related Subjects # Top Quark Properties Markus Schulze Humboldt-University Berlin What do we mean by "top quark properties"? Person A: Mass, Width Person B: Gauge and Yukawa couplings *Person C*: Cross section, $A_{\mathbb{C}}$, Whelicity fractions What do we mean by "top quark properties"? Person A: Mass, Width Person B: Gauge and Yukawa couplings *Person C*: Cross section, $A_{\mathbb{C}}$, Whelicity fractions At the level of the SM Lagrangian, it is a well-defined question: $$\mathcal{L}_{\text{top}}^{\text{SM}} = \bar{t} \, \mathrm{i} \left(\partial \!\!\!/ + \frac{\mathrm{i}e}{c_w} Y \not \!\!\!/ \!\!\!\!/ - \frac{\mathrm{i}e}{s_w} I^a \not \!\!\!/ \!\!\!\!/ u - \mathrm{i} g_s T^c \not \!\!\!/ \!\!\!\!/ c \right) t - m_t \, \bar{t} \, t$$ Everything is determined by: $\alpha, s_w, \alpha_s, m_t$ (+SM symmetries). What do we mean by "top quark properties"? Person A: Mass, Width *Person B*: Gauge and Yukawa couplings *Person C*: Cross section, $A_{\mathbb{C}}$, Whelicity fractions At the level of the SM Lagrangian, it is a well-defined question: $$\mathcal{L}_{\text{top}}^{\text{SM}} = \bar{t} \, \mathrm{i} \left(\partial \!\!\!/ + \frac{\mathrm{i}e}{c_w} Y \not \!\!\!/ \!\!\!\!/ - \frac{\mathrm{i}e}{s_w} I^a \not \!\!\!/ \!\!\!\!/ u - \mathrm{i} g_s T^c \not \!\!\!/ \!\!\!\!/ c \right) t - m_t \, \bar{t} \, t$$ Everything is determined by: $\alpha, s_w, \alpha_s, m_t$ (+SM symmetries). These are not observables but free parameters of the theory, fixed by some measurement. $$\mathcal{O}_{\mathrm{measured}}^{\mathrm{nature}} = \mathcal{O}_{\mathrm{predicted}}^{\mathrm{theory}}(\alpha) \xrightarrow{\mathrm{solve}} \alpha$$ What do we mean by "top quark properties"? Person A: Mass, Width *Person B*: Gauge and Yukawa couplings *Person C*: Cross section, $A_{\mathbb{C}}$, Whelicity fractions At the level of the SM Lagrangian, it is a well-defined question: $$\mathcal{L}_{\text{top}}^{\text{SM}} = \bar{t} \, \mathrm{i} \left(\partial \!\!\!/ + \frac{\mathrm{i}e}{c_w} Y \not \!\!\!/ \!\!\!\!/ - \frac{\mathrm{i}e}{s_w} I^a \not \!\!\!/ \!\!\!\!/ u - \mathrm{i} g_s T^c \not \!\!\!/ \!\!\!\!/ c \right) t - m_t \, \bar{t} \, t$$ Everything is determined by: $\alpha, s_w, \alpha_s, m_t$ (+SM symmetries). Once the parameters are reliably fixed, we try to *test the theory*, i.e. try to *falsify* the model, i.e. *find New Physics*: $$\mathcal{O}_{\mathrm{measured}}^{\mathrm{nature}} = \mathcal{O}_{\mathrm{predicted}}^{\mathrm{theory}}(\alpha) \quad \stackrel{\mathrm{test}}{\longleftarrow} \quad \alpha$$ What do we mean by "top quark properties"? Person A: Mass, Width Person B: Gauge and Yukawa couplings *Person C*: Cross section, $A_{\mathbb{C}}$, Whelicity fractions At the level of the SM Lagrangian, it is a well-defined question: $$\mathcal{L}_{\text{top}}^{\text{SM}} = \bar{t} \, \mathrm{i} \left(\partial \!\!\!/ + \frac{\mathrm{i}e}{c_w} Y \not \!\!\!/ \!\!\!\!/ - \frac{\mathrm{i}e}{s_w} I^a \not \!\!\!/ \!\!\!\!/ u - \mathrm{i} g_s T^c \not \!\!\!/ \!\!\!\!/ c \right) t - m_t \, \bar{t} \, t$$ Everything is determined by: $\alpha, s_w, \alpha_s, m_t$ (+SM symmetries). - → We have to probe observables that are sensitive to physics beyond the SM - → We need high precision to reliably identify small deviations #### Strategy I: Explicit model building and testing the predictions Introduce a new $\mathcal{L}_{\mathrm{BSM}}$ such that $\mathcal{L}_{\mathrm{BSM}} o \mathcal{L}_{\mathrm{SM}}$ in some limit #### Strategy II: Model-independent Effective Field Theory (EFT) Extend the SM such that $\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{c_i}{\Lambda^2} \, \mathcal{O}_i^{\rm dim6} + ...$, fit to data yields constraint on $\frac{c_i}{\Lambda^2}$ $\mathcal{L}^{\rm dim6}$ is the most general expression that respects all symmetries of the SM #### Strategy I: Explicit model building and testing the predictions Introduce a new $\mathcal{L}_{\mathrm{BSM}}$ such that $\mathcal{L}_{\mathrm{BSM}} o \mathcal{L}_{\mathrm{SM}}$ in some limit #### Strategy II: Model-independent Effective Field Theory (EFT) Extend the SM such that $\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+ rac{c_i}{\Lambda^2}\,\mathcal{O}_i^{\mathrm{dim}6}+...$, fit to data yields constraint on $rac{c_i}{\Lambda^2}$ $\mathcal{L}^{\mathrm{dim}6}$ is the most general expression that respects all symmetries of the SM #### Assumptions: **SM-EFT:** - New Physics is heavy - New Physics does not break $SU(2)_L xU(1)$ at $E \leq \Lambda$ #### <u>Consequences</u>: - → Effects from dim6 dominate over dim8, ... - → Relations between anomalous couplings of SM fields # **Example:** Add new dim6 Lagrangian term $$\mathcal{O}_{\phi q 1}^{\text{dim6}} = i(\phi^{\dagger} D_{\mu} \phi)(\bar{U}_{\text{L}} \gamma^{\mu} U_{\text{L}})$$ SU(2)xU(1) invariant ## **Example:** #### Add new dim6 Lagrangian term $$\mathcal{O}_{\phi q 1}^{\text{dim6}} = i(\phi^{\dagger} D_{\mu} \phi)(\bar{U}_{L} \gamma^{\mu} U_{L})$$ SU(2)xU(1) invariant #### Cross section contribution: $$\sigma_{ m BSM} = \sigma_{ m SM} + rac{v^2}{\Lambda^2} \; \sigma_{ m EFT} + rac{v^4}{\Lambda^4} \; \sigma_{ m EFT^2}$$ Yields modified coupling for *ttZ* and *tbW* $$= \frac{\mathrm{i}e}{2s_w c_w} \gamma^{\mu} \left\{ \left(1 + \frac{c_{\phi q1}}{\Lambda^2} \right) P_{\mathrm{L}} + P_{\mathrm{R}} - 2s_w^2 Q_t \right\}$$ $$= \frac{\mathrm{i}e}{\sqrt{2}s_w} \gamma^{\mu} P_{\mathrm{L}} \left(1 + \frac{c_{\phi q1}}{\Lambda^2} \right)$$ ## **Example:** ## Add new dim6 Lagrangian term $$\mathcal{O}_{\phi q 1}^{\text{dim} 6} = \mathrm{i}(\phi^{\dagger} D_{\mu} \phi) (\bar{U}_{\mathrm{L}} \gamma^{\mu} U_{\mathrm{L}})$$ $$SU(2) \times U(1) \text{ invariant}$$ #### Cross section contribution: $$\sigma_{ m BSM} = \sigma_{ m SM} + rac{v^2}{\Lambda^2} \, \sigma_{ m EFT} + rac{v^4}{\Lambda^4} \, \sigma_{ m EFT^2}$$ Yields modified coupling for *ttZ* and *tbW* ## **Example:** ## Add new dim6 Lagrangian term $$\mathcal{O}_{\phi q 1}^{\text{dim} 6} = i(\phi^{\dagger} D_{\mu} \phi)(\bar{U}_{L} \gamma^{\mu} U_{L})$$ $$\underbrace{\text{SU(2)xU(1) invariant}}$$ #### Cross section contribution: $$\sigma_{ m BSM} = \sigma_{ m SM} + rac{v^2}{\Lambda^2} \, \sigma_{ m EFT} + rac{v^4}{\Lambda^4} \, \sigma_{ m EFT^2}$$ Yields modified coupling for *ttZ* and *tbW* Interpreting top-quark LHC measurements in the standard-model effective field theory J.A. Aguilar Saavedra, ¹ C. Degrande, ² G. Durieux, ³ F. Maltoni, ⁴ E. Vryonidou, ² C. Zhang, ⁵ (editors), D. Barducci, ⁶ I. Brivio, ⁷ V. Cirigliano, ⁸ W. Dekens, ^{8,9} J. de Vries, ¹⁰ C. Englert, ¹¹ M. Fabbrichesi, ¹² C. Grojean, ^{3,13} U. Haisch, ^{2,14} Y. Jiang, ⁷ J. Kamenik, ^{15,16} M. Mangano, ² D. Marzocca, ¹² E. Mergehetti, ⁸ K. Mimasu, ⁴ L. Moore, ⁴ G. Perez, ¹⁷ T. Plehn, ¹⁸ F. Riva, ² M. Russell, ¹⁸ J. Santiago, ¹⁹ M. Schulze, ¹³ Y. Soreq, ²⁰ A. Tonero, ²¹ M. Trott, ⁷ S. Westhoff, ¹⁸ C. White, ²² A. Wulzer, ^{2,23,24} J. Zupan, ²⁵ linear limitquadratic limit E_{c}^{2} ## **Example:** ## Add new dim6 Lagrangian term $$\mathcal{O}_{uW}^{\text{dim}6} = (\bar{U}_{\text{L}} \sigma^{\mu\nu} \tau^a t_{\text{R}}) \tilde{\phi} W_{\mu\nu}^a$$ $$\frac{\text{SU(2)xU(1) invariant}}{\text{SU(2)xU(1) invariant}}$$ ## Cross section contribution: Require: $E \ll \Lambda$ → Limit energy range of the analysis Yields modified coupling for ttZ and tbW Interpreting top-quark LHC measurements in the standard-model effective field theory J. A. Aguilar Saawedra, ¹ C. Degrande, ² G. Durieux, ³ F. Maltoni, ⁴ E. Vryonidou, ² C. Zhang⁶ (editors), D. Barducci, ⁶ I. Brivò, ⁷ V. Crigliano, ⁸ W. Dekens, ⁸ J. de Vries, ¹⁰ C. Englert, ¹¹ M. Fabbrichesi, ¹² C. Grojean, ^{3,13} U. Haisch, ^{2,14} Y. Jiang, ⁷ J. Kamenik, ^{15,16} M. Mangano, ² D. Marzocca, ¹² E. Mereghetti, ⁸ K. Mimasu, ⁴ L. Moore, ⁴ G. Perez, ¹⁷ T. Plehn, ¹⁸ F. Riva, ² M. Russell, ¹⁸ J. Santiago, ¹⁹ M. Schulze, ¹³ Y. Soreq, ²⁰ A. Tonero, ²¹ M. Trott, ⁷ S. Westhoff, ¹⁸ C. White, ²² A. Wulzer, ^{223,24} J. Zupan, ²⁵ linear limit quadratic limit #### **Features:** - Very complex final state (often up to 8 particles) - Sufficiently large cross sections - Small backgrounds & clean signature (if $W \rightarrow$ leptons) - Meaningful separation into production and decay dynamics - Sensitivity to New Physics #### **Features:** - Very complex final state (often up to 8 particles) - Sufficiently large cross sections - Small backgrounds & clean signature (if $W \rightarrow$ leptons) - Meaningful separation into production and decay dynamics - Sensitivity to New Physics Special property: $\Lambda_{\rm QCD} \ll \Gamma_t \ll m_t$ - No hadronic bound states - Spin information is transferred to decay products - Production and decay are separated by large time scale - Top quarks like to go onshell before they decay #### Sensitivity to QCD dynamics $\mathcal{O}_{td}^{(8)} = (\bar{t}_R \gamma_\mu T^a t_R) (\bar{d}_R \gamma^\mu T^a d_R)$ $\mathcal{O}_{tu}^{(8)} = (\bar{t}_R \gamma_\mu T^a t_R) (\bar{u}_R \gamma^\mu T^a u_R)$ $\mathcal{O}_{tq}^{(8)} = (\bar{t}_R \gamma_\mu T^a t_R) (\bar{q}_L \gamma^\mu T^a q_L)$ $\mathcal{O}_{Qd}^{(8)} = (\bar{Q}_L \gamma_\mu T^a Q_L) (\bar{d}_R \gamma^\mu T^a d_R)$ $\mathcal{O}_{Qu}^{(8)} = (\bar{Q}_L \gamma_\mu T^a Q_L) (\bar{u}_R \gamma^\mu T^a u_R)$ $= (\bar{Q}_L \gamma_\mu \tau^i Q_L) (\bar{q}_L \gamma^\mu \tau^i q_L)$ $\mathcal{O}_{Qq}^{(1,1)} = (\bar{Q}_L \gamma_\mu Q_L) (\bar{q}_L \gamma^\mu q_L)$ $O_{td}^{(1)} = (\bar{t}_R \gamma_\mu t_R) (\bar{d}_R \gamma^\mu d_R)$ $O_{tu}^{(1)} = (\bar{t}_R \gamma_\mu t_R)(\bar{u}_R \gamma^\mu u_R)$ $O_{tq}^{(1)} = (\bar{t}_R \gamma_\mu t_R)(\bar{q}_L \gamma^\mu q_L)$ $\mathcal{O}_{Qd}^{(1)} = (\bar{Q}_L \gamma_\mu Q_L) (\bar{d}_R \gamma^\mu d_R)$ $\mathcal{O}_{Qu}^{(1)} = (\bar{Q}_L \gamma_\mu Q_L) (\bar{u}_R \gamma^\mu u_R)$ $c_G \mathcal{O}_G = \frac{g_s \, c_G}{\Lambda^2} \, f_{abc} G^{\rho}_{a\nu} G^{\nu}_{b\lambda} G^{\lambda}_{c\rho}$ → See [Krauss, Kuttimalai, Plehn] (2016) Sensitivity to EW physics $$C_{\phi q}^{(3,33)} = \mathrm{i} \left(\phi^{\dagger} \tau^{a} D_{\mu} \phi \right) (\bar{t}_{\mathrm{L}} \gamma^{\mu} \tau_{a} t_{\mathrm{L}}),$$ $$\mathcal{O}_{\phi \phi}^{33} = \mathrm{i} \left(\tilde{\phi}^{\dagger} D_{\mu} \phi \right) (\bar{u}_{R} \gamma^{\mu} d_{R})$$ $$\mathcal{O}_{uW}^{33} = \left(\bar{q}_{\mathrm{L}} \sigma^{\mu \nu} \tau^{I} t_{\mathrm{R}} \right) \tilde{H} W_{\mu \nu}^{I},$$ $$\mathcal{O}_{dW}^{33} = \left(\bar{q}_{\mathrm{L}} \sigma^{\mu \nu} \tau^{I} b_{\mathrm{R}} \right) HW_{\mu \nu}^{I},$$ ## **Associated production:** Sensitivity to couplings of neutral gauge bosons and the Higgs Boson ## Associated production: Sensitivity to couplings of neutral gauge bosons and the Higgs Boson $$\begin{split} C^{33}_{u\phi} &= (\tilde{\phi}^{\dagger}\phi)(\bar{q}_L u_R) \\ C^{(3,33)}_{\phi q} &= \mathrm{i} \, (\phi^{\dagger}\tau^a D_{\mu}\phi) \, (\bar{t}_L \gamma^{\mu} \tau_a t_L), \\ C^{(1,33)}_{\phi q} &= \mathrm{i} \, (\phi^{\dagger}D_{\mu}\phi) \, (\bar{t}_L \gamma^{\mu} t_L), \\ C^{(1,33)}_{\phi q} &= \mathrm{i} \, (\phi^{\dagger}D_{\mu}\phi) \, (\bar{t}_L \gamma^{\mu} t_L), \\ C^{33}_{\phi u} &= \mathrm{i} \, (\phi^{\dagger}D_{\mu}\phi) \, (\bar{t}_R \gamma^{\mu} t_R). \end{split} \qquad \mathcal{O}^{33}_{uB\phi} &= (\bar{q}_L \sigma^{\mu\nu} t_R) \, \tilde{H} B_{\mu\nu}, \end{split}$$ $$\begin{split} O^1_{lq} &\equiv \bar{l} \gamma_\mu l \quad \bar{q} \gamma^\mu q, \\ O_{lu} &\equiv \bar{l} \gamma_\mu l \quad \bar{u} \gamma^\mu u, \\ O_{eq} &\equiv \bar{e} \gamma^\mu e \quad \bar{q} \gamma_\mu q, \\ O_{eu} &\equiv \bar{e} \gamma_\mu e \quad \bar{u} \gamma^\mu u, \end{split}$$ $$\begin{array}{lll} O^1_{lq} \equiv \bar{l} \gamma_\mu I & \bar{q} \gamma^\mu q, & O^1_{leau} \equiv \bar{l} e \ \varepsilon \ \bar{q} u, \\ O_{lu} \equiv \bar{l} \gamma_\mu I & \bar{u} \gamma^\mu u, & O^3_{leau} \equiv \bar{l} \sigma_{\mu\nu} e \ \varepsilon & \bar{q} \sigma^{\mu\nu} u, \\ O_{eq} \equiv \bar{e} \gamma^\mu e & \bar{q} \gamma_\mu q, & O^3_{lequ} \equiv \bar{l} \sigma_{\mu\nu} e \ \varepsilon & \bar{q} \sigma^{\mu\nu} u, \\ O_{eu} \equiv \bar{e} \gamma_\mu e & \bar{u} \gamma^\mu u, & O^3_{lq} \equiv \bar{l} \gamma_\mu \tau^I I & \bar{q} \gamma^\mu \tau^I q, \end{array}$$ - Allows to probe a large range of new couplings - Electroweak top quark couplings are not very well constrained - Tevatron never produced *ttbar+X* final states - Relations from EW precision observables # Single top quark production: Only mentioned briefly for brevity Excellent sensitivity to tbW coupling and top quark mass # The big picture $$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L) + V_R P_R t W_{\mu}^- - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (g_L P_L) + g_R P_R t W_{\mu}^- + \text{H.c.}.$$ $$\mathcal{L}_{\gamma tt} = -eQ_t \bar{t} \, \gamma^{\mu} t \, A_{\mu} - e\bar{t} \, \frac{i\sigma^{\mu\nu} q}{m_t} \left(d_V^{\gamma} + id_A^{\gamma} \gamma_5 \right) A_{\mu} \, .$$ $$\mathcal{L}_{Ztt} \ = \ -\frac{g}{2c_W} \bar{t} \, \gamma^\mu \left(X_{tt}^L P_L \right) + X_{tt}^R P_R - 2 s_W^2 Q_t \right) t \, Z_\mu - \frac{g}{2c_W} \bar{t} \, \frac{i \sigma^{\mu\nu} q_V}{M_Z} \left(d_V^Z + i d_A^Z \gamma_5 \right) \right) Z_\mu \, , \label{eq:local_Lztt}$$ Top quarks produced at the LHC are unpolarized. However, the relative polarization of top and anti-top is correlated. [Barger,Ohnemus,Philips] (1988) $$C_{\mathrm{LO}}^{\mathrm{SM}} = \frac{\# \left(\uparrow \uparrow + \downarrow \downarrow\right) - \# \left(\uparrow \downarrow + \downarrow \uparrow\right)}{\# \mathrm{total}} = \begin{cases} -46\% & \mathrm{at\ Tevatron,} \\ +31\% & \mathrm{at\ LHC.} \end{cases}$$ (quantization axis = direction of flight) Top quarks produced at the LHC are unpolarized. However, the relative polarization of top and anti-top is correlated. [Barger,Ohnemus,Philips] (1988) $$C_{\mathrm{LO}}^{\mathrm{SM}} = \frac{\# \left(\uparrow \uparrow + \downarrow \downarrow\right) - \# \left(\uparrow \downarrow + \downarrow \uparrow\right)}{\# \mathrm{total}} = \begin{cases} -46\% & \text{at Tevatron,} \\ +31\% & \text{at LHC.} \end{cases}$$ (quantization axis = direction of flight) Interesting quantity because very sensitive to New Physics: $$q$$ t $\mathcal{L}_{\mathrm{BSM}} = \frac{g_s^2}{2m_t^2} \, \hat{c}_{VV} \, (\bar{q}\gamma^{\mu} t^a q) + \frac{g_s^2}{4m_t^2} \, \hat{c}_1 \, \{ (\bar{q}\gamma^{\mu}\sigma_3 t^a q) \}$ $$\begin{array}{ccc} & \mathcal{L}_{\text{BSM}} = \frac{g_s^2}{2m_t^2} \, \hat{c}_{VV} \, \left(\bar{q} \gamma^{\mu} t^a q \right) \left(\bar{t} \gamma_{\mu} t^a t \right) \\ & + \frac{g_s^2}{4m_t^2} \, \hat{c}_1 \left\{ \left(\bar{q} \gamma^{\mu} \sigma_3 t^a q \right) \left(\bar{t} \gamma_{\mu} t^a t \right) + \left(\bar{q} \gamma^{\mu} \gamma^5 \sigma_3 t^a q \right) \left(\bar{t} \gamma_{\mu} t^a t \right) \right\} \end{array}$$ $$C_{\text{LO}}^{\text{BSM}} = \begin{cases} -89\% & c_{VV} \\ +18\% & c_{I} \end{cases}$$ In the early days (Tevatron run-II) it was questionable whether spin correl. are observable. Non-perturbative effects and radiative top quark decays wash out the correlation. Thanks to $\Lambda_{\rm QCD} \ll \Gamma_t \ll m_t$ the non pert. dilution is small. No collinear enhancement. \rightarrow Spin correlations first observed by DZero (2011) in $\Delta \phi_{\ell\ell}$ distribution using MEM methods. [Melnikov, M.S.] (2011) Important: (V-A) interaction in decay transfers spin information to decay products Top quark spin correlation is imprinted in lepton angular distribution State-of-the-art: NNLO QCD for top quark production + decay (NWA) see also talk by Rene Poncelet $$\begin{split} d\sigma^{\mathrm{LO}} &= d\sigma^{\mathrm{LO} \times \mathrm{LO}} \,, \\ d\sigma^{\mathrm{NLO}} &= d\sigma^{\mathrm{NLO} \times \mathrm{LO}} + d\sigma^{\mathrm{LO} \times \mathrm{NLO}} - \frac{2\Gamma_t^{(1)}}{\Gamma_t^{(0)}} d\sigma^{\mathrm{LO}} \,, \, \, (1) \\ d\sigma^{\mathrm{NNLO}} &= d\sigma^{\mathrm{NNLO} \times \mathrm{LO}} + d\sigma^{\mathrm{LO} \times \mathrm{NNLO}} + d\sigma^{\mathrm{NLO} \times \mathrm{NLO}} \\ &- \frac{2\Gamma_t^{(1)}}{\Gamma_t^{(0)}} d\sigma^{\mathrm{NLO}} - \frac{\left(\Gamma_t^{(1)}\right)^2 + 2\Gamma_t^{(0)}\Gamma_t^{(2)}}{\left(\Gamma_t^{(0)}\right)^2} d\sigma^{\mathrm{LO}} \,. \end{split}$$ Quote: "In our view the most plausible explanation for this discrepancy lies in the extrapolation of the fiducial measurement to the full phase space." Exp. data from ATLAS-CONF-2018-027 13 TEV, 36 fb-1 Sensible since extrapolation does not use NNLO QCD simulation. This is a very broad field. Therefore *just the basics*: - m_t is an important parameter of the SM: consistency checks, vacuum stability - m_t is a parameter of the Lagrangian $\to \mathcal{O}_{\text{measured}}^{\text{nature}} = \mathcal{O}_{\text{predicted}}^{\text{N^{\times}LOtheory}}(m_t, \text{ren. scheme})$ - Typical mass definitions: Pole mass, MSbar mass, MSR mass [Degrassi,Di Vita,Elias-Miro,Espinosa,Giudice,Isidori,Strumia] (2012) This is a very broad field. Therefore *just the basics*: - m_t is an important parameter of the SM: consistency checks, vacuum stability - m_t is a parameter of the Lagrangian $\to \mathcal{O}_{\text{measured}}^{\text{nature}} = \mathcal{O}_{\text{predicted}}^{\text{N*LOtheory}}(m_t, \text{ren. scheme})$ - Typical mass definitions: Pole mass, MSbar mass, MSR mass - p k p - Since MC generators are involved in the extraction of m_t , the term "MC mass" appeared Strictly speaking: not a well-defined mass. No relation between $\mathcal{O}_{\text{measured}}^{\text{nature}}$, $\mathcal{O}_{\text{predicted}}^{\text{theory}}$. Arguments have been presented that MC mass should be numerically close to pole mass see e.g. [Beneke], [Hoang], [Mangano], [Nason] - \rightarrow MC mass is a slippery notion. It would be better to discuss sources of uncertainties. - → Monte Carlo modeling cannot be avoided completely, but should be reduced to a minimum in favor of first principle calculations. [Degrassi,Di Vita,Elias-Miro,Espinosa,Giudice,Isidori,Strumia] (2012) #### State-of-the-art: At this level of precision: Spin correlated top quark production+decay needs to be accounted for. Unfolding/simulation of stable top quarks is no longer justified. single measurements with smallest systematics #### State-of-the-art: - NLO QCD - Top quark decays - Off-shell effects - Advanced understanding of PS uncert. Journal of High Energy Physics - March 2018, 2018:169 | Cite as ## New Physics in Single Top Eur. Phys. J. C (2018) 78:919 https://doi.org/10.1140/epjc/s10052-018-6399-3 THE EUROPEAN PHYSICAL JOURNAL C Regular Article - Theoretical Physics #### Effective operators in t-channel single top production and decay M. de Beurs¹, E. Laenen^{1,2,3}, M. Vreeswijk¹, E. Vryonidou^{1,4,a} - ¹ Nikhef, Science Park 105, Amsterdam, The Netherlands - ² ITFA, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands - 3 ITF, Utrecht University, Leuvenlaan 4, Utrecht, The Netherlands - 4 CERN Theory Division, 1211 Geneva 23, Switzerland $$\mathcal{L}_{Wtb}^{\rm SM} = -\sum_{f=d,s,b}^{3} \frac{gV_{tf}}{\sqrt{2}} \, \bar{q}_f(x) \gamma^{\mu} P_L t(x) \, W_{\mu}(x) + \text{h. c.}$$ $$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^I \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q)$$ $$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I$$ $$O_{qQ,rs}^{(3)} = (\bar{q}_r \gamma^{\mu} \tau^I q_s) (\bar{Q} \gamma_{\mu} \tau^I Q)$$ simultaneously affect production and decay # New Physics in Single Top Eur. Phys. J. C (2018) 78:919 https://doi.org/10.1140/epjc/s10052-018-6399-3 THE EUROPEAN PHYSICAL JOURNAL C Regular Article - Theoretical Physics #### Effective operators in t-channel single top production and decay M. de Beurs¹, E. Laenen^{1,2,3}, M. Vreeswijk¹, E. Vryonidou^{1,4,a} - 1 Nikhef, Science Park 105, Amsterdam, The Netherlands - ² ITFA, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands - 3 ITF, Utrecht University, Leuvenlaan 4, Utrecht, The Netherlands - ⁴ CERN Theory Division, 1211 Geneva 23, Switzerland $$\mathcal{L}_{Wtb}^{\text{SM}} = -\sum_{f=d,s,b}^{3} \frac{gV_{tf}}{\sqrt{2}} \, \bar{q}_f(x) \gamma^{\mu} P_L t(x) \, W_{\mu}(x) + \text{h. c.}$$ $$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^I \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q)$$ $$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu \nu} \tau^I t) \tilde{\varphi} W_{\mu \nu}^I$$ $$O_{qQ,rs}^{(3)} = (\bar{q}_r \gamma^{\mu} \tau^I q_s) (\bar{Q} \gamma_{\mu} \tau^I Q)$$ simultaneously affect production and decay #### \rightarrow First time consistent treatment at NLO QCD #### e.g. top quark width changes: $$\Gamma_{\text{top}}(C_{tW}) = \Gamma_{\text{SM}} + \frac{1\text{TeV}^2}{\Lambda^2} C_{tW} \Gamma_{tW} + \frac{1\text{TeV}^4}{\Lambda^4} C_{tW}^2 \Gamma_{tW,tW}$$ $$\Gamma_{\text{vs } C_{\text{w}}}$$ $$\Gamma_{\text{vs } C_{\text{w}}}$$ # Towards Global Analyses #### A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector Nathan P. Hartland, 1,2 Fabio Maltoni, 3,4 Emanuele R. Nocera, 2,5 Juan Rojo, 1,2 Emma Slade, 6 Eleni Vryonidou, 7 and Cen Zhang 8 Basic Idea: Use all available top quark measurements and allow for most general NP parametrization. Then do a simultaneous fit to all degrees of freedom. # Towards Global Analyses #### A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector Nathan P. Hartland, 1,2 Fabio Maltoni, 3,4 Emanuele R. Nocera, 2,5 Juan Rojo, 1,2 Emma Slade, 6 Eleni Vryonidou, 7 and Cen Zhang 8 | | | | | | Top quark pair | r | w | tΖ | | |-------|----------|-------------------|----------------------------------------------------------------------------------|----------------------|-----------------------------------------|-------------------|---------------|------------------------------------|--| | Class | Notation | Degree of Freedom | Operator Definition | (2) | | /. | WN | <u>u</u> → d | | | QQQQ | 0QQ1 | c_{QQ}^1 | $2C_{qq}^{1(3333)} - \frac{2}{3}C_{qq}^{3(3333)}$ | A | \$ ************************************ | · _ | | $\geq w$ | | | | 0008 | c_{QQ}^8 | $8C_{qq}^{3(3333)}$ | | | (200) | \ | | | | | 0Qt1 | c_{Qt}^1 | $C_{qu}^{1(3333)}$ | 10 | | i y | \ t | b 2z | | | | 0Qt8 | c_{Qt}^8 | $C_{qu}^{8(3333)}$ | | Single top (t-channel) | Single top | (s-channel) | ttbb | | | | 0Qb1 | c_{Qb}^1 | $C_{qd}^{1(3333)}$ | | 1 | _ | 1- | -10 | | | | 0Qb8 | c_{Qb}^8 | $C_{qd}^{8(3333)}$ | Š | | A. | W b | 90000 1 1 | | | | Ott1 | c_{tt}^1 | $C_{uu}^{(3333)}$ | | | <i>></i> ~ | ~~< | *30000< | | | | Otb1 | c_{tb}^1 | $C_{ud}^{1(3333)}$ | | b / t | /q | 1 | 900 | | | | Otb8 | c_{tb}^8 | $C_{ud}^{8(3333)}$ | | | | | | | | | OQtQb1 | c^1_{QlQb} | $C_{quqd}^{1(3333)}$ | | tfW | | ttZ | ttH | | | | OQtQb8 | c_{QtQb}^{8} | $C_{quqd}^{8(3333)}$ | | | | | t | | | | 081qq | $c_{Qq}^{1,8}$ | $C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$ | \bar{d} | \0000000\ | - B | | 000000 - r | | | | 011qq | $c_{Qq}^{1,1}$ | $C_{qq}^{1(ii33)} + \frac{1}{6}C_{qq}^{1(ii33i)} + \frac{1}{2}C_{qq}^{3(ii33i)}$ | d | 1 | 300 | 300000<\1'" \ | | | | | 083qq | $c_{Qq}^{3,8}$ | $C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}$ | white we | | i 3008/00 | 7 | 7000000√ - ī | | | | 013qq | $c_{Qq}^{3,1}$ | $C_{qq}^{3(ii33)} + \frac{1}{6}(C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)})$ | <i>y</i> | VL W+ | | | | | | | 08qt | c_{tq}^8 | $C_{qu}^{8(ii33)}$ | | | | | | | | | 01qt | c_{tq}^1 | $C_{qu}^{1(ii33)}$ | | OtG
OtW | c_{tG} | Ref | $C_{uG}^{(33)}$ } | | | QQqq | 08ut | c_{tu}^8 | $2C_{uu}^{(i33i)}$ | | | c_{tW} | | $C_{uW}^{(33)}$ } | | | QQqq | 01ut | c_{tu}^1 | $C_{uu}^{(ii33)} + \frac{1}{3}C_{uu}^{(i33i)}$ | | OPA | c_{bW} | | $C_{dW}^{(33)}$ } | | | | 08qu | c_{Qu}^8 | $C_{qu}^{8(33ii)}$ | | 0tZ | c_{tZ} | | $c_{dW}^{(3)} + c_W C_{uW}^{(33)}$ | | | | 01qu | c_{Qu}^1 | $C_{qu}^{1(33ii)}$ | $QQ + V, G, \varphi$ | Off | $c_{\varphi tb}$ | | $C_{\varphi ud}^{(33)}$ | | | | 08dt | c_{td}^8 | $C_{ud}^{8(33ii)}$ | | Ofq3 | $c_{\varphi Q}^3$ | | - φua)
3(33)
ρq | | | | 01dt | c_{td}^1 | C1(33ii) | | OpQM | $c_{\varphi Q}^-$ | | $-C_{\varphi q}^{3(33)}$ | | | | 08qd | c_{Qd}^8 | C_{qd}^{ud} | | Opt | $c_{\varphi t}$ | | φu (33) | | | | 01qd | c_{Qd}^1 | $C_{qd}^{1(33ii)}$ | | Otp | $c_{t\varphi}$ | | $C_{u\varphi}^{(33)}$ } | | | | - 1- | Qa. | 1 qd | | | - 17 | | / | | Basic Idea: Use all available top quark measurements and allow for most general NP parametrization. Then do a simultaneous fit to all degrees of freedom. | Notation | Sensitivity at $O(\Lambda^{-2})$ $(O(\Lambda^{-4}))$ | | | | | | | | | |---|--|-----------------|--------------|--|--|-----------------------------|---|--------------------|--------------------| | | $t\bar{t}$ | single-top | tW | tZ | $t\bar{t}W$ | $t\bar{t}Z$ | $t\bar{t}H$ | $t\bar{t}t\bar{t}$ | $t\bar{t}b\bar{b}$ | | 0QQ1
0QQ8
0Qt1
0Qt8
0Qb1
0Qb8
0tt1
0tb1
0tb8 | | | | | | | | 4 4 4 | 8 4 4 4 4 4 4 8 | | 00tQb8 081qq 011qq 083qq 013qq 08qt 01qt 08ut 01ut 08qu 01qu 08qt 01td | | [V] | | [v]
v | \forall \for | 3 < 3 < 3 < 3 < 3 < 3 < 3 < | 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < | ********* | | | OtG OtW ObW OtZ Off Ofq3 OpQM Opt | 1 | (v)
(v)
v | \(\forall \) | \(\sqrt{\sq}\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | ✓ | 1 | 1 | 1 | ✓ | 34 operators, 30 different measurements form 10 processes # Towards Global Analyses Main ingredient: Generation of MC replicas (N=1000), similar to PDF fits **Results:** # Community Effort: LHC-HL & LHC-HE Working Groups CERN-LPCC-2018-03 February 26, 2019 # Standard Model Physics at the HL-LHC and HE-LHC Report from Working Group 1 on the Physics of the HL-LHC, and Perspectives at the HE-LHC Editor P. Azzi¹, S. Farry², P. Nason^{3,4}, A. Tricoli⁵, D. Zeppenfeld⁶ A large compendium of studies for • HL-LHC: 14 TeV, 3000 fb⁻¹ • HE-LHC: 27 TeV, 15 000 ${\rm fb}^{-1}$ A few selections: ... #### Top quark pair production #### Single top production # Community Effort: LHC-HL & LHC-HE Working Groups #### Four top production | HL-LHC | Basic | |---------------------------------|---------------------| | $\bar{t}t\bar{t}t_H$ | 577.22 | | $\bar{t}t\bar{t}t_{g/Z/\gamma}$ | 5006.34 | | $ar{t}tar{t}t_{ ext{int}}$ | -764.67 | | $\bar{t}t$ | 2.5×10^{8} | | $\bar{t}tW^+$ | 32670 | | $\bar{t}tW^-$ | 16758 | | $\bar{t}tZ$ | 24516 | | $W^{\pm}W^{\pm}jj$ | 4187.7 | | HE-LHC | Basic | |---------------------------------|---------------------| | $ar t t ar t t_H$ | 15174.4 | | $\bar{t}t\bar{t}t_{g/Z/\gamma}$ | 148898. | | $ar{t}tar{t}t_{ ext{int}}$ | -20141.9 | | $ar{t}t$ | 3.3×10^{7} | | $\bar{t}tW^+$ | 1.3×10^{6} | | $\bar{t}tW^-$ | 7.6×10^5 | | ar t t Z | 3.9×10^{6} | | $W^{\pm}W^{\pm}jj$ | 888700 | #### *Vcb* extraction Quote: "To date, |Vcb | has always been measured in B decays, i.e. at an energy scale mb, far below the weak scale, and it is currently known to an uncertainty of about 2%. #### Rare decays | B limit at 95%C.L. | 3 ab ⁻¹ , 14 TeV | 15ab ⁻¹ , 27 TeV | Ref. | |--------------------|-----------------------------|-----------------------------|-------| | $t \to gu$ | 3.8×10^{-6} | 5.6×10^{-7} | [731] | | $t \to gc$ | 32.1×10^{-6} | 19.1×10^{-7} | [731] | | $t \to Zq$ | $2.4 - 5.8 \times 10^{-5}$ | | [743] | | $t \to \gamma u$ | 8.6×10^{-6} | | [734] | | $t \to \gamma c$ | 7.4×10^{-5} | | [734] | | $t \to Hq$ | 10^{-4} | | [743] | #### **SUMMARY** - Studying top quark properties is a way of searching for physics beyond the SM - The top quark system is an ideal place because it yields sensitivity to a large variety of possible New Physics interactions - Assuming SU(2)xU(1) symmetry holds, certain top quark interactions are related - I presented a selection of state-of-the-art on: - Spin correlations - Top quark mass - Single top and Top pair associated production - General trend in theory: Modeling is replaced by first principle calculations This is what is required for reliably interpreting the data