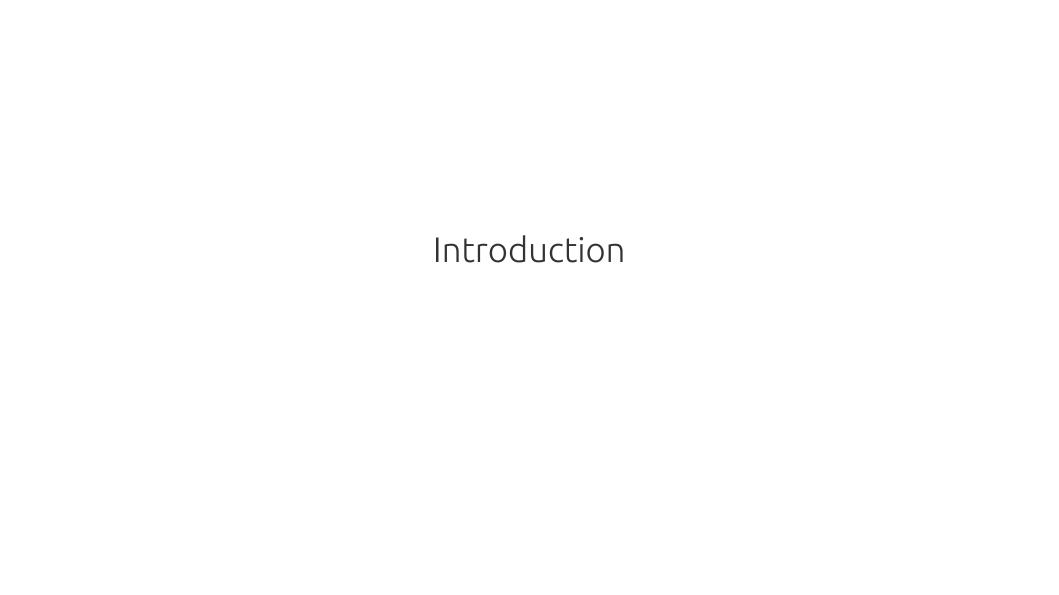
27th International Workshop on Deep-Inelastic Scattering & Related Subjects



Top Quark Properties

Markus Schulze Humboldt-University Berlin

What do we mean by "top quark properties"?

Person A: Mass, Width

Person B: Gauge and Yukawa couplings

Person C: Cross section, $A_{\mathbb{C}}$, Whelicity fractions

What do we mean by "top quark properties"?

Person A: Mass, Width

Person B: Gauge and Yukawa couplings

Person C: Cross section, $A_{\mathbb{C}}$, Whelicity fractions

At the level of the SM Lagrangian, it is a well-defined question:

$$\mathcal{L}_{\text{top}}^{\text{SM}} = \bar{t} \, \mathrm{i} \left(\partial \!\!\!/ + \frac{\mathrm{i}e}{c_w} Y \not \!\!\!/ \!\!\!\!/ - \frac{\mathrm{i}e}{s_w} I^a \not \!\!\!/ \!\!\!\!/ u - \mathrm{i} g_s T^c \not \!\!\!/ \!\!\!\!/ c \right) t - m_t \, \bar{t} \, t$$

Everything is determined by: $\alpha, s_w, \alpha_s, m_t$ (+SM symmetries).

What do we mean by "top quark properties"?

Person A: Mass, Width

Person B: Gauge and Yukawa couplings

Person C: Cross section, $A_{\mathbb{C}}$, Whelicity fractions

At the level of the SM Lagrangian, it is a well-defined question:

$$\mathcal{L}_{\text{top}}^{\text{SM}} = \bar{t} \, \mathrm{i} \left(\partial \!\!\!/ + \frac{\mathrm{i}e}{c_w} Y \not \!\!\!/ \!\!\!\!/ - \frac{\mathrm{i}e}{s_w} I^a \not \!\!\!/ \!\!\!\!/ u - \mathrm{i} g_s T^c \not \!\!\!/ \!\!\!\!/ c \right) t - m_t \, \bar{t} \, t$$

Everything is determined by: $\alpha, s_w, \alpha_s, m_t$ (+SM symmetries).

These are not observables but free parameters of the theory, fixed by some measurement.

$$\mathcal{O}_{\mathrm{measured}}^{\mathrm{nature}} = \mathcal{O}_{\mathrm{predicted}}^{\mathrm{theory}}(\alpha) \xrightarrow{\mathrm{solve}} \alpha$$

What do we mean by "top quark properties"?

Person A: Mass, Width

Person B: Gauge and Yukawa couplings

Person C: Cross section, $A_{\mathbb{C}}$, Whelicity fractions

At the level of the SM Lagrangian, it is a well-defined question:

$$\mathcal{L}_{\text{top}}^{\text{SM}} = \bar{t} \, \mathrm{i} \left(\partial \!\!\!/ + \frac{\mathrm{i}e}{c_w} Y \not \!\!\!/ \!\!\!\!/ - \frac{\mathrm{i}e}{s_w} I^a \not \!\!\!/ \!\!\!\!/ u - \mathrm{i} g_s T^c \not \!\!\!/ \!\!\!\!/ c \right) t - m_t \, \bar{t} \, t$$

Everything is determined by: $\alpha, s_w, \alpha_s, m_t$ (+SM symmetries).

Once the parameters are reliably fixed, we try to *test the theory*, i.e. try to *falsify* the model, i.e. *find New Physics*:

$$\mathcal{O}_{\mathrm{measured}}^{\mathrm{nature}} = \mathcal{O}_{\mathrm{predicted}}^{\mathrm{theory}}(\alpha) \quad \stackrel{\mathrm{test}}{\longleftarrow} \quad \alpha$$

What do we mean by "top quark properties"?

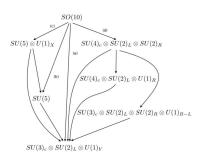
Person A: Mass, Width

Person B: Gauge and Yukawa couplings

Person C: Cross section, $A_{\mathbb{C}}$, Whelicity fractions

At the level of the SM Lagrangian, it is a well-defined question:

$$\mathcal{L}_{\text{top}}^{\text{SM}} = \bar{t} \, \mathrm{i} \left(\partial \!\!\!/ + \frac{\mathrm{i}e}{c_w} Y \not \!\!\!/ \!\!\!\!/ - \frac{\mathrm{i}e}{s_w} I^a \not \!\!\!/ \!\!\!\!/ u - \mathrm{i} g_s T^c \not \!\!\!/ \!\!\!\!/ c \right) t - m_t \, \bar{t} \, t$$

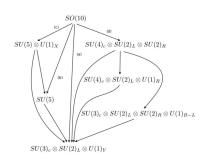

Everything is determined by: $\alpha, s_w, \alpha_s, m_t$ (+SM symmetries).

- → We have to probe observables that are sensitive to physics beyond the SM
- → We need high precision to reliably identify small deviations

Strategy I: Explicit model building and testing the predictions

Introduce a new $\mathcal{L}_{\mathrm{BSM}}$ such that $\mathcal{L}_{\mathrm{BSM}} o \mathcal{L}_{\mathrm{SM}}$ in some limit

Strategy II: Model-independent Effective Field Theory (EFT)



Extend the SM such that $\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{c_i}{\Lambda^2} \, \mathcal{O}_i^{\rm dim6} + ...$, fit to data yields constraint on $\frac{c_i}{\Lambda^2}$ $\mathcal{L}^{\rm dim6}$ is the most general expression that respects all symmetries of the SM

Strategy I: Explicit model building and testing the predictions

Introduce a new $\mathcal{L}_{\mathrm{BSM}}$ such that $\mathcal{L}_{\mathrm{BSM}} o \mathcal{L}_{\mathrm{SM}}$ in some limit

Strategy II: Model-independent Effective Field Theory (EFT)

Extend the SM such that $\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+rac{c_i}{\Lambda^2}\,\mathcal{O}_i^{\mathrm{dim}6}+...$, fit to data yields constraint on $rac{c_i}{\Lambda^2}$ $\mathcal{L}^{\mathrm{dim}6}$ is the most general expression that respects all symmetries of the SM

Assumptions: **SM-EFT:**

- New Physics is heavy
- New Physics does not break $SU(2)_L xU(1)$ at $E \leq \Lambda$

<u>Consequences</u>:

- → Effects from dim6 dominate over dim8, ...
- → Relations between anomalous couplings of SM fields

Example:

Add new dim6 Lagrangian term

$$\mathcal{O}_{\phi q 1}^{\text{dim6}} = i(\phi^{\dagger} D_{\mu} \phi)(\bar{U}_{\text{L}} \gamma^{\mu} U_{\text{L}})$$
SU(2)xU(1) invariant

Example:

Add new dim6 Lagrangian term

$$\mathcal{O}_{\phi q 1}^{\text{dim6}} = i(\phi^{\dagger} D_{\mu} \phi)(\bar{U}_{L} \gamma^{\mu} U_{L})$$
SU(2)xU(1) invariant

Cross section contribution:

$$\sigma_{
m BSM} = \sigma_{
m SM} + rac{v^2}{\Lambda^2} \; \sigma_{
m EFT} + rac{v^4}{\Lambda^4} \; \sigma_{
m EFT^2}$$

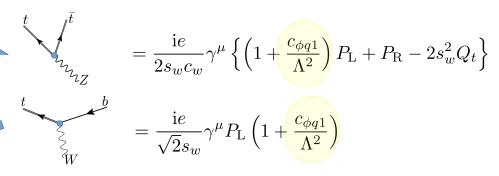
Yields modified coupling for *ttZ* and *tbW*

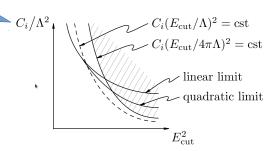
$$= \frac{\mathrm{i}e}{2s_w c_w} \gamma^{\mu} \left\{ \left(1 + \frac{c_{\phi q1}}{\Lambda^2} \right) P_{\mathrm{L}} + P_{\mathrm{R}} - 2s_w^2 Q_t \right\}$$

$$= \frac{\mathrm{i}e}{\sqrt{2}s_w} \gamma^{\mu} P_{\mathrm{L}} \left(1 + \frac{c_{\phi q1}}{\Lambda^2} \right)$$

Example:

Add new dim6 Lagrangian term


$$\mathcal{O}_{\phi q 1}^{\text{dim} 6} = \mathrm{i}(\phi^{\dagger} D_{\mu} \phi) (\bar{U}_{\mathrm{L}} \gamma^{\mu} U_{\mathrm{L}})$$


$$SU(2) \times U(1) \text{ invariant}$$

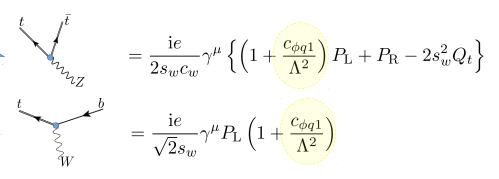
Cross section contribution:

$$\sigma_{
m BSM} = \sigma_{
m SM} + rac{v^2}{\Lambda^2} \, \sigma_{
m EFT} + rac{v^4}{\Lambda^4} \, \sigma_{
m EFT^2}$$

Yields modified coupling for *ttZ* and *tbW*

Example:

Add new dim6 Lagrangian term


$$\mathcal{O}_{\phi q 1}^{\text{dim} 6} = i(\phi^{\dagger} D_{\mu} \phi)(\bar{U}_{L} \gamma^{\mu} U_{L})$$

$$\underbrace{\text{SU(2)xU(1) invariant}}$$

Cross section contribution:

$$\sigma_{
m BSM} = \sigma_{
m SM} + rac{v^2}{\Lambda^2} \, \sigma_{
m EFT} + rac{v^4}{\Lambda^4} \, \sigma_{
m EFT^2}$$

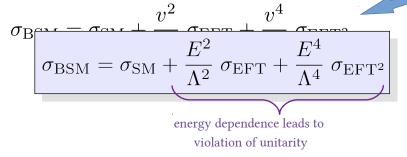
Yields modified coupling for *ttZ* and *tbW*

Interpreting top-quark LHC measurements in the standard-model effective field theory

J.A. Aguilar Saavedra, ¹ C. Degrande, ² G. Durieux, ³
F. Maltoni, ⁴ E. Vryonidou, ² C. Zhang, ⁵ (editors),
D. Barducci, ⁶ I. Brivio, ⁷ V. Cirigliano, ⁸ W. Dekens, ^{8,9} J. de Vries, ¹⁰ C. Englert, ¹¹
M. Fabbrichesi, ¹² C. Grojean, ^{3,13} U. Haisch, ^{2,14} Y. Jiang, ⁷ J. Kamenik, ^{15,16}
M. Mangano, ² D. Marzocca, ¹² E. Mergehetti, ⁸ K. Mimasu, ⁴ L. Moore, ⁴ G. Perez, ¹⁷
T. Plehn, ¹⁸ F. Riva, ² M. Russell, ¹⁸ J. Santiago, ¹⁹ M. Schulze, ¹³ Y. Soreq, ²⁰
A. Tonero, ²¹ M. Trott, ⁷ S. Westhoff, ¹⁸ C. White, ²² A. Wulzer, ^{2,23,24} J. Zupan, ²⁵

linear limitquadratic limit

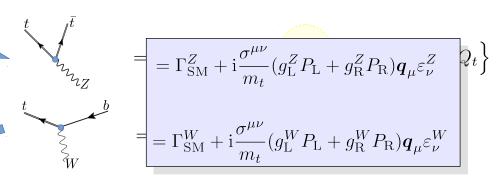
 E_{c}^{2}


Example:

Add new dim6 Lagrangian term

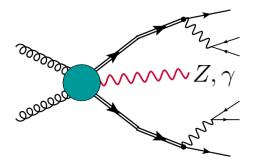
$$\mathcal{O}_{uW}^{\text{dim}6} = (\bar{U}_{\text{L}} \sigma^{\mu\nu} \tau^a t_{\text{R}}) \tilde{\phi} W_{\mu\nu}^a$$

$$\frac{\text{SU(2)xU(1) invariant}}{\text{SU(2)xU(1) invariant}}$$

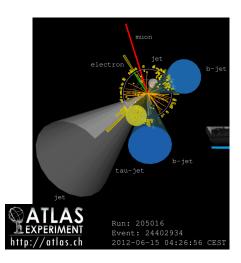

Cross section contribution:

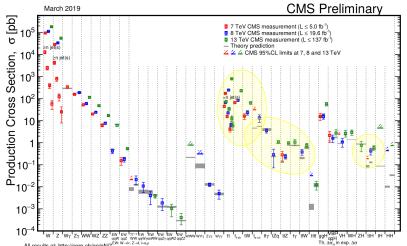
Require: $E \ll \Lambda$

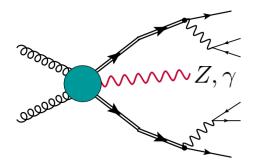
→ Limit energy range of the analysis


Yields modified coupling for ttZ and tbW

Interpreting top-quark LHC measurements in the standard-model effective field theory

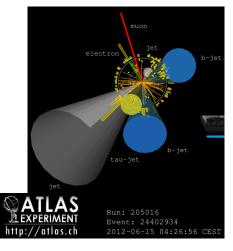

J. A. Aguilar Saawedra, ¹ C. Degrande, ² G. Durieux, ³
F. Maltoni, ⁴ E. Vryonidou, ² C. Zhang⁶ (editors),
D. Barducci, ⁶ I. Brivò, ⁷ V. Crigliano, ⁸ W. Dekens, ⁸ J. de Vries, ¹⁰ C. Englert, ¹¹
M. Fabbrichesi, ¹² C. Grojean, ^{3,13} U. Haisch, ^{2,14} Y. Jiang, ⁷ J. Kamenik, ^{15,16}
M. Mangano, ² D. Marzocca, ¹² E. Mereghetti, ⁸ K. Mimasu, ⁴ L. Moore, ⁴ G. Perez, ¹⁷
T. Plehn, ¹⁸ F. Riva, ² M. Russell, ¹⁸ J. Santiago, ¹⁹ M. Schulze, ¹³ Y. Soreq, ²⁰
A. Tonero, ²¹ M. Trott, ⁷ S. Westhoff, ¹⁸ C. White, ²² A. Wulzer, ^{223,24} J. Zupan, ²⁵


linear limit
quadratic limit

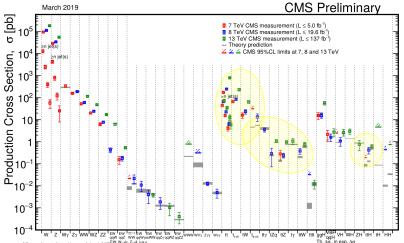


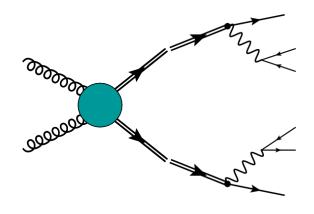
Features:

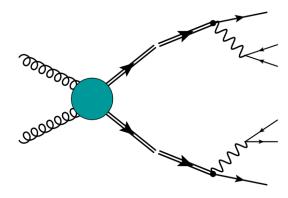
- Very complex final state (often up to 8 particles)
- Sufficiently large cross sections
- Small backgrounds & clean signature (if $W \rightarrow$ leptons)
- Meaningful separation into production and decay dynamics
- Sensitivity to New Physics

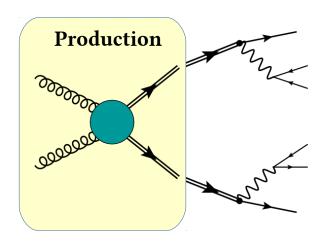


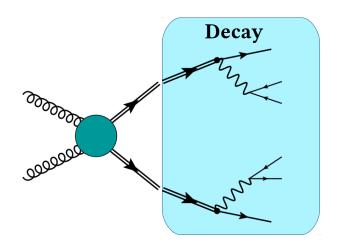
Features:

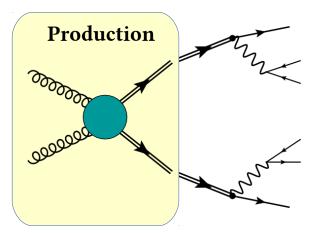

- Very complex final state (often up to 8 particles)
- Sufficiently large cross sections
- Small backgrounds & clean signature (if $W \rightarrow$ leptons)
- Meaningful separation into production and decay dynamics
- Sensitivity to New Physics

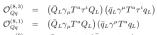



Special property: $\Lambda_{\rm QCD} \ll \Gamma_t \ll m_t$


- No hadronic bound states
- Spin information is transferred to decay products


- Production and decay are separated by large time scale
- Top quarks like to go onshell before they decay





Sensitivity to QCD dynamics

 $\mathcal{O}_{td}^{(8)} = (\bar{t}_R \gamma_\mu T^a t_R) (\bar{d}_R \gamma^\mu T^a d_R)$

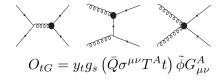
 $\mathcal{O}_{tu}^{(8)} = (\bar{t}_R \gamma_\mu T^a t_R) (\bar{u}_R \gamma^\mu T^a u_R)$

 $\mathcal{O}_{tq}^{(8)} = (\bar{t}_R \gamma_\mu T^a t_R) (\bar{q}_L \gamma^\mu T^a q_L)$

 $\mathcal{O}_{Qd}^{(8)} = (\bar{Q}_L \gamma_\mu T^a Q_L) (\bar{d}_R \gamma^\mu T^a d_R)$

 $\mathcal{O}_{Qu}^{(8)} = (\bar{Q}_L \gamma_\mu T^a Q_L) (\bar{u}_R \gamma^\mu T^a u_R)$

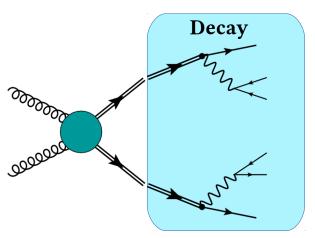
 $= (\bar{Q}_L \gamma_\mu \tau^i Q_L) (\bar{q}_L \gamma^\mu \tau^i q_L)$

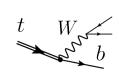

 $\mathcal{O}_{Qq}^{(1,1)} = (\bar{Q}_L \gamma_\mu Q_L) (\bar{q}_L \gamma^\mu q_L)$

 $O_{td}^{(1)} = (\bar{t}_R \gamma_\mu t_R) (\bar{d}_R \gamma^\mu d_R)$

 $O_{tu}^{(1)} = (\bar{t}_R \gamma_\mu t_R)(\bar{u}_R \gamma^\mu u_R)$ $O_{tq}^{(1)} = (\bar{t}_R \gamma_\mu t_R)(\bar{q}_L \gamma^\mu q_L)$

 $\mathcal{O}_{Qd}^{(1)} = (\bar{Q}_L \gamma_\mu Q_L) (\bar{d}_R \gamma^\mu d_R)$

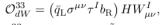

 $\mathcal{O}_{Qu}^{(1)} = (\bar{Q}_L \gamma_\mu Q_L) (\bar{u}_R \gamma^\mu u_R)$

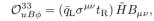


 $c_G \mathcal{O}_G = \frac{g_s \, c_G}{\Lambda^2} \, f_{abc} G^{\rho}_{a\nu} G^{\nu}_{b\lambda} G^{\lambda}_{c\rho}$

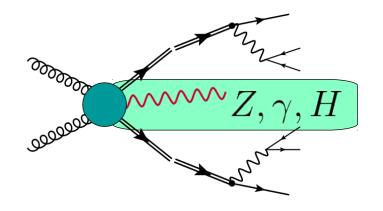
→ See [Krauss, Kuttimalai, Plehn] (2016)

Sensitivity to EW physics

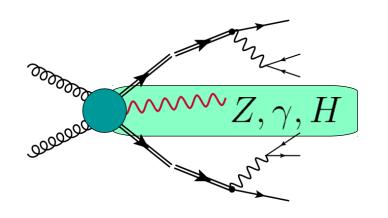



$$C_{\phi q}^{(3,33)} = \mathrm{i} \left(\phi^{\dagger} \tau^{a} D_{\mu} \phi \right) (\bar{t}_{\mathrm{L}} \gamma^{\mu} \tau_{a} t_{\mathrm{L}}),$$

$$\mathcal{O}_{\phi \phi}^{33} = \mathrm{i} \left(\tilde{\phi}^{\dagger} D_{\mu} \phi \right) (\bar{u}_{R} \gamma^{\mu} d_{R})$$


$$\mathcal{O}_{uW}^{33} = \left(\bar{q}_{\mathrm{L}} \sigma^{\mu \nu} \tau^{I} t_{\mathrm{R}} \right) \tilde{H} W_{\mu \nu}^{I},$$

$$\mathcal{O}_{dW}^{33} = \left(\bar{q}_{\mathrm{L}} \sigma^{\mu \nu} \tau^{I} b_{\mathrm{R}} \right) HW_{\mu \nu}^{I},$$



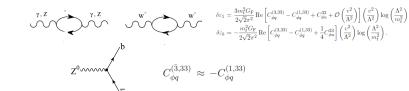
Associated production:

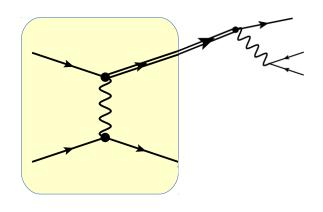
Sensitivity to couplings of neutral gauge bosons and the Higgs Boson

Associated production:

Sensitivity to couplings of neutral gauge bosons and the Higgs Boson

$$\begin{split} C^{33}_{u\phi} &= (\tilde{\phi}^{\dagger}\phi)(\bar{q}_L u_R) \\ C^{(3,33)}_{\phi q} &= \mathrm{i} \, (\phi^{\dagger}\tau^a D_{\mu}\phi) \, (\bar{t}_L \gamma^{\mu} \tau_a t_L), \\ C^{(1,33)}_{\phi q} &= \mathrm{i} \, (\phi^{\dagger}D_{\mu}\phi) \, (\bar{t}_L \gamma^{\mu} t_L), \\ C^{(1,33)}_{\phi q} &= \mathrm{i} \, (\phi^{\dagger}D_{\mu}\phi) \, (\bar{t}_L \gamma^{\mu} t_L), \\ C^{33}_{\phi u} &= \mathrm{i} \, (\phi^{\dagger}D_{\mu}\phi) \, (\bar{t}_R \gamma^{\mu} t_R). \end{split} \qquad \mathcal{O}^{33}_{uB\phi} &= (\bar{q}_L \sigma^{\mu\nu} t_R) \, \tilde{H} B_{\mu\nu}, \end{split}$$

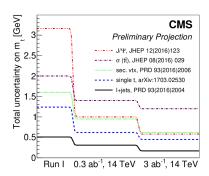




$$\begin{split} O^1_{lq} &\equiv \bar{l} \gamma_\mu l \quad \bar{q} \gamma^\mu q, \\ O_{lu} &\equiv \bar{l} \gamma_\mu l \quad \bar{u} \gamma^\mu u, \\ O_{eq} &\equiv \bar{e} \gamma^\mu e \quad \bar{q} \gamma_\mu q, \\ O_{eu} &\equiv \bar{e} \gamma_\mu e \quad \bar{u} \gamma^\mu u, \end{split}$$

$$\begin{array}{lll} O^1_{lq} \equiv \bar{l} \gamma_\mu I & \bar{q} \gamma^\mu q, & O^1_{leau} \equiv \bar{l} e \ \varepsilon \ \bar{q} u, \\ O_{lu} \equiv \bar{l} \gamma_\mu I & \bar{u} \gamma^\mu u, & O^3_{leau} \equiv \bar{l} \sigma_{\mu\nu} e \ \varepsilon & \bar{q} \sigma^{\mu\nu} u, \\ O_{eq} \equiv \bar{e} \gamma^\mu e & \bar{q} \gamma_\mu q, & O^3_{lequ} \equiv \bar{l} \sigma_{\mu\nu} e \ \varepsilon & \bar{q} \sigma^{\mu\nu} u, \\ O_{eu} \equiv \bar{e} \gamma_\mu e & \bar{u} \gamma^\mu u, & O^3_{lq} \equiv \bar{l} \gamma_\mu \tau^I I & \bar{q} \gamma^\mu \tau^I q, \end{array}$$

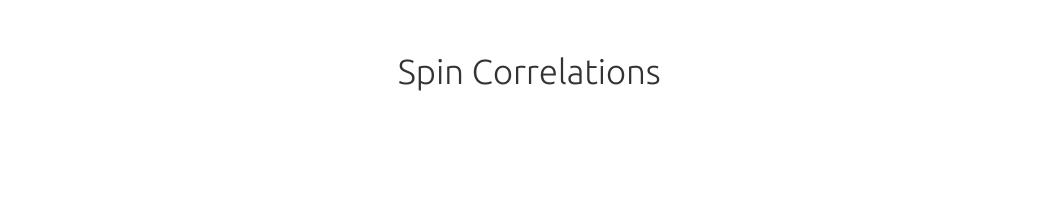
- Allows to probe a large range of new couplings
- Electroweak top quark couplings are not very well constrained
- Tevatron never produced *ttbar+X* final states
- Relations from EW precision observables



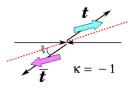
Single top quark production:

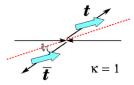
Only mentioned briefly for brevity

Excellent sensitivity to tbW coupling and top quark mass



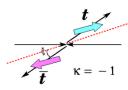
The big picture

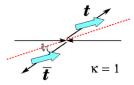

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L) + V_R P_R t W_{\mu}^- - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (g_L P_L) + g_R P_R t W_{\mu}^- + \text{H.c.}.$$


$$\mathcal{L}_{\gamma tt} = -eQ_t \bar{t} \, \gamma^{\mu} t \, A_{\mu} - e\bar{t} \, \frac{i\sigma^{\mu\nu} q}{m_t} \left(d_V^{\gamma} + id_A^{\gamma} \gamma_5 \right) A_{\mu} \, .$$

$$\mathcal{L}_{Ztt} \ = \ -\frac{g}{2c_W} \bar{t} \, \gamma^\mu \left(X_{tt}^L P_L \right) + X_{tt}^R P_R - 2 s_W^2 Q_t \right) t \, Z_\mu - \frac{g}{2c_W} \bar{t} \, \frac{i \sigma^{\mu\nu} q_V}{M_Z} \left(d_V^Z + i d_A^Z \gamma_5 \right) \right) Z_\mu \, , \label{eq:local_Lztt}$$

Top quarks produced at the LHC are unpolarized.


However, the relative polarization of top and anti-top is correlated.


[Barger,Ohnemus,Philips] (1988)

$$C_{\mathrm{LO}}^{\mathrm{SM}} = \frac{\# \left(\uparrow \uparrow + \downarrow \downarrow\right) - \# \left(\uparrow \downarrow + \downarrow \uparrow\right)}{\# \mathrm{total}} = \begin{cases} -46\% & \mathrm{at\ Tevatron,} \\ +31\% & \mathrm{at\ LHC.} \end{cases}$$

(quantization axis = direction of flight)

Top quarks produced at the LHC are unpolarized.

However, the relative polarization of top and anti-top is correlated.

[Barger,Ohnemus,Philips] (1988)

$$C_{\mathrm{LO}}^{\mathrm{SM}} = \frac{\# \left(\uparrow \uparrow + \downarrow \downarrow\right) - \# \left(\uparrow \downarrow + \downarrow \uparrow\right)}{\# \mathrm{total}} = \begin{cases} -46\% & \text{at Tevatron,} \\ +31\% & \text{at LHC.} \end{cases}$$

(quantization axis = direction of flight)

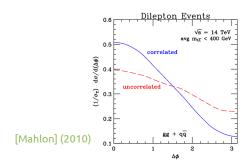
Interesting quantity because very sensitive to New Physics:

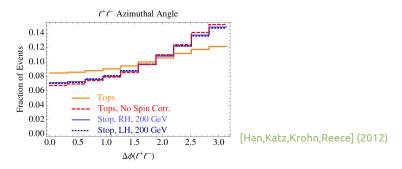
$$q$$
 t
 $\mathcal{L}_{\mathrm{BSM}} = \frac{g_s^2}{2m_t^2} \, \hat{c}_{VV} \, (\bar{q}\gamma^{\mu} t^a q) + \frac{g_s^2}{4m_t^2} \, \hat{c}_1 \, \{ (\bar{q}\gamma^{\mu}\sigma_3 t^a q) \}$

$$\begin{array}{ccc}
 & \mathcal{L}_{\text{BSM}} = \frac{g_s^2}{2m_t^2} \, \hat{c}_{VV} \, \left(\bar{q} \gamma^{\mu} t^a q \right) \left(\bar{t} \gamma_{\mu} t^a t \right) \\
 & + \frac{g_s^2}{4m_t^2} \, \hat{c}_1 \left\{ \left(\bar{q} \gamma^{\mu} \sigma_3 t^a q \right) \left(\bar{t} \gamma_{\mu} t^a t \right) + \left(\bar{q} \gamma^{\mu} \gamma^5 \sigma_3 t^a q \right) \left(\bar{t} \gamma_{\mu} t^a t \right) \right\}
\end{array}$$

$$C_{\text{LO}}^{\text{BSM}} = \begin{cases} -89\% & c_{VV} \\ +18\% & c_{I} \end{cases}$$

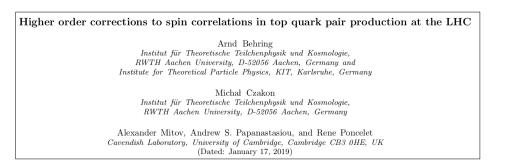
In the early days (Tevatron run-II) it was questionable whether spin correl. are observable.

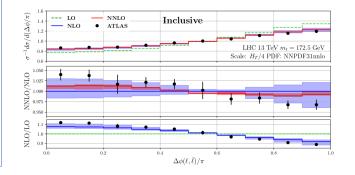

Non-perturbative effects and radiative top quark decays wash out the correlation.

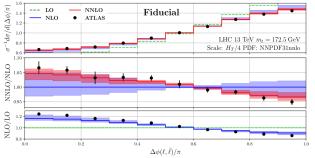

Thanks to $\Lambda_{\rm QCD} \ll \Gamma_t \ll m_t$ the non pert. dilution is small. No collinear enhancement.

 \rightarrow Spin correlations first observed by DZero (2011) in $\Delta \phi_{\ell\ell}$ distribution using MEM methods.

[Melnikov, M.S.] (2011)

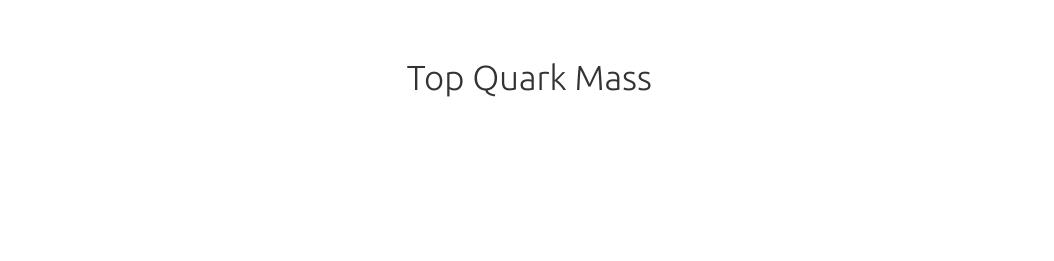

Important: (V-A) interaction in decay transfers spin information to decay products Top quark spin correlation is imprinted in lepton angular distribution


State-of-the-art:

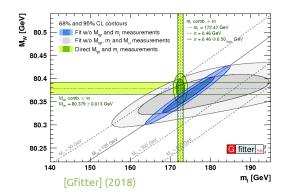

NNLO QCD for top quark production + decay (NWA)

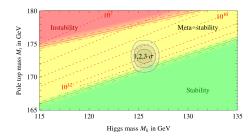
see also talk by
Rene Poncelet

$$\begin{split} d\sigma^{\mathrm{LO}} &= d\sigma^{\mathrm{LO} \times \mathrm{LO}} \,, \\ d\sigma^{\mathrm{NLO}} &= d\sigma^{\mathrm{NLO} \times \mathrm{LO}} + d\sigma^{\mathrm{LO} \times \mathrm{NLO}} - \frac{2\Gamma_t^{(1)}}{\Gamma_t^{(0)}} d\sigma^{\mathrm{LO}} \,, \, \, (1) \\ d\sigma^{\mathrm{NNLO}} &= d\sigma^{\mathrm{NNLO} \times \mathrm{LO}} + d\sigma^{\mathrm{LO} \times \mathrm{NNLO}} + d\sigma^{\mathrm{NLO} \times \mathrm{NLO}} \\ &- \frac{2\Gamma_t^{(1)}}{\Gamma_t^{(0)}} d\sigma^{\mathrm{NLO}} - \frac{\left(\Gamma_t^{(1)}\right)^2 + 2\Gamma_t^{(0)}\Gamma_t^{(2)}}{\left(\Gamma_t^{(0)}\right)^2} d\sigma^{\mathrm{LO}} \,. \end{split}$$



Quote: "In our view the most plausible explanation for this discrepancy lies in the extrapolation of the fiducial measurement to the full phase space."

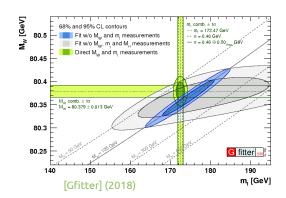

Exp. data from ATLAS-CONF-2018-027 13 TEV, 36 fb-1

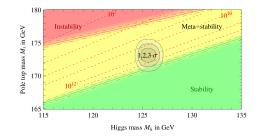

Sensible since extrapolation does not use NNLO QCD simulation.

This is a very broad field. Therefore *just the basics*:

- m_t is an important parameter of the SM: consistency checks, vacuum stability
- m_t is a parameter of the Lagrangian $\to \mathcal{O}_{\text{measured}}^{\text{nature}} = \mathcal{O}_{\text{predicted}}^{\text{N^{\times}LOtheory}}(m_t, \text{ren. scheme})$
- Typical mass definitions: Pole mass, MSbar mass, MSR mass

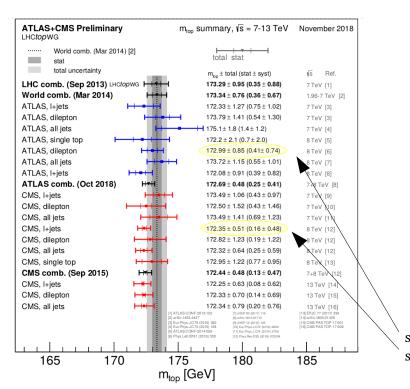
[Degrassi,Di Vita,Elias-Miro,Espinosa,Giudice,Isidori,Strumia] (2012)


This is a very broad field. Therefore *just the basics*:


- m_t is an important parameter of the SM: consistency checks, vacuum stability
- m_t is a parameter of the Lagrangian $\to \mathcal{O}_{\text{measured}}^{\text{nature}} = \mathcal{O}_{\text{predicted}}^{\text{N*LOtheory}}(m_t, \text{ren. scheme})$
- Typical mass definitions: Pole mass, MSbar mass, MSR mass

- p k p
- Since MC generators are involved in the extraction of m_t , the term "MC mass" appeared Strictly speaking: not a well-defined mass. No relation between $\mathcal{O}_{\text{measured}}^{\text{nature}}$, $\mathcal{O}_{\text{predicted}}^{\text{theory}}$. Arguments have been presented that MC mass should be numerically close to pole mass

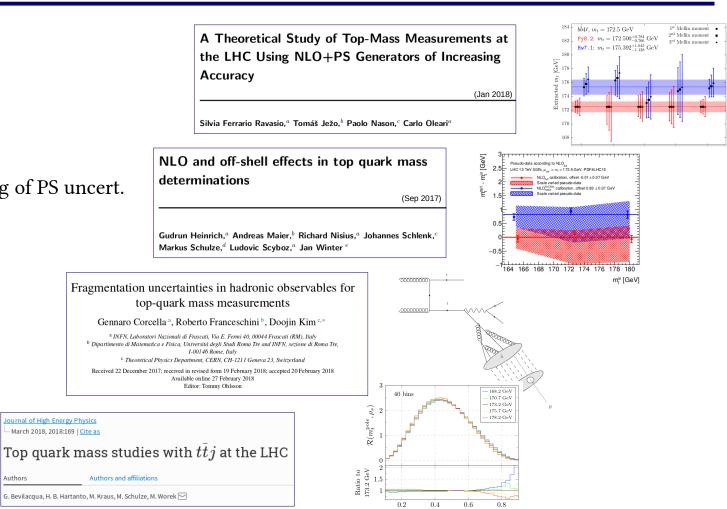
see e.g. [Beneke], [Hoang], [Mangano], [Nason]


- \rightarrow MC mass is a slippery notion. It would be better to discuss sources of uncertainties.
- → Monte Carlo modeling cannot be avoided completely, but should be reduced to a minimum in favor of first principle calculations.

[Degrassi,Di Vita,Elias-Miro,Espinosa,Giudice,Isidori,Strumia] (2012)

State-of-the-art:

At this level of precision:


Spin correlated top quark production+decay needs to be accounted for. Unfolding/simulation of stable top quarks is no longer justified.

single measurements with smallest systematics

State-of-the-art:

- NLO QCD
- Top quark decays
- Off-shell effects
- Advanced understanding of PS uncert.

Journal of High Energy Physics - March 2018, 2018:169 | Cite as

New Physics in Single Top

Eur. Phys. J. C (2018) 78:919 https://doi.org/10.1140/epjc/s10052-018-6399-3 THE EUROPEAN
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Effective operators in t-channel single top production and decay

M. de Beurs¹, E. Laenen^{1,2,3}, M. Vreeswijk¹, E. Vryonidou^{1,4,a}

- ¹ Nikhef, Science Park 105, Amsterdam, The Netherlands
- ² ITFA, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
- 3 ITF, Utrecht University, Leuvenlaan 4, Utrecht, The Netherlands
- 4 CERN Theory Division, 1211 Geneva 23, Switzerland

$$\mathcal{L}_{Wtb}^{\rm SM} = -\sum_{f=d,s,b}^{3} \frac{gV_{tf}}{\sqrt{2}} \, \bar{q}_f(x) \gamma^{\mu} P_L t(x) \, W_{\mu}(x) + \text{h. c.}$$

$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^I \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q)$$

$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I$$

$$O_{qQ,rs}^{(3)} = (\bar{q}_r \gamma^{\mu} \tau^I q_s) (\bar{Q} \gamma_{\mu} \tau^I Q)$$

simultaneously affect production and decay

New Physics in Single Top

Eur. Phys. J. C (2018) 78:919 https://doi.org/10.1140/epjc/s10052-018-6399-3 THE EUROPEAN
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Effective operators in t-channel single top production and decay

M. de Beurs¹, E. Laenen^{1,2,3}, M. Vreeswijk¹, E. Vryonidou^{1,4,a}

- 1 Nikhef, Science Park 105, Amsterdam, The Netherlands
- ² ITFA, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
- 3 ITF, Utrecht University, Leuvenlaan 4, Utrecht, The Netherlands
- ⁴ CERN Theory Division, 1211 Geneva 23, Switzerland

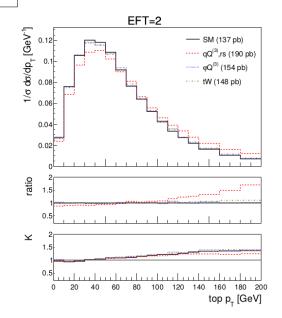
$$\mathcal{L}_{Wtb}^{\text{SM}} = -\sum_{f=d,s,b}^{3} \frac{gV_{tf}}{\sqrt{2}} \, \bar{q}_f(x) \gamma^{\mu} P_L t(x) \, W_{\mu}(x) + \text{h. c.}$$

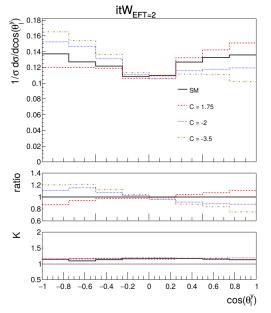
$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^I \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q)$$

$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu \nu} \tau^I t) \tilde{\varphi} W_{\mu \nu}^I$$

$$O_{qQ,rs}^{(3)} = (\bar{q}_r \gamma^{\mu} \tau^I q_s) (\bar{Q} \gamma_{\mu} \tau^I Q)$$

simultaneously affect production and decay


\rightarrow First time consistent treatment at NLO QCD


e.g. top quark width changes:

$$\Gamma_{\text{top}}(C_{tW}) = \Gamma_{\text{SM}} + \frac{1\text{TeV}^2}{\Lambda^2} C_{tW} \Gamma_{tW} + \frac{1\text{TeV}^4}{\Lambda^4} C_{tW}^2 \Gamma_{tW,tW}$$

$$\Gamma_{\text{vs } C_{\text{w}}}$$

$$\Gamma_{\text{vs } C_{\text{w}}}$$

Towards Global Analyses

A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector

Nathan P. Hartland, 1,2 Fabio Maltoni, 3,4 Emanuele R. Nocera, 2,5 Juan Rojo, 1,2 Emma Slade, 6 Eleni Vryonidou, 7 and Cen Zhang 8

Basic Idea: Use all available top quark measurements and allow for most general NP parametrization. Then do a simultaneous fit to all degrees of freedom.

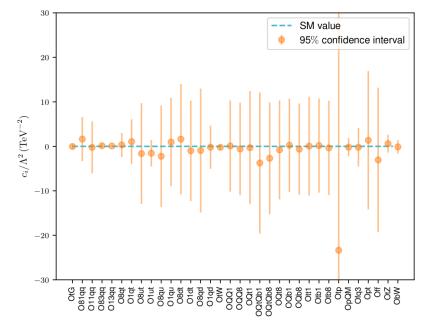
Towards Global Analyses

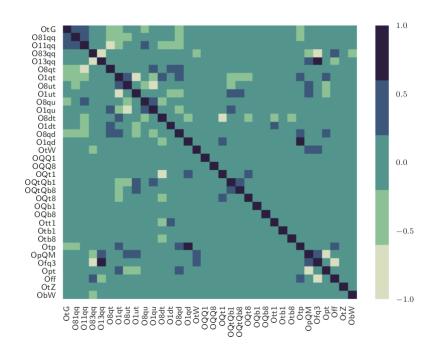
A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector

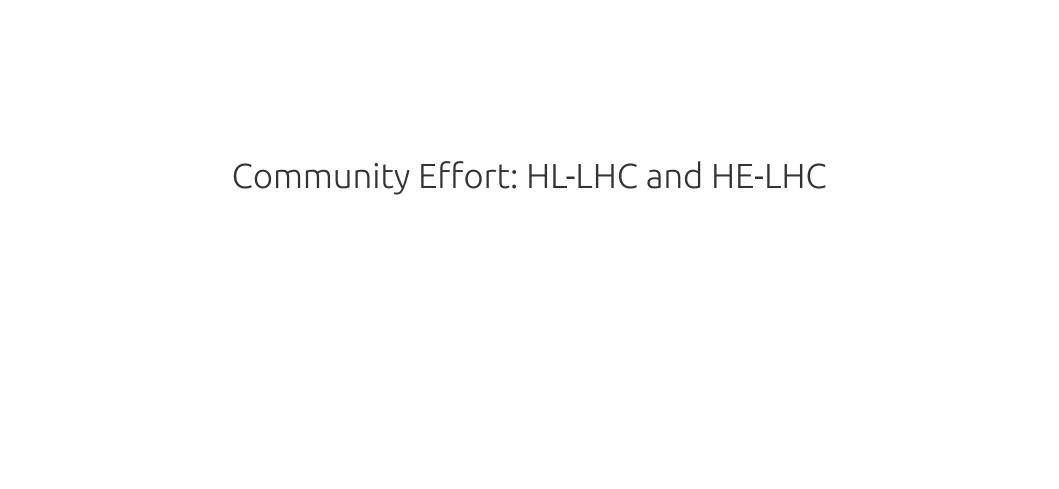
Nathan P. Hartland, 1,2 Fabio Maltoni, 3,4 Emanuele R. Nocera, 2,5 Juan Rojo, 1,2 Emma Slade, 6 Eleni Vryonidou, 7 and Cen Zhang 8

					Top quark pair	r	w	tΖ	
Class	Notation	Degree of Freedom	Operator Definition	(2)		/.	WN	<u>u</u> → d	
QQQQ	0QQ1	c_{QQ}^1	$2C_{qq}^{1(3333)} - \frac{2}{3}C_{qq}^{3(3333)}$	A	\$ ************************************	· _		$\geq w$	
	0008	c_{QQ}^8	$8C_{qq}^{3(3333)}$			(200)	\		
	0Qt1	c_{Qt}^1	$C_{qu}^{1(3333)}$	10		i y	\ t	b 2z	
	0Qt8	c_{Qt}^8	$C_{qu}^{8(3333)}$		Single top (t-channel)	Single top	(s-channel)	ttbb	
	0Qb1	c_{Qb}^1	$C_{qd}^{1(3333)}$		1	_	1-	-10	
	0Qb8	c_{Qb}^8	$C_{qd}^{8(3333)}$	Š		A.	W b	90000 1 1	
	Ott1	c_{tt}^1	$C_{uu}^{(3333)}$			<i>></i> ~	~~<	*30000<	
	Otb1	c_{tb}^1	$C_{ud}^{1(3333)}$		b / t	/q	1	900	
	Otb8	c_{tb}^8	$C_{ud}^{8(3333)}$						
	OQtQb1	c^1_{QlQb}	$C_{quqd}^{1(3333)}$		tfW		ttZ	ttH	
	OQtQb8	c_{QtQb}^{8}	$C_{quqd}^{8(3333)}$					t	
	081qq	$c_{Qq}^{1,8}$	$C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$	\bar{d}	\0000000\	- B		000000 - r	
	011qq	$c_{Qq}^{1,1}$	$C_{qq}^{1(ii33)} + \frac{1}{6}C_{qq}^{1(ii33i)} + \frac{1}{2}C_{qq}^{3(ii33i)}$	d	1	300	300000<\1'" \		
	083qq	$c_{Qq}^{3,8}$	$C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}$	white we		i 3008/00	7	7000000√ - ī	
	013qq	$c_{Qq}^{3,1}$	$C_{qq}^{3(ii33)} + \frac{1}{6}(C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)})$	<i>y</i>	VL W+				
	08qt	c_{tq}^8	$C_{qu}^{8(ii33)}$						
	01qt	c_{tq}^1	$C_{qu}^{1(ii33)}$		OtG OtW	c_{tG}	Ref	$C_{uG}^{(33)}$ }	
QQqq	08ut	c_{tu}^8	$2C_{uu}^{(i33i)}$			c_{tW}		$C_{uW}^{(33)}$ }	
QQqq	01ut	c_{tu}^1	$C_{uu}^{(ii33)} + \frac{1}{3}C_{uu}^{(i33i)}$		OPA	c_{bW}		$C_{dW}^{(33)}$ }	
	08qu	c_{Qu}^8	$C_{qu}^{8(33ii)}$		0tZ	c_{tZ}		$c_{dW}^{(3)} + c_W C_{uW}^{(33)}$	
	01qu	c_{Qu}^1	$C_{qu}^{1(33ii)}$	$QQ + V, G, \varphi$	Off	$c_{\varphi tb}$		$C_{\varphi ud}^{(33)}$	
	08dt	c_{td}^8	$C_{ud}^{8(33ii)}$		Ofq3	$c_{\varphi Q}^3$		- φua) 3(33) ρq	
	01dt	c_{td}^1	C1(33ii)		OpQM	$c_{\varphi Q}^-$		$-C_{\varphi q}^{3(33)}$	
	08qd	c_{Qd}^8	C_{qd}^{ud}		Opt	$c_{\varphi t}$		φu (33)	
	01qd	c_{Qd}^1	$C_{qd}^{1(33ii)}$		Otp	$c_{t\varphi}$		$C_{u\varphi}^{(33)}$ }	
	- 1-	Qa.	1 qd			- 17		/	

Basic Idea: Use all available top quark measurements and allow for most general NP parametrization. Then do a simultaneous fit to all degrees of freedom.


Notation	Sensitivity at $O(\Lambda^{-2})$ $(O(\Lambda^{-4}))$								
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
0QQ1 0QQ8 0Qt1 0Qt8 0Qb1 0Qb8 0tt1 0tb1 0tb8								4 4 4	8 4 4 4 4 4 4 8
00tQb8 081qq 011qq 083qq 013qq 08qt 01qt 08ut 01ut 08qu 01qu 08qt 01td		[V]		[v] v	\forall \for	3 < 3 < 3 < 3 < 3 < 3 < 3 <	5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	*********	
OtG OtW ObW OtZ Off Ofq3 OpQM Opt	1	(v) (v) v	\(\forall \)	\(\sqrt{\sq}\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	✓	1	1	1	✓


34 operators, 30 different measurements form 10 processes


Towards Global Analyses

Main ingredient: Generation of MC replicas (N=1000), similar to PDF fits

Results:

Community Effort: LHC-HL & LHC-HE Working Groups

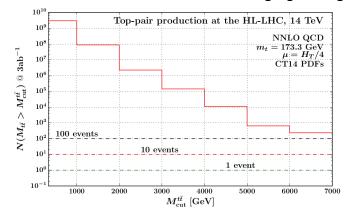
CERN-LPCC-2018-03 February 26, 2019

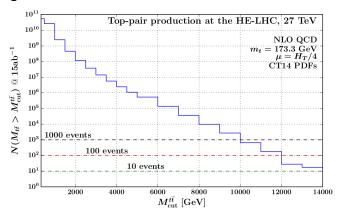
Standard Model Physics at the HL-LHC and HE-LHC

Report from Working Group 1 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

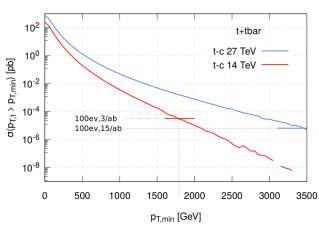
Editor

P. Azzi¹, S. Farry², P. Nason^{3,4}, A. Tricoli⁵, D. Zeppenfeld⁶

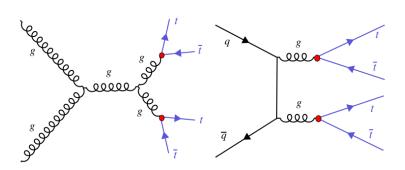

A large compendium of studies for


• HL-LHC: 14 TeV, 3000 fb⁻¹

• HE-LHC: 27 TeV, 15 000 ${\rm fb}^{-1}$

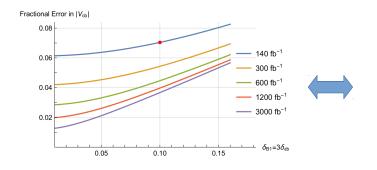

A few selections: ...

Top quark pair production



Single top production

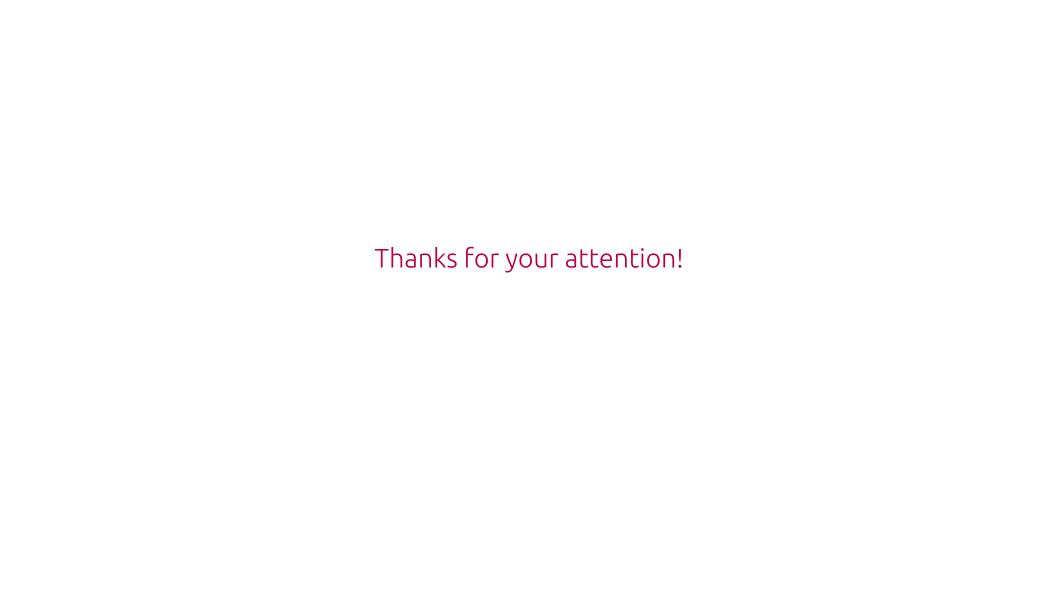
Community Effort: LHC-HL & LHC-HE Working Groups


Four top production

HL-LHC	Basic
$\bar{t}t\bar{t}t_H$	577.22
$\bar{t}t\bar{t}t_{g/Z/\gamma}$	5006.34
$ar{t}tar{t}t_{ ext{int}}$	-764.67
$\bar{t}t$	2.5×10^{8}
$\bar{t}tW^+$	32670
$\bar{t}tW^-$	16758
$\bar{t}tZ$	24516
$W^{\pm}W^{\pm}jj$	4187.7

HE-LHC	Basic
$ar t t ar t t_H$	15174.4
$\bar{t}t\bar{t}t_{g/Z/\gamma}$	148898.
$ar{t}tar{t}t_{ ext{int}}$	-20141.9
$ar{t}t$	3.3×10^{7}
$\bar{t}tW^+$	1.3×10^{6}
$\bar{t}tW^-$	7.6×10^5
ar t t Z	3.9×10^{6}
$W^{\pm}W^{\pm}jj$	888700

Vcb extraction


Quote: "To date, |Vcb | has always been measured in B decays, i.e. at an energy scale mb, far below the weak scale, and it is currently known to an uncertainty of about 2%.

Rare decays

B limit at 95%C.L.	3 ab ⁻¹ , 14 TeV	15ab ⁻¹ , 27 TeV	Ref.
$t \to gu$	3.8×10^{-6}	5.6×10^{-7}	[731]
$t \to gc$	32.1×10^{-6}	19.1×10^{-7}	[731]
$t \to Zq$	$2.4 - 5.8 \times 10^{-5}$		[743]
$t \to \gamma u$	8.6×10^{-6}		[734]
$t \to \gamma c$	7.4×10^{-5}		[734]
$t \to Hq$	10^{-4}		[743]

SUMMARY

- Studying top quark properties is a way of searching for physics beyond the SM
- The top quark system is an ideal place because it yields sensitivity to a large variety of possible New Physics interactions
- Assuming SU(2)xU(1) symmetry holds, certain top quark interactions are related
- I presented a selection of state-of-the-art on:
 - Spin correlations
 - Top quark mass
 - Single top and Top pair associated production
- General trend in theory: Modeling is replaced by first principle calculations
 This is what is required for reliably interpreting the data

